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ABSTRACT
We consider the initial-boundary-value problem for the three-dimensional,
Sobolev-type equation with source. Under some conditions, the theorems on
blowup of solutions at finite time of this problem are obtained. Twosided esti-
mates for blowing-up are derived.

RESUMEN
Consideramos el problema de valor inicial de frontera para la ecuacién tridi-
mensional de tipo Sobolev con fuente. Bajo ciertas condiciones, los teoremas en
“blowup” de soluciones en tiempo finito de este problema son obtenidos. Esti-
maciones bilaterales para "blowing-up” son derivadas.
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1 Introduction. Statement of problem.

In this paper, we obtain sufficient conditions for the blow-up of solutions for the
following initial-boundary-value problem for the following strongly nonlinear Soboley
type equation
41

2 (u-w+ 20 | e =0, ulon =0, u(z,0) = uo(e), 450, (L)

at Oy
where a bounded domain 2 C R® has smooth boundary of class 2 € C*9), § € (0,1},
and (z;,z2,23) € Q.

This problem has a physical meaning and its derivation is explaned in [1].

Sobolev wave-type equations were studied in [2]-[10]. In these papers, initial-
value, initial-boundary-value, and periodic-value problems were considered; some
results on the global solvability, the asymptotic behavior as ¢ — +oo, the stabil-
ity of travelling-wave solutions, scattering theory for the one-dimensional and N-
dimensional Benjamine-Bona-Machony-Burgers equations were obtained.

For problem (1.1), we obtain the blowing-up results for strong generalizied solu-
tions and deduce two-sided estimates for the blowing time. Moreover, for problem
(1.1), we prove the breaking of ” weakened” solutions and we obtain an upper estimate
for the blowing-up time.

Note that our technique is a modification of the well-known Levine concavity
method [11].

2 Blowing-up of strong generalizied solution of
problem (1.1).

Definition 1. A strong generalized solution of problem (1.1) is a solution of problem
(L1) in the class C()([0, T); H}(R)), where Eq. (L.1); is considered in the sence
HY(Q) for all € [0, T).

It is easy to prove that in the strong sence problem (1.1) is equivalent to the
following integral equation

L / -1 1 a]“"“ 29
u(t) = uu+/dsA Fw), wo € B(@), Fow = 2oL ooy,
1
0

where A™% : H=1(02) — H1(Q) is the inverse operator to the operator —A + L.
Denote by || - ||; the norm in the Hilbert space H}(Q).
Using the contractjon operator method in the same way as in [12] we can easily
prove the following theorem
Theorem 1. Let q € (0,2). Then for all ug € HY(R), there exist mazimal To > 0
such that problem (1.1) have a unique mazimal solution in the class

u(z,t) € CH([0, To); Hy (M),
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where either Ty = +00 or Ty < +00 and in the case when Ty < +oo, the following
equality holds:

lim [ u = +oo.

11To

In this section, we prove that under the conditions of Theorem 1, the quantity
To > 0 is finite.
Lemma 1. Assume that (t) € C®)(0,Tp), for some mazimal To > 0, is mazimal
in the sence that either Ty = +00 or Ty < +00 and in the case when T < o0, the
limit equality
lim ®(t) = +o0 (2.1)
Ty

holds Moreover, assume that for all t € [0,To), ®(t) > 0 and &'(t) > 0, and the
ordinary differential inequality of second-order

3D — a(®)? + 9% >0, t€[0,To), a>1, v>0, (2.2)

and the inequality
=l '
[ T‘I’l, 0o = 8(0), & =9 (0), (2.3)
are valid. Then Ty < Ty, where

(24)

and the limit equality (2.1) holds.
Proof. Dividing both sides of inequality (2.2) by the function &'+ and performing
simple transformations, we obtain

¢ / P
I +'y‘b—020.a>1,7>0.
Let us introduce the notation 5
geii)
I(t) = T

Then for the function I'(¢), the following inequalities are valid:

