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1 Introduction

Let 7 be a closed curve in IR,

The classical Plateau problem is the problem of constructing a minimal surface
M in IR* which has 7 as its boundary.

We treat the analogue of this problem where we replace IR® by the space €" of n
complex variables and fix a smooth closed oriented curve v in C" .

We seek a Riemann surface ¥ in €™ having 7 as its boundary. You recall that a
Riemann surface in C" is a two-manifold which is locally parametrized by complex-
analytic functions. We shall allow a discrete set of singular points on ¥, so that the
strictly correct term for ¥ is ”one-dimensional complex analytic variety”.

Two approaches have been used for a solution to this problem:

Road (I) uses the ideas of analytic continuation in the complex plane and was
taken by R. Harvey and B. Lawson in 1975 in their paper [3]. There they deal with
a much more general situation. In Section 3 we shall use their method for the special
case of a smooth curve in €2 where the argument is especially elegant and transparent.

Road (IT) uses the theory of commutative Banach algebras and was developed in
the late 1950’2 and 1960’s by a number of authors.(See [10],[2],(9],(8],[1]).We shall
describe this road, more briefly, in Section 4.

We shall begin, in Section 2, with the classical background from the study of
analytic continuation in the complex plane.

The author thanks Thomas Banchoff and Larry Larrivee for help with the diagrams. He is also
grateful to John Anderson for helpful suggestions.
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2 Analytic Continuation

Let a be a smooth closed arc in the complex plane and let zo be a point in the interior
of a. We fix an orientation on @ and we denote by @* a neighborhood of a to the
left of @ and by 2~ a neighborhood of a to the right of a.

Figure 1.

We consider a smooth function ¢ defined on a and we define a function ® on the

s / $(0)dc

2T Yl — 2

complement of a by

for z in C\a.

We denote by ©* the restriction of ® to 2 and by ®~ the corresponding function
on Q7. Since the integrand is an analytic function of the parameter z,the function ¢
is analytic on C\a and ¢ is analytic on QF and similarly for ~. What happens as
the variable z approaches zy ?

Theorem 2.1 The limit of ®*(2) as z approaches zy within Q* ewists, and we denote
it &% (z0). Similarly, we define ®~(z9). Then
D*(20) = 7 (20) = ¢(z0) (1)

For this theorem, sce Plemelj (1908),(7).
We now consider a simple closed curve 4 in the complex plane and let ¢ be a

smooth function defined on 3.Under what condition on ¢ does there exist an analytic
continuation ® of ¢ from /4 to the domain 2 bounded by 5 ?
If such an extension ® exists, then we have

/ﬂ Ho)de = /ﬂ B(C)d¢ = 0

by Cauchy’s theorem. Similarly we have

[ oy =o
Jp
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for n = 0,1,2,...
So (2) is a necessary condition on ¢ for the existence of an analytic extension. Is
(2) sufficient ? We define ®(z) ,for z in Q, by

®(2) = f _LO‘__'

Fix a point ¢ on 3. For | z | sufficiently large, the series

I

n=0

converges and equals (+; It follows that

B(z) = ”’“d“ Z / O d e

W G=%
and the last term vanishes by 2). So ‘I’(z) = 0 for large | z | and in consequence
¢ = 0 outside of 3. We now fix a point z, on 3 and chose a subarc a of # which
contains zp.

Figure 2.

We write, for each z in €\,

®(z) = P1(2) + P2(2),

where
n() - [ 4L
bya)= [ SO
BalG==

It is clear that @, has a continuous extension from Q to the outside of 3 across
the arc a. For ®; we have by the Jump Theorem, that

@ (20) — By (20) = b(20). where &} and ®; are defined
as earlier. Also

g
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B (20) ~ @5 (20) = 0.
Adding equations, we get at zo,
of +f — (27 +23)=¢

Since
(pl" + cp; =~

and since ® vanishes outside of g, ®~(z0) = 0. So
o+ 8F = ¢(z0)
and so
@*(20) = ¢(20)

So ¢(z0) = lim®(z) as z approaches zp from within Q.
So &, restricted to €, is the required analytic extension of ¢. We have proved

Theorem 2.2 Given 3 and ¢ as above, (2) is a necessary and sufficient condition
for the existence of an analytic extension of ¢ from B to Q.

