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ABSTRACT
In this expository article, we review and improve uniform resolvent estimates
for a family of operators and show how such results can be applied to the study
of the high frequency Helmholtz equation by means of semi-classical measures.
For the source term concentrated near a point, we provide a complete solution
to determine the semi-classical measure.

RESUMEN
En este articulo i y mej i resolventes uniformes
para una familia de operadores y mostramos como tales resultados pueden ser
aplicados al estudio de la ccuacién de Helmholtz de alta frecuencia por medio de
medidas semi cldsicas. Para el término fuente concentrado cerca de un punto,
proveemos una solucién completa para determinar la medida semi cldsica,

Key words and phrases:  Mourre's method depending on a parameter,
semi-classical resolvent estimates in Besou spaces,
the Helmholtz equation, sems-classical measure.

Math. Subj. Class.: 95005, 35P25, 81Q20.

!Based on lectures given at CIMPA-UNESCO's School on “Partial Differential Equations and
Applications”, held in Lanzhou, China, July 19-30, 2004. Research partially supported by a grant
of Outstanding Overseas Chincse Scholars of Chinese Academy of Sciences

Ve i



9 Xue Ping Wang r%)

1 Introduction

The Helmholtz equation describes the propagation of light wave in material medium.
Recently, there is a renewed interest in the study of the Helmholtz equation related to
the design of very high power laser devices such as Laser Méga-Joule in France or the
National Ignition Facility in the USA. The laser field, A(z), can be very accurately
modelled and computed by the solution of the Helmholtz equation

AA(x) + K3 (1 = N(2))A(=) + ikov(z)A(z) = 0 (1.1)

where kq is the wave number of laser in vacuum, N(z) is a smooth positive function
representing the adimensional electronic density of material medium and v(x) is pos-
itive smooth function representing the absorption coefficient of the laser energy by
material medium. Since laser can not propagate in the medium with the electronic
density bigger than 1, it is assumed that 0 < N(z) < 1. The equation (1.1) may
be posed in an unbounded domain with known incident excitation Ag. The equation
is then complemented by a so-called radiation condition on the boundary. The high
oscillatory behavior of the solution to the Helmholtz equation makes the numerical
esolution of (1.1) rather expensive. Fortunately, the wave length of laser in vacuum,
much smaller than the scale of N. It is therefore naturel and important to
E ud\ the Helmholtz equation in the high frequency limit kg — co. In this exposi-
tory article, instead of studying boundary value problem related to a non-self-adjoint
operator, we study the high frequency Helmholtz equation with a source term

(A + e7n(2)? +ie ae)u(z) = =S (z) (1.2)

in R d > 1. Here ¢ ~ T].. > 0 is regarded as a small parameter, a, > 0 is a
regularizing constant verifying

lT}w @ =a>0 andif a =0,3y €]0, 1] such that o, > €. (1.3)

n(z) is the refraction index. Here we only discuss the case the source term is concen-
trated near a point z =

T
s,(z)=r’+‘5(-) (1.4)
See [3, 6. If the source term presents a concentration-oscillation phenomenon near a
submanifold T of R?, the problem is much more difficult due to the lack of decay in
tangent direction of I'. See (7] for constant refraction index and [35] for the variable
refraction index under some technical conditions. Equation (1.2) can be put into the
form of semi-classical Schrédinger equation
(~h*A + V() - B - i)up(z) = h'T* SG; ) (1.5)
in R, d > 1, where

h=¢ V(z)=E-n(z)?, &=r&(h)=has.
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Remark that if S(0) = 1, the right hand side can be regarded as a weak approximation
of ],56.,(1) We shall use tools from semi-classical scattering theory to study it by
the approach of E. Wigner, i.e., the approach of semi-classical measure or Wigner
measure.

The purpose of the work is to present the resolvent estimates depending on a pa~
rameter in a unified way and to apply them in the study of the Helmholtz equation
by means of semi-classical measures.

In Section 2, we recall basic properties of Wigner transform and semi-classical
measures. The results of this part are due to (11, 12, 21]. We present in Section
3 a parameter-dependent version of the well-known Mourre’s method in quantum
seattering theory and give uniform microlocal and Besov-space resolvent estimates.
Some results in this Section are contained in [35]. These estimates are applied in
Section 4 to the high frequency Helmholtz equation. The main result Theorem 4.1
is new and was conjectured in [3] and proved in [6] under some assumption on the
self-intersection manifold of the Hamiltonian flow near zero.

2 Wigner transform and semi-classical measures

Semi-classical measures or Wigner measures were introduced by Wigner in 1932 in
the study of semi-classical limit of quantum mechanics from the point of views of
thermodynamic equilibrium. See [36]. For ¢ € L*(R%), the Wigner transform of 1) is
defined by

W)e,6) = @) [ ey + LT dy @1
R 2 2
for (z,€) € R*. W (y) is quadratic in 4, but is linear with respect to the density

function p(z,y) = ¥(2)1(y), a.c. in z,y. A remarkable property of Wigner transform
is that if & = vy, (t) is solution to the Schrodinger equation

o 2
{ L’lﬁ&t = —-%—AL' (22)
Y=o = Yo,
then the scaled Wigner transform, Wy (x, &t) of v:
1 ¢
Wiz, & t) = =W () (z, >
W@ 60 = W)@, D)
is solution to the Liouville equation
{ BUL L6 Val = O 215)
Whj=o = &W(to)(z, §)

More generally, if there is an appropriate potential V/(z), it was expected that the
Wigner transform, W, (t), of the solution ¥ (t) to the Serédinger equation
N(t) h?

ih=g= = (-5 A+ V(@)¥a(t) (2.4)

A
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converges to some limit f as h = 0, which satisfies the associated Liouville equation

U 4§ Vf-VV@) Vef=0 in RIxRExR. @5)

It is worth to notice that the solution of (2.5) can be written down explicitly in
terms of solution of the Hamiltonian system of p(z,€) = 521 + V(z). The approach
of E. Wigner allows to relate formally the quantum mechanics to classical mechanics.
However, the limit f is, in general, not a function, but only a measure. Rigorous
justification of Wigner’s approach requires the study of measures obtained as week
limit of the Wigner transform of a family of wave functions. This approach was
justified for many linear and nonlinear evolution equations. See [21, 11, 12, 38, 39).