' . @
[ (t)+T(t) 2 0, I'(t) > Toexp(-1t), FE Lo exp(=7t),

1
o2 i i 1/{a-1)" (2:5)
[(I)""‘ ~Too=t1- exp(—-‘(!)]]
We assumed the fulfillment of inequality (2.3); then (2.5) cannot be valid for all
t € RL. Namely, there exists To < T such that the limit inequality (2.1) holds,
where T, is defined by Eq. (2.4).

e




60 M. O. Korpusov and A. G. Sveschnikov L‘}qub;n

Now let us prove the main result of this section.
Theorem 2. If for problem (1.1) the following conditions are valid:

Il wo 155> 1 Vuo I + [l wo I3 q € (0,2],

then for all uy € H}(), the mazimal To of Theorem 1 is finite and, hence, the
following limit equality fulfill:

lim || u ||y= +o0.

t1To
Moreover, for the time of blowup of the solution of problem (1.1), the upper estimate

To < Ty is valid and the lower etimate Ty < To under additional condition g € (0,2]
holds, where T, and T, are defined as follows:

e Ly Vol + w13
2= "-"‘T°—" )
7+1 1w 156253
1 il

T = 8
"= 2T (@Q) [ Vo 1 + Il o IB°

C1(Q) is the best constant of the embedding Hy(Q) into L*+2(Q). This embeding is
valid under additional condition q € (0,2].

Proof. Theorem 1 implies that for problem (1.1) under the condition ug € H}(1),
there exist maximal Ty > 0 such that for all T € (0, Ty) there exist a unique maximal
solution u(z,) in the class u(x,t) € CV([0, T]; H}(Q)) . Therefore, we can multiply
Eq. (1.1); first by u(«, t) and then by u,(z,t) with respect to the pairing between the
Hilbert spaces H(12) and H~"(02). Then integrating by parts we obtain the following
energetic equalities:

1 9
5 Il 4+ 1w 13] =l 505, (2)

i 2 e ol *u dg ! 2(q-+1
I 8+ N = =3 [ dmgpu + s u e @)
Q

Let us introduce the function
B(0) =/ Vu [+ [l u [ (@8)

The following chain of inequalities holds:

| 2
1lde* _|
| | P ]/d! [(Vug, Vu) + (ue, u))

HE < (I Vue f13 + e 13) (1 I3 + 11w 13)
(1]

< @ (Il Vue 13 + [l ue 113) - (2.9)
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On the other hand,

2 1
1 1+ 1B 7oy e 9 1 53 N i)

1 ), € g e er
e = e
SN Fo (v I 18] + o

€ 2 2 1 " _1_
(1-3) W vw -+l ) € gy ® + 1% (210

for all £ € (0,2). From (2.9) and (2.10) it follows that function ®(t) satisfy the
differential inequality

2= g S
s ((q+2J<I> 7454’)

therefore

(Z;EM, =21 e, @)

c

b - a (1») 4780 >0, a=
We see that the function ®(t) under the additional condition
=l .
By < T‘I’l) & = 8(0), ¢:=2 (0), (2.12)

satisfy all conditions of Lemma 2. Note that inequality (2.12) contain the variable
e € (0,2). Thus, our aim is to obtain optimal condition of the form (2.12). For this
aim, we must find the maximum of the function

o I SM(EETE)S

Tt -2 47

This function has the maximum at the point g = 1 and its value is fy(eo) = 1/2 at
this point. Thus, condition (2.12) takes the form

B < %cp.; (2.13)

by definition of the function ®(t), this implies the first part of the Theorem 2.
Now, let us obtain estimates for the blowing-up time of problem (1.1).
For problem (1.1) the following energy inequality holds:

2,,, v+ ) =1 w3553

From this for the function

—

®(t) =/ Vu [l3 + [ w 13
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it follows that the the inequality
¢
a(0) < 8(0) +26173(@) [ dsa41 (s,
0

is valid. Here C, is the of the best embedding || v ||2g42< Cy(Q) || Vv ||,
This embedding is valid under the additional condition ¢ € (0,2]. From the last
inequality by Gronwall-Bellman theorem we have

2(0)

[1- e2ci2@@e(0)]

B(t) < 74

and, therefore, 1 1

T = e ) TV B + o AT
]

which is what was required.