We can interpref, Theorem 2.2 geometrically in the space € of two complex vari-
ables, z and w. We fix a closed curve 3 in € and consider a smooth function ¢ defined
on 3. We denote by X the graph of ¢ in €2, so that X is the set of all points (z, ¢(z))

with z in 3.
Condition (2) can be expressed as

/ wz"dz = 0,m=0,1,2 (3)
X

since [\ wztdz = [, $(2)2"dz

Figure 3.
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3 The Moment Condition

Formula (3) gave us a necessary condition on a graph X in € to be the boundary of
a Riemann surface. We now wish to do the corresponding thing for a given smooth
closed curve 4 in @ . Suppose that y bounds a Riemann surface 3.

Fix non-negative integers n and m and let a denote the differential form ¢"n™d¢
on ©*. We claim that the restriction of a to ¥ is a closed form on ¥. We denote by
¢ and 7 the complex coordinates on €2, Let p be a point on ¥ and let ¢ be a local
coordinate on ¥ at p. Then near p we have ¢ = g(#) and n = h(t), where g and h are
analytic functions of ¢. So a = (g(t))"((h(t))™g'(t)dt and so da = (k(t)dt) A dt =
proving our Claim. Applying Stokes' theorem to ¥, with boundary v, we get

/u:/du:[)
y bl

So we have the following necessary condition on 7 :
For each pair of integers

n,m >0, / nRde=10" (4)
i

We call (4) the Moment Condition on 7.

Is the moment condition sufficient as well as necessary? To arrive at an answer,
we assume there is a Riemann surface ¥ bounded by 4 and we project ¥ and v into
the complex plane by the map 7 : (z,w) — 2

The image of 4 under 7 in © is a smooth closed curve (v) in general with self-
intersections, which divides the plane into a finite or infinite number of connected
components. See Fig. 5 below

e

Dt T

AR

Figure 4.

We fix one of the components U of €\ (7). The inverse image 7~ (U) of U in 2
lies over U as a finite-sheeted cover, possibly branched. We denote by n the number of
sheets of this cover. For each point 2 in U there are n points (z,w;(2)),j = 1,2,...,n,
lying over z. Locally, except at branch points, each w; is an analytic function of z.
In general, w; is multiple-valued on U.
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We define a function I’ of z and w in U x € by setting
n
B(z,0) = [[(w-w;(2)
J=1

for z in U and w in ©.

If we expand this product, we get an n’th degree polynomial in w whose coefficients
are elementary symmetric functions of the wj;, and hence single-valued analytic on U.
So F is an analytic function on U x €. Furthermore, the zeros of F' are the points
(z,w;(z)) with z in U, and so exactly the points in a=1(U). Our next goal is to
express F(z,w) in terms of data on y. We put R = maz | 7 | taken over all points

(¢,m) on TUY.

n

We have "
F(z,w) = H —w;(2)) = w H(l .« wiiz))

=i J=1
for all (z,w) in U X C. If |w | > R, log(1 — %:)) is locally well-defined and for z in
0] E] , log(1 — ﬂlﬂ#) is single-valued analytic on U. It follows that

n
logF(z, w) = nlogw + Zlog(l - -w) + 2miN (5)
w
j=1
ome integer N.Fix a point z in U and consider the meromorphic differential form
on ¥, where G is an analytic function on X. The poles of this form occur at
.n, and they are simple poles with residue G(z, w;(z))

<
the points ((z,w;(2)) , j = 1,2,..
at the jth point. The residue theorem, applied to ¥ then gives

L[ Gl &
== 7(7QZ =J=ZIG'(Z. w;(z))

We apply this formula with G(¢,7) = log(1 — Z), where w is a complex number

with | w | > R, and we get
1 log(1 — 1))

2y 6=z 44

equals 37, log(1 — wilz)y,

R(’\d“lnf, formula (5) and exponentiating we get:

1 log(1— 2 : :

F(z,w) = u‘"();z:])[é;r—/T ——g?(—“’—ld([, zeU, |w|>R (6)

We note that, by the residue theorem again, the number of sheets n of
also expressed in terms of v, by the relation:

-) is

(7)

T (
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We have reached our goal of expressing F(z,w) in terms of data on . However,
this expression holds only for | w |[> R. The zeros of F(z,w), on the other hand,

which give us the Riemann surface ¥, are contained in U x (| w |< R) as is shown in
Pig. 7, below:

Figure 5.

Can we reverse the procedure, i.e. given a curve v is €, can we use the right-hand
side of (6), which is defined in terms of v, to construct a Riemann surface £ ?

We choose a simple closed curve v in €% and assume that 7 satisfies the moment
condition (4) We list the complementary components of 7(7) in the complex plane as
U, Uy, Us, ..., with Uy denoting the unbounded component.

%w(2))

Figure 6.

For given j, we define the function Fj(z,w) on U; x (| w [> R) by the formula

log(1— 2
Fyj(zw) = wM eap| / Eell )
y

Here n; is defined by the formula (7).