Another interest for studying semi-classical measure originates from the compen-
sated compactness principle in methods of variations ([20]). Let {ux} be a bounded
sequence in L*(R?). BExtracting a subsequence if necessary, we can assume without
loss that this sequence converges weekly to some limit v € L?(R?). The defect mea-
sure v, associated with the sequence {ug} is a Radon measure defined as the vague
limit in sense of measure of the sequence |ux(z) — u(z)|* as k = oo. The defect
measure is used to describe the loss of the compactness in elliptic variational prob-
lems, and can not be used to distinguish different oscillation directions. A simple
example is that for v € L*(R?) and ¢ € R?\ {0}, the defect measure of the sequence
ug(z) = v(z)e™ € is v = |u(x)|*dz, which is independent of €. Semi-classical mea-
sure, which may be regarded as refined version of defect measure, appears to be very
useful in many problems. See [4].

2.1 Basic properties of Wigner transform
Let ¢ € L*(R?). Denote

plz.y) = v(@)PW), ploy) =o(z+ %,z - %)‘ a. e.in (z,y) € RY x RY.
It is clear that

B € L*(R*) N Coo (RY; L (RY)) N Con(RY; L (RY))

where Co (RY; L' (RY)) denotes the space of L-valued functions on R which tend
to0asy = . CN‘(R;':I,'(M‘,‘)) is equipped with the natural norm. The Wigner
transform, W, (), of ¥ depending on a small parameter « > 0, is defined by

W. () (z,6) = (m-d/ e~ Wy (z + %’)r(:— %) dy
e

= @red / e WE/(z,y) dy 26)
&
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Proposition 2.1 ([12]) One has
W @)z = (2"6)—;‘||5||i= = (re)~“llplizs = @me)|IllLa, (2.7)
/ W () (z,6)dé = p(z,z), ae inz, (2.8)
L

[ F@eoe e = era [ pmape . @)
vy s

Proof. Remark that
We)(@,€) = (2me) =" Fy e, €/e)
where F, ¢ is Fourier transform
Froe® = [ e ute) .
Rd

(2.7) follows from Plancherel formula for Fourier transform. (2.8) is trivial. (2.9)

: § i _cédn
follows from the same calculation and the inverse Fourier transform of € — e~ %"/%,
L}

With a direct calculation (sce [21]), one can check that
We(W) & ((me) e (4€/c)
L (\Fzm)-"|/ e~ Ui6xHz=2/0/@0 ) (2me)VAdz2 3 0 (2.10)
R .
and
// We(1h) » ((me) ~e " +E/ <) dade = 1y . (2.11)
i

It is useful to introduce the bilinear mapping associated with Wigner transform which
is quadratic in ). Define

w,(f,9)(@,6) = (Zﬂ)"’/ e f(z + oz — c¥) dy.
R D 2
Clearly, w,(f,f) = W.(f). By the properties of Fourier transform on temperate

distributions, w, extends to a continuous bilinear mapping from S'(&%) x S'(R?) to
S'(R*). One has, for f and g in L*,

[ utro@e e = s (212)
(3

/R w0 = el €/ (2.13)

Feau(we(f,9))(mv) = flz~ev/2)g(z +ev/2) (2.14)

e
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a.e.in z,§ and v. For f, g € §', one has

<w(fy9ha> = <a¥(z,eD)f,g>, Vae S(R™), (2.15)
w(f,9) = weg,f), in S'(R*) (2.16)

where < -,- > denotes the 8’ — S dual product. In this work, we denote b¥(z,eD)
the pseudo-differential operator depending on the parameter e, called a semi-classical
pseudo-differential operator, with Weyl symbol b:

(8 (z, eD)u)() = (T]N / / eile—3) 65

For the theory of semi-classical pseudo-differential operators, see [26].

z+

S e€uly) dude.

Proposition 2.2 ([12]) (a). For f,g € L*(R2), one has

Feaowe(f,9)(mv) € Co(RG;L'(RY)) (2.17)
Foornwe(f,9)(m€) € Co(RS; L!(R)) (2.18)

and their respective norms are uniformly bounded by || f|||g]|-
(b). Let a,b € S(R*). Then,

< w(f,9),ab > =< a“(z,€D) f,b"(z,eD)g > 5 s +7 (2.19)
where |r.| < eCla,b)||f||g]l for some C(a,b) independent of f,g ande.
Proof. (a). (2.17) follows from (2.14) and

sup [|£(- = ev/2)g(- + ev/2)|| L1 ey < [|Fll2allg]| 2.
vER?

(2.18) can be deduced from the following relation

Tt = A On
Frasqwe(f,9)m,6) = (23_¢)"f(§ i g)é(:: = g)

and the Parseval formula.

(b). By (2.15), < w,(f,9),ab >=< g, (ab)“(z,eD)f >. By the caleulus of semi-
classical pseudo-differential operators, (ab)“(z,eD) = b¥(z,eD)a"(z,eD) +
€R*(z,eD:¢), where R(c) is a bounded family in S(R*). Since b (z, €D) is invariant
by transposition, we obtain

< we(f,g),ab >=< a"(z,eD)f,b"(z,eD)g > +r,

where r, = ¢ < §, R"(z,cD;e)f > satisfies the desired estimate, due to the uniform
L*-boundedness for semi-classical pseudo-differential operators with bounded symbol.
| ]
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2.2 Semi-classical measures
Let X denote the space
X = {p € Cuo(R2%; Ferap(2, 2) € L' (RY; Coo(RY))}
equipped with the norm
[lllx = /n 8P [ Feaip(x, 2)lds.
X is a Banach algebra and S(R*), C5°(R*) are dense in X.
Let {u,) be a bounded sequence in L*(R?). Denote
Uin(@,§) = W(un)(,€)

Uenla )" = Uz.ut((wi)de’”’]"”"":m")).