3 Breaking of the classical solution of the problem
(1.1).

To prove the breaking of the classical solution of p'roblem (!.l) we must showl that
there exist maximal T§ > 0such that there exist a unique maxl‘mul classical solu.uon of
problem (1.1) in the class C(")([0, T); C™)(92)) for all T € (0,Tg). Then by blowing-up
results of Theorem 2 we obtain 0 < Tg < To < Ta < 400, and, hence,
lim  sup [Vu(z,t)| = +oo. (3.1)
THT5 efo,1),2€0
Thus, at some moment of time Tj > 0, the quantity

max |Vu(z,t)|
z€Q

becoms infinite. i ¢ s

Let us give the definition of the " weakened SOIl{thn of p'roblem (i1
Definition 2. A classical solution of problem (1.1) is a solution u(z,t) of the related
with the problem (1.1) doubly nonlinear integral equation

' ANl ) | b
u(z,t) = ug(z)+ (Is/zlg/G(Jt,y) [—ay,-”"' Tuy,s)|, Yte[0,T], (3.2)
)

in the class u(z,t) € C()([0, T); C™)(f) N Co(7)) for some T > 0, ‘f'herv G(z,y) is
the Green's function of the first bounary value problem for the operator A + [ in
the domain 0
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It is obviosly that from defini for the exi: of the classical solution the va-
lidity of the following condition on the initial function is necessary: uo(z) €
CH(@) N Co ().

Now let us explain the ion by strong g d and classical solu-
tions of problem (1.1). As we have shown above, the problem (1.1) is equivalent in
the strong sence to the following integral-operator equation:

t
u(t) = up + /daA“F(u). up € H},
0

where the operator A~ : H='(2) = H}(Q) is the inverse to the operator —Au +u
H3 () — H'(Q). It is clear that the restriction of the operator A~! to the Banach
space C(f) coincids with the integral operator

A= [ dyG(z,y)-,
/

where 2 have smooth boundary 90 € C®9, § € (0,1] Thus, we conclude that the
classical solution of problem (1.1) is a strong generalized solution of problem (1.1).
Theorem 3. For all ug € CV(Q) N Co(R), there ezist mazimal Ty > 0 such that
there exist a unigue mazimal classical solution u(z,t) of problem (1.1) in the class
u(z,t) € C([0, T); € () N Co(M)) for all T € (0, T;). Moreover, either T = +00
or 1§ < 400, and in the last case, relation (3.1) holds.

Proof. By the explicit form of the Green function for the operator —A + I, we have

lexp( =z - yl) (33)

Glay) =¥l@v) + g ]

where v(z,y) € C(@ x 7). Then the following relation holds:

sup/lV,G(z.y)ldy =C < +00. (3.4)
260

[t}
Thus, we may integrate by parts in the integral equation (3.2) and obtain relation

t t
) = o) + [ do [ Ga,luuty, o) - [as [ @i, @5
o 1] 0 o

Let us introduce the operator

t t
U(u) = uo + / ds / dyG(a,y)]ul (v, 8)uly, ) - / ds / dyGl ()l (3.6)
0 n o n

-
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We shall prove that operator (3.6) acts from C(Qr) into C(Qy), where Qp = (0, T)x0
at some T > 0 and

llvllro=sup [o|
te[0,T],zen

is the norm in the Banach space C(Qr).
Let us introduce the notation

t t
Uy (u) :/ds/dz/G;. (@, 9)[u|**, Uz(u) =/d8/dy0(z,y)lul“u(y,6).
0 1] 0 Q

Let us prove that each of the operators Us(u) act form C(Qy) to C(Qy).
Consider the operator Uy (). We have

Yy, (@,y) € C@ x Q),

1 8 f(exp(-lz—yD)\ _1m
4“‘7.'11( [z -yl ) Iro - yl'exP( = yl)+5]r~yl’cx})( Iz~ D.