We have the task now (o show that, for each j, Fj(z,w) admits analytic continu-
ation from Uj x (| w [> R) to U; x € and that the zero sets Fj(z,w) = 0in U; x €
fit together to an analytic variety & in Cz\'y having v as its boundary.

Lemma 3.1 Fy(z,w) is identically 1 for z in Uy and w in C.

(R
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Proof Fix z,w with | 2 [> R and | w [> R, and put G(¢,n) = Iogg:%). Then
G is an analytic function of ¢ and 7 in some bidisk containing v, and hence we
can find a sequence of polynomials (2, (¢,7)) which tends uniformly to G on v as 1
approaches infinity. Since each P, is a linear combination of monomials ("™, the

/ Pyd¢ =0,
5

and so o2

e / o8l = ) ye — o,
w2

Also np = 0 and so Fo(z,w) = 1. Since Up is connected, analytic continuation yields

that Fy(z,w) = 1 for all z in Up,w in €, which proves the Lemma.
A key tool in proving the desived propert of the functions Fj is the following: Let
Uy, U; be a pair of adjacent components of C\m(v) with a common boundary arc o

oriented positively with respect to U

moment condition gives that

|w| >R

{F(zw) =0}

sicishon i
Figure 7.

The portion of 7 lying over e under the projection 7 can be represented in the
form: 7 = f(C), ¢ in e, where f is a smooth function defined on a. The functions F;

and F; have continuous extensions to a from their respective regions.

Lemma 3.2 For z in a, we have

Fy(20,w) = (w — f(20))Fi(20,w), | w [> R.

Proof We put

dg,

Oi(z,w) = —I— L
210 J() ==
zin Uy, and we define ®; similarly for z in U;.Fix w ,Jw| > R.
I'he limit of ®;(z,w), as z approaches z, within U;, exists and we denote it ¥, (20, w).
Similarly we define ®;(zo, w).
By the Jump Theorem, we have

f(20)
e

T\

(20, w) = Pi(20, w) = log(1
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Also Fy(z0,w) = w™exp®;(20, w), and similarly for F;. Also, n; =n; + 1. So

Fy(z0.w) _  nn s Bt e f(%0)
yoTE 50 eap(P;(20,w) = Pi(z0, w)] = wll = ==).
Thus (8) holds. M
We wish to prove that the t dition,(4) ,is sufficient (as well as neces-

sary)for the existence of a Riemann surface £ bounded by ~.

We shall illustrate the method by considering the special case when 7 is a smooth
curve in €* such that 7(y) has exactly 3 complementary components U, U, and Us,
and 7(7) is as shown in the figure below. We assume condition (4) is satisfied by +.

Case 2

Figure 8.

7 is given | rically by an equation n = f(C), where f is a smooth function
defined on the union of the open arcs a and g shown in the figure. Thus f is defined
on #(%) with the self-intersection point removed.

Warning: what now follows omits a lot of details. See the cited literature for more.

Claim 3.1 fadmits an analytic extension f* from a to Uy, and Fy(z,w) = w— f*(z)
for zn Uy and | w |> R. It follows that Fy extends analytically to all of Uy x C.

By Lemma 3.2, F (20, w) = (w — f(20))Fo(z0,%), for 2 in a and | w [> R. By

Lemma 3.1, F = 1 on Uj, and so Fy(20,w) = 1. It follows that
Fi(20,w) = w - f(20)-

Fix win | w [> R. By its definition, Fy(z,w) is analytic in z for z in U; and
extends continuously to a. It follows that f admits an analytic extension from a to
Uy. We call this extension f*. Then Fj(z,w) and w — f* agree, as functions of z, on
a and hence agree on Uj.

Thus Fy(2,w) = w — f*(2) for z in Uy, proving the Claim.

We denote by ¥, the Riemann surface: Fy(z,w) = 0 in U; x €. Then £, has
equation: w = f*(z) and so fits over a onto the arc of 4 which lies over a. This
provides the piece of our desired Riemann surface ¥ which lies over U;.

We next consider Case 1 in Fig. 8 above. Here the arc 4 is oriented positively
with respect to Us. Then np = n; + 1 = 2, and by Lemma 3.2 we have for each point

A
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\in @ and | w |> R, the relation Fa(\, w) = (w — f(A))F1(A,w) and so
Fy(Aw) = (w = fA)(w = f*(A)- (9)

Thus Fa(A\, w) = w? — (f(A) + f*(\))w + f(A)f*(A). On the other hand we have the
representation F(z,w) = Y% ¢;(z)wd for (z,w) in Uzx | w |> R where each c; is
analytic on U, and conhnuous on UpUB. In pamcular this equation holds at a point
Aon 3. So we have Fy( = Y00, (M equals w? —(f(A)+ £ (A))w+F(A) f*(A),
|w{>R.

