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ABSTRACT
We consider the system of stochastic differential equations with delay and
with non-antonomous nonlinear main part
n
dei(t) = 3 (pra(O0af* @)+ £ (61X0:7)) de + o (&, [X]: ") do,
k=1

m, X(s)=¢(s), s<0.

Here h > 0, [X]:™" (s) = X(s), when s € [t — h, c] i, X )= us(s).
when s € [~o0,0), ¢(s) is a given initial process, X = (z1,Z2,...,2n)", pi >
are rational b with odd and d i we is a Wiener
process.

For different types of delays in coefficients f; (l.[.\’]:"’) and o; (f,[z\']:_h)
we prove almost sure asymptotic stability of a trivial solution to the system (1)
when ¢(s) =0

i=1,.

RESUMEN
Consideramos el sistema de ecuaciones diferenciales estocdsticas con retardo
y con parte principal no lineal no auténomas

dai(t) = Ticy (PO @)+ £ (8 X07*)) dt + o (1,307 e,
=150 sl Kil0)=ud(e)ie a0

Acd h > 0, [X)I" (s) = X(s), donde s € [t — h,t], t > h, [X]i™" (s) = (s),
cuando s € [=50,0], ¢(s) es un proceso inicial dado, X = (z1,22,...,20)7,

T —————
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i > 1 son nimeros racionales con numeradores y denominadores impares; w; es
un proceso Wiener. Para diferentes tipos de retardo en coeficientes f; (t, [xJ )
(l, [.\’]:"‘) probaremos estabilidad asintética casi segura de una solucién

trivial del sistema (1) cuando ¢(s) = 0.

Key words and phrases:  Stochastic Ito Delay Equation. Asymptotic
Stability. Lyapunov Functional.
90

Math. Subj. Class.:
AMS Class.: 34K50, 93515, 60H10.

1 Introduction

Asymptotic stability of the trivial solution to the system of differential equations
dai zm,mw O, i=1.m, @)

was investigated in [2]. In this paper we prove almost sure (a.s.) asymptotic stability
of the trivial solution to the following system of stochastic Ito equation with delays

dr.(t)-z(m.() o (8) + £ (11X "))dt+a; (:,[xﬁ-") dwy, i=1,...,n (3)

Here X = (z1,%2,.:,%a)%, [X]L "( = X(s) for s € [t — hyt], t > h, and
[.\’]f h(s) = ¢(s) rol s € [-0,0], h >0, ¢(s)is a given initial process, w; is
a Wiener process, p; > 1,y < pp < -+ < pp ave rational numbers with odd numer-
ators and denominators.

Everywhere in the paper we suppose that pxi(t) are continuous non-random func-
tions for ¢ > 0 and that there exist positive constants Ay, ..., A, and nonnegative
function a(t) such that for all t > 0 and ¥ € B"

YTAP@)Y < —a(®)lIY][%, )
/-no a(s)ds = co. (5)
0

{pe;(0)}. ki =1,2,...,nand A = diag{)\y, ..., An} is a diagonal matrix.
stem (3) can be considered as a stochastic generalxzatlon of the system (2).
We can nvat the term EA_, p;,( .*(t) as the main part of the system (3) and
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formulate our sufficiency conditions for asymptotic stability in terms of the coefficients
of these bounds. It turns out that when the coefficients for X at points ¢t and some
previous points ¢ — h; are small enough the stability results take place.

In this paper we obtain sufficient conditions on a.s. asymptotic stability of the
trivial solution to the system of stochastic Ito equations (3) in three cases: when the
noise part of system does not contain any delay, when it contains discrete delays, and
in the most general case, in which it contains discrete delays as well as distributed
delays.

We begin by recalling some definitions from the Theory of Functional Differential
Equations (see [1], [3], [4], (5], [6]).

We say that an equation contains constant discrete delays if its right-hand part
depends on X (t) and X (¢t — hy) for some constants hy > 0. We say that an equation
contains distributed delays if its right-hand part depends on the whole of a previous
history of [X]:_" () = X(s) fort —h <5<t h<oco. A sufficiently general form of
such a dependence is the following:

h o
/ X(t - 9)dR(s) + 3 e;X(t = A;(1)), ©
0 i=1

where R is a function of bounded variation on [0,h], 0 < A;(t) < h for t > 0. We
note that discrete delays, constant or non-constant, are partial cases of (6).