Then we can represent the operator Uy (u) in the form

Up(u) =5 + LI +13,

where

I = O/ ds ”/ Ay (2, )|l (3, 8),

o=y

/ dv/ bl 'z,z”'”‘ TRy, ,

t
el exp(=|z —y|) 21 -
Iy= = u/nl.-:;)/{ly———':r_y, = l|u[v+|( v,3).

Let us prove that I (z,t) € C(Qr). Indeed, for all (z,2) and (z0,t9) from Qp the

following inequality holds:
/ i / dyliy, (2, 0)[uf?*? | +

to

/d‘

i (z,t) = Ix(zo, t)| <

/ by (2,0) = ¥, (zn,!,)] ’,“v-n!'

s 99 %
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which, by the continuity of 'l’v: (z,y) € c@ x 0), we immediately implies that each
of the terms in the last inequality is less than /2 under the additional condition
|& — o] + |t = to] < 8(¢) for sufficiently small & > 0. Therefore, I,(,t) € Ci (Qr).

Let us prove that I(z,t) € C(Qy). Indeed, for all (z,t) and (z0, to) from Qy, the
following inequalities hold:

[Ta(z,1) = Ia(zo, to)| <

/d exp(—| lr "l)lul'“(v 2

"
1/ / [exp(—lro—ul)z.o—m exp(=|z —yl) 71 — ] +1

+=— [ ds| [ d | s

ir o S P e B e e AR

o {1

= Iy + Ioa.

Let us consider separately each of the terms of the relations for the quantity Iy
and lIyz. Iy is less than €/3 under the condition |z — xo| + [t — to| < 8(¢). Now we
consider ly;. Assume that u(z,t) € C(QT) and lu(z t)] < M(T). By virtue of the
standard scheme of proffing the i of p I-type i ls we have

1
Mate et <MT) fas [ o[BI | ol b]
0 Q,(z0)

exp(=|aoo —yl) 2o~ _ exp(=|z —y|) 21 ~

leo =yl loo -yl le—yP ey’

1
o!\l(T)/vda
0 2\, (x0)

The first term is less than £/3 for sufficiently small ). In the second term, the inter-
grand is uniformly continuous in the closed domain [z—xo| < n/2, |y—ao| 21, y €0
and the integrand vaniches at the point # = z. Thus, the integral is less than £/3
for all |z — zo| + |t = to| < §(¢) for sufficiently small §(<). Hence, Iy(z,t) € C(Qy).
It is clear that we can similarly prove the inclusion Is(z,t) € C(Qy). Therefore,
we prove that
Ui (u) : €@y) = C(@Qy).

Let us consider the operator

t
Usw) = [ ds [ diG(aplurudy, o).
o

0

Using the properies of the Green function, we obtain

Uz : €(Qr) = C(@Qy).
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Hence, the operator U(u)(x, t) defined by formula (3.6), acts from C(Qy) to C(Qy).
Let By be a closed, bounded, convex set in the Banach space C(Qy):

Br = (v(a,t) € CQq) || v lla= max [|v(z,8)] < R} . (3.7)
(2.)€Qr

Let us prove that for sufficiently small T > 0 and under sufﬁciently large R > 0 the
operator U acts from By to By and this operator is contractive on Bg. Indeed,
Il Uu) [lr<]l uo llr +CT [| u |3+ +CT || u [I57 <l uo llr +CT(R***! + R**!) <R,
under the condition || ug [|r< R/2 and 0 < T € 27*(CR*?+CR%)"". Hence, for some
sufficiently small T > 0 and sufficiently large R > 0, the operator U acts from By to
Bg.