Theorem 2.3 ([11]) There eists a subsequence {uy, } of {un}, ¢ = 0 and a posi-
tive bounded Radon measure o on RY such that for any a € Cg°(R?%)

lim < o (o, D), >= [ [ ale, O, dg). 220)
k=00
ju s called the semi-classical measure (or Wigner measure) associated with {u, }.

Proof. Let U, , be defined as above. For any f € X, one has

[ Venle 012, = g [ Fene @ 2Dunte + Fhnte ) dac

It follows that
1 2
| [, Ve, )dad] < cosslfixlunlf < Clf .

This proves that {U, ,} is bounded in X*. Since X is separable, there exists a
subsequence {U,, q, } of {Uq,n} and p € X* such that ex = 0 and {U,, n, } converges
s-weakly to pu:

tim [ U pufdsde = [ f@,uide,de), v € X,

keroo R
By (2.15), for a € C§°(R%),

< a¥(w,€xD)un, tn, >13=< Uy ny,0 >5,5 «

It follows that

< a"(z, ¢4 D)upy \ iny >12— /R“ a(z, &)u(dz, df), k= oo.

W
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It remains to prove that y is a measure. For any a € C§°(R*), take ¢ € CF° with
0< ¢ <1and ga = a Forn > 0, put b, = ¢,/a+n. Then, b, € C5° and
b2 = a+ né?. Making use of symbolic calculus of semi-classical pseudo-differential
operators, we have

a“(z,eD) = b:’(m,eD)2 — 1" (z,eD)? + Ople), in LLA)L

From this decomposition and the boundedness of {u,}, one obtains that there exists
C > 0 independent of 7 such that

lim in.% < a"(z, eD)un, up >> —Cn.
&
Since n > 0 is arbitrary, we get
/a(x,ﬁ)u(d:c,dﬁ) = lim < a“(z,exD)un,, up, >>0.
koo

Therefore, u is a positive distribution, thus a measure on R??. See [13]. It is clear
that p(R*) < supy ||un,||* < co.

When {u,} is only bounded in L{, ., one can still show that there exists a subse-
quence {u,, } of {un} and a positive Radon measure g on R* such that

Jim < a(o,c DYy >= [ [ ate, (i, de) Y € .

Let {u,} be bounded in L* with e € I where [ is a countable set with 0 as the only
accumulating point. Let U, = W, (u,). Let {U,} be defined as above. By extracting
successively subsequences, we can assume, by an abus of notation, that

u = uelL?
U = peX*
U = peX:.

A sequence {v.} € L*(R?) will be said compact at infinity if
sup/ |ve(x)|* dz -0, as R — oo. (2.21)
¢ Jlzl>R

The main properties of semi-classical measures can be resumed in the following

Theorem 2.4 ([21]) (a). One has p = fi.
(b). > |u(x)*60(€) and

Ilull® < pu(R2) < limin [Ju 1.

(). lu.(2)|” converges weakly in sense of measures to f‘(. du(-,€) if and only if
the family {e~*|a(€/€)|*} is compact at infinity.
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(d). The equality p(R*) = lim,o ||u||* holds if and only if both {u.(x)} and
{e “la(e/e))*) are compact at infinity. In this case, {u,} converges strongly to u in
L* if and only if p = |u(z)|*60(£).

(e). Let p be a positive finite Radon measure. Let u € L* such that u_ 2>
|u(2)[8(€). Then there erists a sequence {u.} in L* such that u—u in L*, U, > p
in X* and p(R™) = lim,—yo [ug|]%.

This result shows that semi-cl | contain inf ion about the lack
of compactness for a bounded sequence in L*. For the proof of this theorem, we refer
to [21).

Example Let u € L*(R?), a > 0. Let u(z) = ¢ “*/?u(z/e”). Then the Wigner
transform U, of u, is given by

B e
U, = (2m) e 920 F, e (u(e~z + c"";)u(r"z - tl'°§)).
If & < 1, a change of scale in z variables shows that the associated semi-classical
measure is p = ||ul|*do(2)d (€).
If a > 1, the same method shows that u = 0.

If a =1, then U,(z,£) = e~U(x/e, €) where U is the Wigner transform of u. In
this case,

A / T R
Since [ U(x,€)dE = (;,‘;F]li(f)P, one obtains

1 :
= W&(I)I"(E)I’-

3 Uniform resolvent estimates

In order to study the semi-classical measure related to the high frequency Helmholtz

equation
(A + € *n(2)? +iea,)u,(z) = =S, (z), (3.1)
the first step is to show that the solution sequence {u,} is bounded in L,m_ In [3],
this kind of estimates was obtained from Morrey-C in
[25). Equation (3.1) can be rewritten as a semi-classical Schrodinger equation
(P(h) = (E +ix))up = S™(z), (3.2)
where h = ¢,up = u,, 5" = -€3S,, k = ea,, and

P(h) = -WA+V(z), V(@)=FE-n(z), E>0.

T\
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We want to give an estimate uniform in A, x €]0, 1] for the resolvent
R(z,h) = (P(h) —2)~', z=B +ix,

in Besov spaces. When the refraction index n(z) satisfies n(z) = no + O((z) ),
as r — oo, one has V(x) = O((x)~¢). P(h) is a two-body Schrddinger operator.
If n(z) = ny(x) + na(wy) with @ = (z1,22) € B® x R% d, + dy = d, such that
ny(z;) = noy + O(w;) ™) with B = ng, +ng, > 0, then P(h) is a three-body
Schradinger operator. Here we show how this can be done by methods from semi-
classical resolvent mates. Due to the particular form of the right hand side, we
need semi-classical resolvent estimates in Besov spaces.