For the proof of asymptotic stability in the three cases mentioned above we con-
struct a Lyapunov function or some Lyapunov-Krasovskii functionals (see [1], (3],
(4], [5], [6]). As a rule, when the functions f; (t,[X]:"') and oy (t,[X]:"‘) contain
more general delay, the Lyap Krasovskii fi ional become more complicated
(see formulas (38), (53), (62) below).

For the proofs of our theorems we also apply some results from Theory of Random
Processes (see, for example, [7]). Some definitions and facts from the Theory of
Random Processes can be found below.

A complete probability spaces (§2, F, P) equipped with the nondecreasing family
of g-algebras F = {F, }n=12,.,Fs C Fr C F,s < t (filtration), is called a stochastic
basis if it satisfies the "usual” conditions:

(a) right continuity: F = Fry = Ny Furt 2 0;

(b) completeness: 7y is augmented with the sets from F with P-null probability.

We say that {X¢}i>0, is a stochastic process, if it is the family of random variables
Xi(w) defined on (2, F). We restrict our consideration to the processes {X;};>o such
that, for each ¢ > 0, the random variables X; are F;-measurable. We also suppose
that, for all w € 9, the trajectories of X;(w),t > 0, are continuous as functions
of t and the initial process ¢(s) is Fo-measurable. Let {w;};>0 be a 1-dimensional
Fi-measurable Wiener process. A

Below we formulate the famous Ito formula, which can be reckoned as a general-
ization of the chain rule for differentiation of deterministic functions.

Lemma 1. Let X; be n-dimensional stochastic process having the differential dX, =
F(t)dt + o(t)dw,, where f(t) = (f(2),..., (1)), o(t) = (01 (2),.... aa(t)). Let also

Ve e



26 A. Rodkina G

VAl A vty z,,) be a differentiable function with respect to the first argument
and a twice continuously differentiable function with respect to the last n variables .
Then Ito formula takes place

ol o,
/(¢ X,) = V (0, X, ol oV
V(t,X0) = V(0 \n)+/0 ;61‘_1’;(0:1:4— [ Srar+
il e A t gy
3 /0 > 5o a0 (s (E)ds + /0 > ppoit)dui. 0
& =

i,j=1

Stochastic process {M;}i>0 is said to be an JF;-martingale, if B|M,| < oo and
E(Al[,|.’F_,) = M; for all ¢ > s > 0. We note that a Wiener process wy is a martingale
as well as the so called Ito integral fr: g(s)dw,, where the process g(s) is continuous and
Fi-measurable. A martingale {M,}¢> is called square integrable if sup,so BX{ < co.
A stochastic process is called a semimantingale if it admits the representation

X = Xo+ My + Ay, ®)

where {M;};>q is a martingale and (Az)tzu is a process of bounded variation. In
particular, the process X;, defined by (8), is a semimartingale if Ay is a.s. non-
decreasing process.
Lemma 2. Let {4} }i>0, {A7}i30, {Bi }iz0, {B?}is0 be a.s. non-decreasing contin-
wous F,-measurable processes with B* < A1, B*> A% and A = B* — B®. Let also
{Mi}i>0 be a continuous Fi-martingale. Let process {Z;}1>0, Zv = Zo + My + Ay, be
non-negative. Then {w: AL < oo} C{Z 4} N {w: A% < oo} as.
Remark 1. In this paper we use the designation X (t) for the solution of the system
(2) in contrast to X;, which is more common in the literature on Stochastic Processes.
We do it to avoid misunderstanding when we are speaking about z;(t) or zi(t — hy).
In the following calculations we are going to apply the inequality
r
ab< L+ e where

1
ey o psa (9)
G

2 Systems without delays

In this section we consider the case when noises in the system (3) do not contain any
delays. That is the functions f; (t, [X]i"') and o; (t, [X]:_") from the system (3) do
not depend on the previous states of X and can be written simply as f;(t, X (t)) and
ai(t, X ()

dz(t) = i(lw,(i)r}.“(t) + filt, X (@) dt + oi(t, X (t))dwe, i=1,...,n. (10) ‘
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We let
(X = @' 3ty 2T, (11)
"
< Ai(pi + 1)
(o =rhy N e 12
2 g = (12)

kx 2 0,5 = 1,...,n, and assume that for every i = 1,...,n and for some functions
Bi(t), 7i(t) the following conditions hold

[fi(t, X ()] < Bi(8), (13)

/an Bi(s)a~"(s)ds < o0, (14)

[oi(t, X (®)I* < a(t) Zn: et &) +%(), (15)
k=1

/Doo 'yii‘z"%T (s)a“'_-hﬁ(s)ds < 00, (16)

':l?ﬁv'{nw—:;—l)+i—2ki}=q<l4 (17)

Remark 2. Condition (17) holds if the coefficients ky in (15) are small enough. This
means that the every stochastic part of the noise o; in the system (10) can depend on
s

ol i " (t), provided coefficients are small enough.