It follows that ca(A\) = 1,c1(A) = —(f(A) + f*(A)), and co(A) = f(A)f*(A), and
¢;(A) =0for j #0,1,2.

Since the ¢; are analytic functions on Uy, they are determined by their values on
any boundary arc. Hence ¢; = 0 in U; for j # 0,1,2, and so we have

Fy(z,w) = w? + c1(2)w + co(2), 2eUz, (10)
and

F(A) + f*()) has the analytic extension — ¢y from 3 to Up and similarly,

F(N)f*(N) extends as ¢g to Us. (11)

At this point , we know from (10) that F, has an analytic extension from
Uy x (| w |> R) to Uy x €, and is a second degree polynomial in w. What can
be said about the zero-set of Fy in Uy x C 7

We factor F; into factors linear in w and obtain

Fa(z,w) = (w = Wi(2))(w — Wa(2)), for zeUp U3, (12)

where Wy, Wy are branches of a two-valued analytic function on Us. The zero-set
of Fy is the graph in @ of this two-valued function.
Further, by (9), for A¢f3, we have

Fa(Aw) = (w = fFA)(w ~ f7(A)- (13)

If W, and W, are not coincident, we conclude that, outside a small singular set
on g, Wy coincides with f on 3 and Wy coincides with f* on 4. We now define the
Riemann surface ¥ over Us to be the two-sheeted graph of the two-valued analytic
function ( Wa) on Uy. Then %5 continues £; analytically from Uy across 3 to Uy,
since W = f* on 3, and also £, fits onto the arc:p = f(¢) of ¥ over 3.

Finally, we take ¥ to be the Riemann surface obtained in €* by joining together
¥y and ¥y, and the arc over 8 along which X, connects with £;. Then ¥ is the
desired Riemann surface having v as its boundary. A schematic sketch of ¥ is given
in the following picture.
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4} Iw>R
_/Lpl =0

U2 Ul
Figure 9.

A=

0

Case 2 is handled in a similar way, and yields a Riemann surface lying one-sheeted
over I/; with boundary 5. A third case, where () has 3 complementary components
is shown in the following figure. One can show, using the moment condition, that this

case cannot oceur, since 7 is a simple closed curve.

Figure 10.

The method we have sketched here can be carried out in general, and yields the
following result:

Theorem 3.3 Let v be a smooth simple closed curve in ©* which satisfies the Mo-
ment Condition. If vy is suitably oriented, then there exists a 1-complex dimensional
complez-analytic subvaricty % of C2\'y which has v as its boundary in the sense of
Stokes' Theorem, i.c.

/u = / do for every smooth closed 1 — form @ on @,
ol b}

This is a special case of Theorem I'in (3|. That theorem also gives more information
on the sense in which ¥ is attached to .
4 Banach algebras

Let X be a compact subset of €. The polynomials in the coordinate functions
21, 33, ... 3y, Testricted to X, form an algebra of continuous functions on X. We denote
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the uniform closure of this algebra on X by P(X). With norm: || f ||= maz | f |,
P(X) is a Banach algebra,

he maximal ideal space of this Banach algebra has a natural identification with a
certain compact subset of €, shown below. We define the set X in €" as the collection
of all points y in €™ at which the maximum principle holds for polynomials, relative
to the set X. Thus X consists of all points y in €" such that

| Q(y) |< maz | Q | overX for all polynomials Q.
X is called the polynomial hull of X.

X is itself compact, and contains X. A set X for which X = X is called polynomially
convezr.

Let K be a compact subset of €. Then K is polynomially convex if and only if the
complement of K in € is connected. Runge’s theorem states that if K is polynomially
convex, and if { is a function defined and holomorphic in some neighborhood of K,
then f can be uniformly approximated on K by polynomials in z. A generalization of
Runge’s theorem for €™, n > 1 was given by Andre Weil and Kiyoshi Oka. It states
that if X is a compact polynomially convex subset of " and if f is a function defined
and holomorphic in a neighborhood of X, then f can be uniformly approximated on
X by polynomials in the coordinate functions 21, 22, ..., z,. We shall refer to it as the
Oka — Weil Theorem.