3.1 Mourre’s method depending on a parameter

We first state a parameter dependent version of Mourre’s method which is an im-
portant tool in quantum scattering theory. Given two families {P.}, {4}, € €]0, 1],
in some Hilbert space, we shall say A, is uniformly conjugate operator of P, on an
interval J © B if the following properties are satisfied:

. Domains of P, and A, are independent of &: D(P,) = Dy, D(A,) = Dy. For
each ¢, D = Dy N Dy is dense in Dy in the graph norm

llle, = [IPeul| + [jul]-

)

The unitary group ¢« 9 € R is bounded from D, into itself and

sup  [le®Aeullr, < 00, Yu€D.

€€Jo,1)j0|<1

@

The quadratic form 4P, A ] defined on D is bounded from below and extends
to a self-adjoint operator B, with D(B,) D D, and B, is uniformly bounded
from D, to H, i.e. 3C' > 0 such that

[|Beull < Cllullr,, u € Dy

uniformly in e.

- The form defined by i(B,, A,] on D extend to a uniformly bounded operator
from D, to H.

o

(uniform Mourre's estimate) There is m, > 0 such that
Er(P)i[Pe, AJE;(P) > meEi(P,) (3.3)
Remark that the usual Mourre’s estimate is of the form

Ey(P)i[P, A)E(P) > Ey(P)(co + K)Ei(P), (3.4)
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for some e > 0 and K a compact operator. If E € a,(P), E;(P) tends to 0 strongly.
So, one can take 8 > 0 small enough so that Ep(P)ilP, AJE;(P) > ¢ By(P) for
I = [E 8, £+8] and for some ¢, > 0. For Mourre's method independent of parameter,
see [23, 24, 16) and also [2] for more information. The following parameter-dependent
version is useful in many situations.

Theorem 3.1 Assume that A, is a uniform conjugate operator of P, on I =|a,b[.
Let R(z)=(P.-z)"' and B €l

(3) For any s > 1/2, and 0 > 0, there exists C > 0 such that
[I(A)™ R (B £ ik)(A) ]| < Cm* (3.5)

Assume in addition that (P, + i)~ Y([Be, A], AJ(P. = i)~" estends to uniformly
bounded operator on H. One has the following

(it). Let s € R and let xu denote the characteristic functions of | — o0, c-[ and
| +o], respectively. For any 1/2 < 8 < 2, there exists C > 0 such that

[I(Ae)" =" xip (A Re (B £ ik)(A) ]| < Cm Y. (3.6)
(i), For anyr,s € R, with (v)y. -+ (8)4 < 1, there is C > 0
(A X (A Re(B  ik)xe (A ()| < Cm . (3.7)
The above estimates are uniform in ¢, x €)0,1] and locally uniform for B € I.

(1) of Theorem 3.1 implies the point spectrum of F, is absent in I and the spectrum
of P, is absolutely continuous. Theorem 3.1 can be derived by following the Mourre's
original functional differential inequality method [23] and its subsequent improvement
{10, 16, 33, 34]. The conditions in parts (i) and (iii) imply that for each ¢, P, is 2-
smooth with respect to A, in sense of [16]. For the proof of Theorem 3.1, one can see
[16] for fixed ¢ > 0 and [33, 34] for parameter-dependent version.

3.2 Uniform resolvent estimates in Besov spaces

We want 1o show that Mourre's method can be used to obtain uniform resolvent
estimates in Besov spaces for operators depending on a small parameter (Sce (35)).
This idea goes back to Mourre (23, 24] and was used in [18, 37] for operators without
small parameter. We use the ideas from [24, 18] in taking care of the dependence on
the small parameter.

Let F be a self-adjoint operator in H. Let Fj, j € N, denote the spectral projector
of F onto the set 0y, where Q; = (A € Rj2~' < [\| <2/} for j > 1 and Qp = {A €
R [A < 1}, Introduce the abstract Besov spaces, B,(F), defined in terms of the
operator F:

By(F) = {ue H; ) 2||Fuul] < 0}, s2>0.
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Its dual space (BF)* w. r. t. the scalar product on H is a Banach space with the

norm given by
lulla ry- = supjen 277* | Full-

When F is replaced by |z|, one recovers the usual Besov spaces By and Bj.
Theorem 3.2 Let P. and A. be two families of self-adjoint operators in H. As-

sume that A, is uniformly conjugate to P. on an interval I =]a,b[ and that (P, +
i)"Y [Be, Ac), AJ(P. + 1)~ eatends to uniformly bounded operator on H. Let B € I

and s > % One has:
1Be(B £ ir)lle(p, (a0 Ba(40)%) S Omc ! (3.8)
uniformly in 0 < €,k < 1. Here m. is the constant in the uniform Mourre estimate
(5) and Re(z) = (P. — 2)7*.
Let % denote the space of measurable functions g(t) on R such that

llgllze0 = {3 lof2}*

kezZ
where [g|x = ess sup {|g(t)];k <t <k+1}, k€ Z.

Proposition 3.3 Let fi, fa € 2.

17:(A) Be(B £ i) fo (ALl € Ot fill2,o0ll o ll2,00, (3.9)

uniformly in 0 < k < 1.

Proof. We follow the Mourre’s argument used in the proof of (III) of Theorem 1.2
in [24] (see also [18, 37]) in checking the e-dependence. Let X (X, resp.) denote
the characteristic function of [n,n + 1[, n € Z, ( [0,+00[,] — 00, 0[, resp.). Then for
u,v € H,
| (fr(A) R (B £ ik) fa(A)u, v) |
< > ilalfalmlixa (Al hem (Ae)ell [xn(Ae) Re(E £ irs)xm (Ao

n,mezZ
Al ol 1f2llz,00l fall2,00 S [1Xn (A)Re(E £ ik)xm (Al

|

A

It remains to prove

sup [|Xn (Ae)Re(B # ik)xm(4c)l| < Cm? (3.10)

uniformly in x €]0,1]. Note that A, — n is still a conjugate operator of P, satisfying
the uniform Mourre’s estimate with the same lower bound. Theorem 3.1 gives that