Let us prove the contractivity of the operator U(u) on Bg for sufficiently small
T > 0 and sufficiently large R > 0. Indeed,

Il Uwr) = U(uz) [lr< T (CR* + CRI) || uy — uz [[r< ,i—, Iy = ||r,
under the condition 0 < T < 27}(CR2 + CR9)~'. Thus, the operator U(u) is con-
tractive on Bg.
Therefore, under the condition ug € Co(®2), there exist a unique solution of the
intehral equation (3.5) in the class C([0, T];Co(m)-
Assume that ug € CM(0) N Cy(R). We shall prove that there exist a unique

solution of the integral equation (3.5) in the class C((0, T}; CM(®2) N Co(1)).
For this, we consider the Banach space C([O.T];C(”(Q)) with norm

3
v

o= ot = max 9 3.8

e llea=ll v o +-=§| Il oz, llros Ilv (im0 i lv(z,t)| (3.8)

Let us prove that the operator

t o3
U(u) = + /rl.vh/dyc(z,y) [ﬂ“_"ov_l(ll;") th |“l7vu(y\ﬂ)] ’

act from C([0, T); €™ (@) to C([0, T); C™)(7)). For this, we use the fact that

1 exp(-”-"‘v')
Gz =Y(z + —_—
(a,y) U(z,y) i o -yl

where v, (,y) € C(Q x ). Let us represent the operator U(u) in the form

U(u) = ug + Uy (u) + Ua(u), (3.9)

e &Y
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where

Ui (u) =Ojn/dv¢'(z,v) [D_I;L“_“ +Iul"u],

t
S 1] [amt e )
U’(")—‘"n/n/d” o=l | ow MM

Since ¥(z,y) € CV(Q x Q), the operator Uy(u) acts from C([0,T); CM () to
([0, T); O (@)).
Now let us consider the operator Up(u). Similarly to the above arguments, we
conclude that the operator Up(u) acts from C([0, T); C*)(12)) to C([0, T); CM)(12)).
Let us introduce the following closed, bounded, convex set in the Banach space
C([0, T); CV (@) :

Bun = {v € C(O, THCO@) 4l v lhx< R},

where the norm is defined by (3.8). It is easily to prove that the operator U(u) acts
from B,x to Byx and it is contractive on By for sufficiently small T > 0 and at some
sufficiently large R > 0. Indeed,

[10C) [l r<ll o flae +CT [ w |5 +CT || u |5

<l uo |l v +CTRI*! 4 CTR¥*! <R,

under the condition || ug ||y, r< R/2, T < 2-'(CRY + CR*)~!.
Let us prove the contractivity of the operator U: By — Byx. We note that,

1
IF'UCus) = Ulua) [ly 2< CRIT || wy = ug [ls;w +CR¥T || uy —ua [l 0€ 5 || g —uy [ly;m,

under the condition T < 2-'(CR® + CR*)~!. Hence, the operator U : Byp — Bp is
contractive.

Using the standard algorithm of continuation in time of solutions of the integral
equation (3.2), we see that there exist maximal Tg such that there exist a unique solu-
tion of Eq. (3.2) in the class C([0, T); C™"(2) N Co(9)) for all T € (0, T§). Moreover,
either T§ = 400 or T§ < +00, and in the last case, the limit equality (3.1) holds.

Thus, there exist a unique solution of the integral equation (3.2) in the class
C([0, T); € (12) N Co(f2)). From the explicit form of Eq. (3.2) it easily follows that
the solution belong to the class ([0, T}; C) (@) N Co(7)).

Thus, we have proved the unique solvability of the "weakened” solution of problem
(1.1) in the sence of the definition 2.

n
Note, that the initial norm on the Banach space C([0, T); CV(Q) N Co(1)) for
bounded domains is equivalent to the norm

= Vu(z, 1), = (0, A !
llv e (xfﬂ'é’éJ v(z,t)], Qr=(0,T)x N (8.10)
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As since a classical solution of problem (1.1) is a strong generalized solution of problem
(1.1), Theorem 2 with the additional condition
2 2
Il o ll262>1l Vo 13 + ] wo [
implies that there exist time interval 0 < To < T, such that

lim || Vu 3= +o0,
11To

where
= Ul I Vuo |13 “;qllzun EA
g+1 Il 'wo [l2g32

Thus, for some moment of time Tj the inequalities 0'< Tg < Tg < T3 hold. Therefore,
for some finite time T}, the classical solution of problem (1.1) breakes:

T]’r‘r",; l'u [lp= +o0.

Received: June 2004. Revised: September 2004.
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