We identify the maximal ideal space M of the algebra P(X) with the polynomial
hull X, as follows. Fix m in M. By Gelfand's theory, there exists a non-zero ho-
momorphism 7 sending P(X) — € whose kernel is m.Also the norm of 7 as a linear
functional on P(X) is 1.Denote by ¢ the point (7(21), 7(22),...,7(2n)) in €". If P is
a polynomial on €", then P(¢) = 7(P(21,..12n). So | P(¢)I<]| P []. So ¢ belongs to
X. Conversely, every point ¢ in X arises from some m in this way. So we have the
identification of M and X.

We give some examples of polynomial hulls.

Ex.1: 3 is a simple closed curve in the complex plane. Then /3 is the union of )
and the region bounded by 3

Ex.2: S is the 3-sphere | z |* -+ | w |*= 1 in @*. Then S is the closed ball bounded
by S

Ex.3: Y is the circle on the complex line w = 0 in € given by | z |= 1.Then ¥ is
the closed disk on w = 0 bounded by Y.

: R™ denotes the subspace of €™ consisting of those points all of whose coor-
dinates are real. Let K be a compact subset of R”. Then K = K.

Let now v be a simple closed smooth curve in €".Suppose that there exists a
Riemann surface ¥ lying in the domain €™\ whose boundary is 7, such that U~y
is compact. Choose a point a in £ . If P is a polynomial, then the restriction of P to
L is analytic on ¥ By the maximum principle on ¥, then, | P(a) |< max | P | over

Since this holds for every polynomial P, the point a lies in 4.
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Figure 11.

The question now arises: what other point of € belong to 4 ? We shall answer
this question in the Curve Theorem below.

We note that it may happen that 4 = 4, i.e. that v is polynomially convex. This
is the case when v is the curve: z = e, w = e="%,0 < § < 27. It is a nice exercise to
prove that, indeed, this curve is polynomially convex.

The fact that a given curve is polynomially convex has a powerful consequence for
uniform approximation on the curve.

Theorem 4.1 Let y be a smooth closed curve in C" which is polynomially conv
Then every continuous function on v is uniformly approzimable on v by polynomials
in the coordinates. (In symbols, P(y) = C(7)).

L,

Helson and Quigley in [ 5] gave a proof of this theorem.
Proof We make use of the following result of approximation on plane sets, due to
Hartogs and Rosenthal, (4], (1931): Let K be a compact planc set of two-dimensional
measure 0. Then every continuous function on K can be uniformly approximated on
K by rational functions which are analytic on a neighborhood of K.

Consider the coordinate function z;. We claim that the complex conjugate zy of
2y, restricted to v, lies in P(y).Let 7y denote the map which projects €" to € with
(21, 22, .oy 2n) = 21. Since 7 is smooth by assumption, and 7 is a smooth map, the
image () in € has 2-dimensional measure 0. Given ¢ > 0, the Hartogs-Rosenthal
theorem allows us to find a rational function r , analytic in a neighborhood N of ) (7)
such that | 7(¢)=C |< ¢ for each ¢ in my(y). We now choose a neighborhood U of 7 in
C" with m (U) € N. romy is then analytic in U. Also, we have for z = (21, 22, ..., %)
in 7y

| n(m1(2)) = m(2) |< e

since my(2) is in 73(y). Because r o is analytic on U, the Oka-Weil theorem
gives that the restriction of » oy to 7 lies in P(7). Since € is arbitrary, we have that
the restriction of 27 lies in P(7).The similar statement holds for z; for all j. Thus P(v)
contains all the coordinate functions and their conjugates, restricted to 7, and so the
Stone-Weierstrass theorem gives us that P(y) = C(7), and we are done.
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Figure 12.

The converse of this theorem is true, because if P(7) = C(7), then the maximal
ideal space of P(y) coincides with the maximal ideal space of C(y), and the maximal
ideal space of C(X), for every compact Hausdorff space X, equals X. Since the
maximal ideal space of P(7) is 4, we conclude that § = .

Let v be a simple closed smooth curve in € with 4 # . We have the following

result, which we call the Curve Theorem:
Theorem 4.2 If4 # v, then the set © =4\ is a one-dimensional complex analytic
subvariety of C"\1y.

See Stolzenberg, [9 ], for a proof of the Curve Theorem.

It still remains to show that the variety ¥ has + as its boundary. This is true in
the sense of Stokes’ theorem, i.e. if w is a smooth one-form of €", then

Lw:/xdw

For a proof of this, see Mark Lawrence,[6 ] and Harvey-Lawson,[ 3].

Material related to this article can be found, in particular, in the book The Theory
of Uniform Algebras, by E.L Stout, Bogden and Quegley, (1971), Chapter 6,and in the
book, Several Complex Variables and Banach Algebras, 3rd edition, by H. Alexander
and J. Wermer, Springer-Verlag (1998), Chapters 12 and 19.
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