Ilxn(Ae) Re(B £ im)xn(Ad)l| < Cmc



,.0uB0 Semi-classical measures and the Helmholtz Equation 83

uniformly in n and &. Decompose xn(A)Re(E + ik)xm(A.) as

Xn(A)R(E +ir)xm(4c)
= xn(4){x+(4c = M)R(E + ik, h) + x_(Ac — m)R(E — ix)
+2ikX~ (A = m)Re(E — ik)Re(E + iK) }xm(Ac)

The first two terms can be bounded by Cm;* according to (3.6). For the third term,
remark that

26 Xn(A) B (E = ir) R (E + k) xm (Ac)|

< A (AR (B + k)X (A1 X (A Re (B + i) xam (A |[*
< Om*

uniformly in n,m and k. (3.10) is proved. L}
Proof of Theorem 3.2. Let f € By(A,). By Proposition 3.3, one has for s > %
27| F5 R(E £ in) f|

2
< > 27F|\ER(E £ ix) B[l Fif
k=0

.
< Omg! 302 d DM Rf| < O s, a)s
k=0

uniformly in €, & and j. This proves Theorem 3.2. n

3.3  Applications to Schrodinger operators
3.3.1 Semi-classical resolvent estimates

An interesting application of the above abstract results is the resolvent estimate of
semi-classical Schrodinger operators P(h) = —h?A+V (z) near a non-trapping energy.
Recall that the energy E > 0 is called non-trapping for the classical Hamiltonian
p(x,€) = |€[2 + V (=) if

iz [@(t;y,m)| =00, Y (v,1) € p7(E). (3.11)
S

Here, (z(t;y,1),&(t; y,7)) is the solution of the classical Hamiltonian system associ-
= Op(z,6), z(0;y,m) =y,

ated with p(z,€):
{ = —0:p(z,8), &Oy,m) =n.

The set of non-trapping energy is open in Ry.

I
15
|

(3.12)

&R 9
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The Mourre’s method depending on a parameter can also be applied generalized
N-body Schrddinger operators. For the Helmholtz equation, this allows to include
the case where the refraction index n(z) is a sum of functions of the form:

M
n(z) = > ny(e;), njles)=njo+o(1), lzj] = oo, (3.13)
=1

where njo > 0 with E = 30, n2, > 0, and «; € R% C R

Let us recall some notation for generalized N-body Schrodinger operators. Let X
be a d-dimensional Euclidean space equipped with a quadratic form ¢(-). To simplify
notation, we assume that g(-) is the canonical form on X = R?. Let A denote the set
of all cluster decompositions of an N-body system labelled by {1,2,--- ,N}. To each
a € A, it is assigned a subspace X, of X with X,, .. = X for some amin € A and
NacaXq = {0}. Let A be partially ordered by

a Cbiff X C X,.

Assume also that for a,b € A, the union of a and b, aUb, belongs to A, and is defined

so that
XaNXp = Xaup-

For the definition of aU b in physical N-body Schrodinger operators, we refer to [34].
For each a, we denote X® the orthogonal complement of X, in X. We write the
corresponding orthogonal decomposition of coordinates z as:

0 = G S
With these notation, the N-body Schrédinger operators we are interested in are of
the form:
P(h) = —h*A+ 3 Va(a%), (3.14)
a€A

where A > 0 is a small parameter, A is the Laplacian on (X, ¢(+)). We assume that

V, satisfies
105V ()] < Car@)() ™™, yeX?, V¥ aeN™. (3.15)

Here r(y) — 0 as y — co.

For each a € A, we denote #a the number of clusters in a, P?(h) the cluster
Hamiltonian:
PA(h) = —h*A% + Y Vi(a?),
bCa
where A® is the Laplacian in z®-variables. Put
L@) = 3 Va(a®), Palh) = P(h) - KA,
bZa

T\
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where A, is the Laplacian in x,-variables. Then one has: P(h) = P,(h) + I.(z)
for any cluster decomposition a. Let p® denote the semi-classical symbol of P*(h).
Assume that
V a, p"is non-trapping at the energy E. (3.16)
Note that when #a = 1, p® = p is the classical hamiltonian of P(h).
Under the assumptions (3.15) and (3.16), one can construct a uniform conjugate
operator, F(h), of P(h) near E in the form
F(h)=h(z-D+ D -x)/2+r"(z,hD)
where r(z, hD) is a self-adjoint bounded smoothing semi-classical pseudo-differential
operator and one has
ix(P(R)[P(h), F(M)]x(P(h) 2 cohx(P(h))*, h €]o,1], (3.17)
where ¢ > 0 is independent of h and x is a smooth real function on R supported
sufficiently near E. The following results are proved in [33, 34].
Theorem 3.4 (i). Assume the conditions (8.15). The resolvent estimate
ll(2)~° R(A £ ik, ) (@) ~*|l < Ch~", (3.18)

holds for X € [E = 6, E + 6] uniformly in h, & if and only if E is non-trapping for all
p* and s > 1/2.

(ii). Assume (3.15 and (3.16). Let x4 and x— denote the characteristic functions
for [e4,4+o0[ and | — 00,c_], cx € R. Then for any s > 1/2, there exists C > 0 such

that
[IGE ()~ XF (B () R(E = ik, h)(@)~*|| < Ch~! (3.19)
For any any s,7 € R, one has
II(E (R)) Xz (F () R(E % ik, h)xe (F()(F(R)"|| < Ch™*. (3.20)

For two-body Schrédinger operators, under the non-trapping condition, the semi-
classical resolvent estimate (3.18) was firstly proved in [28] by method of global para-
metrix. The necessity of non-trapping condition to obtain (3.18) was proved in (31].
Its proof based on Mourre’s method was given in [10]. Since then, there are many ex-
tensions and new proofs, among which we mention an interesting proof using method
of semi-classical measures (see (5, 15]). The sufficient part in (3.18) for N = 3 is due
to C. Gérard [8]. The general case N > 3 is proved in (33]. In [33], the necessity of
the non-trapping condition (3.16) is also proved. Remark that (3.19) and (3.20) are
some kind of microlocal resolvent estimates. For microlocal resolvent estimates, see
(14, 16, 19, 9, 34] for the case h > 0 is fixed. For semi-classical resolvent estimates
with microlocalization, see [31, 32] in two-body case and also [34] in general N-body
case.

One can apply Theorems 3.2 and 3.4 to P(h) to obtain Besov space semi-classical
resolvent estimates.

2
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Theorem 3.5 (Besov space estimate) Let s > %. Under the assumptions (3.15) and
(3.16), one has:

[1R(E £ iK, h)||ees.,B;) S CRTY (3.21)
uniformly in 0 < h,k < 1.

Proof. Let F(h) denote the uniform conjugate operator of P(h) satisfying (3.17).
Theorem 3.2 is true with A, replaced by F(h). Let x € C§°(R) with x(t) = 1 for
t near E. (1 — x(P(h))*)R(E % is, k) is uniformly bounded in £(L?, L?), therefore
also in £(Bs, By). Note that F(h) is a semi-classical pseudo-differential operator with
Weyl symbol - € + r(z,£) where r is a bounded symbol (cf [33]). We can show that

for s > 0,
(B (R))* x(P(R) ()~ < C (3.22)

uniformly in h. An argument of interpolation (cf [1, 13]) gives then
IX(PA)lecs, 5.rmw) < C

uniformly in h. By duality, the same is true for x(P(k)) as operator from (BF)* to
B;. It follows that

[IX(P(h)*R(E & ik, h)||z(5,,8:) < ChTY,
which completes the proof of (3.21). ]

The regularity on potentials is only needed to make use of theory of pseudo-

differential operators in the construction of uniform conjugate operator. As one can
see from the next subsection that if we make the virial assumption

2B -2V (z) —aVV(z) >c0 >0, VYV (3.23)
which implies (3.16), the condition (2V)?V(z) € L% for 0 < j < 8 is sufficient to
have the result of Theorems 3.4 and 3.5.

3.3.2 Potentials depending on a parameter
Consider the Schrddinger operator P, = —A + V,(z) on R? with potential depending
on a parameter ¢ €]0,1]. Assume that V,(z) is uniformly bounded on R* and the
multiplication operators (z« V)7 Ve, j = 1,2, 3, are —A-bounded uniformly in €. Let
E > 0. Assume further that there exist ¢y > 0 such that

28 — 2V, () —x: VVe(z) > co, @ €R?, (3.24)

uniformly in e.
For 1 € R, we denote by S4 (1) the class of u-dependent bounded symbols a4 on

R4 satisfying
(3.25)

suppaz C {(z,€); £z - € > £pu(7)},
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az € C(R™), |8567ax(z, )] < Capla)~Iel(g)~1AL.

Denote by a(z, D) the pseudo-differential operator with symbol a defined by
- d
ale D) = g [ 5V oo, ulr)duce, u e S(RY)
Theorem 3.6 Let R.(z) = (P. — z)~. Under the above assumptions, there eists

o > 0 such that the fallawmg estimates hold uniformly in €,k €]0,1].
(i) For s > 1/2, one has

[|1Re(E £ i)l c(B,,B;) < C- (3.26)
(ii). Let 1/2 < s <2 and by € S+ (Fpo), there ezists C > 0 such that
[|(@)*~"bs (@, DYRe(E  im)(a) =] < € (3.27)

(iii). For s € R, put s, = max{s,0}. Then, for s,r € R with sy + s < 1 and
be € Sa(Fps) with p— < py, one has

[|{2)*bx (@, D)Re(B  ir)b (v, D)(x)"|| < C. (3.28)

Proof. Let Fy = (- Dy + D; - x)/2. Under the condition (3.24), one can see that
Fy is a uniform conjugate operator on the interval I = [E — 8, E + 6] for § > 0 small
enough and
P[P, Fo)E1(Pe) 2 co/2Er (P,
for all e.
By Theorem 3.2, one has

[|Re(B % i8)|| 2B, (Fo) By (Fo)r) < C s > 1/2. (3.29)

(3.26) follows then from the argument of Theorem 3.5.
The proof of (i) and (iii) follows the method of Theorem 2.1 of [34]. Consider the
operator

=
(z)”

Since i[-A, ps(z)] = p(Vs(x) Dy + Dy - Vs(z)) > —|u|(|Vs(z)|? — A), one can show
that there exists ¢y, g1 > 0 such that

Er(P)ilPe, Fu)Er(Pe) 2 e Er(Po).

F, = Fy +ps(z),  s(z) =

uniformly in € and p with || < . Therefore, Theorem 3.2 holds with A, replaced
by F,. By methods of [34], one can replace x.(F)), (Fj) by bi(2,D) and (z),
respecn\el_v, with a uniform control over parameters. | ]

In the case € = 1, Theorem 3.6 for by € Si(u), Yu > 0, was due to A. Jensen
[16]. Remark that in applications, in order to construct a partition of unity in phase
space II{"'E it is important to have Theorem 3.6 (ii) and (iii) for by € Si(Fpo) for
some g5 > 0. See the proof of Theorem 4.1 below.

Y\
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3.3.3 Remark on Morrey-Campanato estimates

In [25], the authors mentioned that it is interesting in itself to study Morrey-Campanato
estimates for Schédinger operators. We indicate here how this kind of estimates can

be deduced from Besov space estimates.
Denote the Morrey-Companato norm

1
Wall? =swp % [ pupaz
4 " R>0 zi<R

and N(f) the dual norm

JEZ

1
b3

where C; = {z € R% 2 < |z| < 2741}
Proposition 3.7 Let P. = —A + V.(z) be a Schrédinger operator on R?, d > 3.
Under the assumptions of Theorem 3.6, one has

(P = (B £ ix))~Mull] < CN(w), (8:30)

for all w € L}, with N(u) < oo, uniformly in €, 5.

Proof. Recall the Hardy inequality for d > 3:
w 4
=)= £l 2 ey < m”vf”%zmd)’ f € G (RY).
It follows that |z~ (1 — A)~*/2 and (1 — A)="/2|z|~" are bounded as operators on
L. By a complex interpolation, we obtain that for any 0 < s < 1,
Jo|=5( = A)~*> and (1= A)~*/2|z|~* € L(L?). (3.31)

Let x1 be a cut-off on R with x1(z) = 1 for |¢] < 1, and 0 for |z] > 2. Set
X2 =1-x1. On supp x>, By (resp., B;) norm is equivalent with N(-) (xesp., ||| - [|]).

u = xu + xou and applying (3.31) to xyu with appropriate % < s <1, one has

Since (A + 1)‘% is bounded from B% to B% and from B; to B;, splitting v as

(3.32)
(3.33)

I=A+1D)hulls, < CN()
=4+ D~Hulll < Clfulla;

Let x be the same cut-off function around E with support sufficiently near E. Then
for all u € C§°(R?), one has

1@ = (PP = (B £ im) " ull] < Cll(=A + 1)~ #ul,
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uniformly in €, k. By (3.32),
(X = X(P)*)(Pe = (B £ir)) " ull| < C'N(w).
On the other hand, by (3.26), (3.32), (3.33) and the argument used above, one has
IIx(P)*(Pe = (B iw)Hulll < ClI(P - (E+ iN))"x(ﬂ)"Hn;
< Gilix(PJulls, < C2N(w)

for all v € C§°, uniformly in €,x. Combining the above two estimates, we obtain

the desired estimate for u € C§°. An argument of density completes the proof of

Proposition 3.7. n
Note that condition (3.24) is satisfied for V. = E — n?(ez) if n* verifies

(z - Vzn?(z))—

ZZ sup
)
jcz‘pdz]sz’“ n*(x)

<

and n®(z) > ng > 0. Thus, Proposition 3.7 can be regarded as an alternative approach
to prove the Morrey-Campanato estimate (see [25]).

4 The high frequency Helmholtz equation
Now we study the Helmholtz equation with a source term concentrated near one point
(A + ¢ ?n(x)? +ie ae)uc(z) = —Se(z) (4.1)

in RY, d > 1. Here € > 0 is regarded as a small parameter, a, > 0 is a regularizing
constant and a, = a > 0 when € = 0, n(z) is the refraction index and

5.@) = Hs(5). (42)

We assume that S(z) is smooth and decays sufficiently rapidly at the infinity. For
n(z)?, we assume that there exists E > 0 such that V(z) = E — n(z)? satisfies

(x+ V)7V (x) is bounded on R for 0 < j < 3. (4.3)
Assume also that there exists ¢o > 0 such that

2B -2V(x) -z -VV(z)>c, VY z€R’ (4.4)
It is convenient to write (4.1) in the form

(~h2A + V(z) - E — in)un(z) = h‘i-‘S(f—l) (4.5)

P
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where
h=¢e¢—=0, &=&r(h)=nhaoy.

Put w(z) = ¢/?uc(ex). Then w is the solution of

(A + V(ea) — B — ik)w(z) = 61/25(1) (4.6)
Theorem 4.1 Assume (4.3) and (4.4).
(a). Let S € By. One has w, € B; and
llwells; < Ce2| S|, )
(k). Assume that (z)"S € L* for some r > 3/2 and that
(4.8)

V(x) is smooth with bounded derivatives and a > €7 for some v € R,..
Suppose that B~V (0) > 0. Then e=*/*w, converges *-weakly to wo in B} where wo
3
is the outgoing solution of the equation

(=A + V/(0) = B — i0)wo(z) = (=) (“.9)

Remark The x-weak convergence of €=/?w, to wy is conjectured in [3]. It is proved
in [6] for d > 3 under an assumption on the dimension of self intersection set near
zero of the Hamuilton flow. Under some additionol decay assumptions, the results of
[35], when simplified to the case of point source, shows that there ewists a subsequence
of {e=/*w,} converging *-weakly to wy in B;. The approach presented here is new.

Proof. (4.3) and (4.4) show that the conditions of Theorem 3.6 are satisfied with
V. (z) = V(ex). So, Theorem 3.6 gives
l(Pe = B = ir) M|z, 5;) < C (4.10)
uniformly in € and . (4.7) follows.
To prove (b), put Re(E + ix) = (=A + V(ez) = B — i)~ and Ro(E + i) =
(=A +V(0) = B - ix)~L. Write ¢=/?w, — Ro(E +iK)S as
Ve = Re(B + ir)(V(0) — V(ez))Ro(E + ix)S

Let p € Cg°(JE — 2, B + 2() with p(A) = 1 on [B =1, E + 1] and
re = Ro(E + ik)(V(0) = V(ex))Ro(B + ik)p(=A)S

Then it is easy to check that

lim < ve =76, f>=0
0
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for any f € C§°(RY). Let x.+ € C*(R) such that x+ +x- =1on R, x4 = Lon
[4,00[, and 0 on Joo, —1]. Let

ba(z,€) = x( ())mf/R)

where po > 0 is small and p; € C§°(R) and is equal to 1 near 0. Then b € Si(Fpo)
and we can apply Theorem 3.6. Note that by (z, D) + b_(z,D) = p1(-A/R) so for
R > 1 large enough,

(bs(z, D) + b_(x, D))p(=A)Ro(E + ix) = p(=A) Ro(E + ir)
Inserting this decomposition into 7. and applying Theorem 3.6, we obtain for
j<s<s' <1
[<raf>] < CoEI)"b- (I D)Ry(E + ik)S||l|(z)* f|
+H(r) Sllll¢e)* b+ (@, D)Re(B ~ ix) £[}) (4.12)
+| < p(=A)Ro(E +iK)S, [b+(z, D), V(ex)|Re (B — i) f > |
where € is independent, of € and &, and é(e) = I{z)*=* (V(0) - V(ex))|loo = O as
¢ 0 for s' > 5. By Theorem 3.6,
[I(2)*" b (x, D)Ro (B + ix)S|| and [|(@)* b+ (z, D)R.(E ~ ir) ||

are uniformly bounded respectively by C||(z)'**'S|| and C[|(z)'** f||. To estimate
the last term in (4.12), we remark that by symbolic calculus of pseudo-differential
operators, (b (z, D), V (ex)] can be decomposed as

[b4(z, D),V (ex)] = ep2(D)r1(z, Dje€) + era(x, D, €) + O(e™) (4.13)

where N > 27 + 2, p2(€)po(€?) = 0, r1(x, & €) is a family of bounded symbols and
7a(:, €) is bounded in S (=) N S- (o). By (4.8), since x = ea, > 7!

| < p(=A)Ro(E +ik)S, O(eM)Re(E — i) f > | = O(¢¥~2%7) = 0,
as € = 0. Due to the support properties of p and p, one has
(—A)Ro(E +ir)S, pa(D)ry(w, D; €)R(E — ik)f >= 0.
By Theorem 3.6,
| < (=) Ro(E + iK)S, era(z, D; )R (B ~ ir) f > | < Cel|(2)S]]l| () fI

This proves that lim.o < v, f >= 0 for f € C§°. Since v, is uniformly bounded in
By, by an argument of density, one deduces that v, converges *-weakly to 0 in B.
Noticing that Ro(E + ik)S converges to wg in B; (b) is proved. l

Note that the assumption (4.8) is only used to study the term related to
[b4 (2, D), V'(ex)] and the decay of V(z) is not needed.

A\
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Corollary 4.2 Let S € B%. Then u, € B; and there exists C > 0 such that

”w”u; < CliSlls, (4.14)
uniformly in €.
Proof. By Theorem 4.1, :
”Wz”B; < Cez|lSlls, -
For 0 < € < 1, one has
= L 2 d, %
lizellzn = S = i Jue(ez)|*e“dz) =
1 1 / 22001
= €¥sup — u(z)|*dz)?
€3 oup (Ezz)%( |==<=nl (2)|*dz)
1 1 ke
= ¢ sup —— ) dz)?
AR e
1 1 1 1
> o ] Wl
| |

(4.14) follows.

{u} is bounded in L;"“. By the remark following Theorem 2.3, there exists a semi-
classical measure associated with a subsequence {u, }. To give more information on
the semi-classical measure, we introduce the space Xy (see [3], [7] and [21]) as the

completion of the Schwartz space S(R??) under the norm:
el [, sop {5 Fecla, )1}

where we denote (z,y) = (1 + |z|* + ]y]z)% and (Fesy9)(z,y) the partial Fourier
transform of o (z, £) with respect to €. The space X is a Banach space with dual X7.

Applying Corollary 4.2, we immediately get the following
Proposition 4.3 The family of Wigner transforms f. of u. is bounded in X3, for any
b converging kly in X to some nonnegative,

A> 1, and {f.} admits a q
locally bounded measure f which satisfies

1 2
sup /' 5 /5 (@) dede < OIS,

Let f,(z,&) denote the Wigner transform of ue(z). An elementary calculation
(4.16)

(4.15)

shows that

acfe +€ Vafe—Oc(fe) = Qe

Va0
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where ©, is defined by
e iv(E- 1 €y y €y
0UIEE) = gy /R L, P gV e+ D)= Vi = Pt vy

and
1 e :
Qe = gy [ 5+ Phue = ) - Sia — P + Py
By proposition 4.3, one has for some sequence e; — 0
@ fo, + & Vafo, = Ou(fa) > af +§ Vo f —=VV(2) Ve f (4.17)

in D', where f is given by Proposition 4.3. A subtle task is to compute the limit of
the source term @, which depends on u,.

Theorem 4.4 Let a, = « > 0. Under the assumptions of Theorem 4.1 (), the
semi-classical measure f verifies the following Liouville equation

f +E Ve < V(@) Vef =Q@8), WD®EY  (418)
with
Q@,6) = (27r),,|5(€)|25($)6(E2 -n(0)?) (4.19)
Moreover, f is given by the outgoing solution
fz,€) = /U e~ Q(u(~siz,8),n(-s;7,€))ds (4.20)
in the sense of distributions, where (y(s),n(s)) is solution of the Hamiltonian system
L= ), y0)=z,
(4.21)
o= —§VE), 00 =¢

With Theorem 4.1 and Corllary 4.2, Theorem 4.4 can be proved along the line of
[3] and (35]. To show how to calculate the limiting source term @ in the Liouville
equation, we take p,1) € § and write

[ @ eetarte due
~ G a5+ Bt = D) = SC - Dl + D))y
(d-1)/2
=~ / (S(a"Yuelel@ = elex’ = ) = SEucle(a’ + v)plex’ + Pd)de'dy

———
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Applying Theorem 4.1 b, we obtain

[ @tweptwrine) dsas

2 g | SERE =D~
#(0) ; s
L0 [ s +v0) - B0 SO Pues

(@wo(a' +y)(y)da'dy

We finally find that Qc — ¢ 5(1)3‘(52 +V(0)— E~i0)~[S(6)]” = Q(x, ) in sense
of distributions. For rlgomus prouf of this convergence, see (3, 35]

Remarks (1). Let Q = p~'(JE -6, E+4[), where p = %(52~ V(x)), 8 >0 small. Q is
invariant by the solutions of (4.21) and the conditions on V implies that the classical
flow is non-trapping for initial data (z,€) € Q. One can show that f is a well-defined
as a distribution on Q. Since supp Q is contained in p~*({E}), the same is true for

supp f. The outgoing property of f can be then interpreted as

lim fod =0, inD,
t——00

where ®(z, &) = (y'(z, €),n'(z,£)) is solution of (4.21). See [35] for more details.
(2). Applying Theorem 4.4 to any subsequence of {u.}, we conclude that if u is the

semi-classical measure iated with a subseq € {Ue, }, then p is gwen by (4.20).
This shows the uniq of i-classical measure iated with of
{uc}

Received: November 2004. Revised: December 2004.
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