Theorem 1. Let conditions (4)-(5), (13)-(17) be fulfilled. Then P {llin;c X)) = o}
=1 for any solution X (t) of system (10).

Proof. We define Lyapunov function V' by the formula:

n +1
Ak
X=X
k=1 Mk +1
It is easy to see that
o i *V =1 v w 42 ;
L = Mzih T = Nz}, EE 0, i#j. (18)

We apply Ito formula (7) to Lyapunov function V(X (t)) along the trajectory of solu-
tion X (t) to the system (10) and obtain

V(X(t) = V(Xo)+ /Z,\.x"‘ (Zm, (&)l (1) + filt, \*(n))

+ 5/!i/\‘p,z""' 2(t, X (t))dt + my. (19)
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Here

is a martingale.

me = / ZA,Z“ (t)oi(t, X (t))dwe

i=1

(20)

Now we are going to estimate three expressions in the right-hand side of (19):

ZA; Z,u, (&) (8), E)\z“‘ t)fi(t, X (t)) and E/\‘y.,a:"‘_l(t)v‘ (t, X (1))

i=1 i=1

Using (4) we obtain the estimation of the first expression

Z/\xr“' Zpk.mz

For estimating of the second expression we note that for every £ > 0

zf* ()Bi(t) = =¥

Then

"

3 N (0 fu(e, X (¢

i=1

ol Ala(et < Tzt

(#) = CORAPB)(X) £ —a@)lI(X)ul® = —a(®) (ZI."”) ‘
i=1

Bi(t)e a”'(t)
> 3

<Z,\z"c)/i t)<z,\’"(‘)5“(t)+ZA ﬂ:(‘)‘f el

Before estimating the third expression we need to do some calculations. Applying the
inequality (9) for r = —EI— and g = 2L e have

Mitl

)y (t) = oM [eat)]'%ry.(r)[a(z)e]ﬂr.‘

—1y —pg\ AT
(r:"“wzsawffr)“‘ (v @)lea) =
< +
= 2 280
mi=1 mitl
_ca)n) | AP eitttar () @)
T T T
Bi—1 i1
and
gt o el —1) 2“. AT D) (i +1) 1) Jz,.,

Sy

2#. 2pi
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Then
n n n Sl
> N O (4, X (1) < 3 M A 0) (}:amw; )+ w))
i=1 =1 r=1

Sy [’.\ja(r) D ke (= D0+ 4 e ) ¢ SO0

A 1) ) o bl )}

e A = 1) oy A .41> e
54(/.)[’21\',.; (“2 b, '(z+§ il ZAI‘ u)}
Z N = Da(t)a (1) E?A,-(;L,- + 1)7Fﬁ§t)sma».—+%(t)
Sn-<r>i(<~+s>'—(’—l—)+xk) 244 (1) + 254 (1),
i=1
where A and « are defined in (12),
SW=3 Xilpi + L) A(:)@ aFH(E) (22)
=1
Then
v L = e\ N(pi=1) M)
V(X(t) = V(X(0) — 1—__ P . ot o1 () d
(X(@) = V(X (@) /(t)Z( (s + o) =2 - 2 ot
L t n
g /n S(0)do + m(t) < V(X(0)) — ay /0 a(t) ;x?"'(t)dt + /ol S(6)dB + my
t t
= V(Xo) —m/ u(H)H(X),,(S)||2d0+/ S(6)d6 + my, (23)
o 0
where
S(t) = Si(t) + Sa(t), (24)
Salt) = ——’\”f’z(")szﬁl”_l(”. 25)
a = ,:nl\.hl" {1 —(® +£)—_)\-‘(#;— D ’\% - %} 8 (26)
i A= RN =1 =23k . 4(1-g)
EEEE T T D) (@)

Vo N
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We note that due to condition (17) the right-hand side in (27) is positive.
After integration of (23) we obtain

W, < Wo — A + AV 4 m, (28)
with : 5
A7 = [[aa@lcou e, A2 = [ seo.
From Lemma 2 we get
P{AY < o0} c PV -} n P{A® < c0}. (20)

Conditions (14) and (16) imply P(A(Dle) < oo}, and (29) implies P{V =} = 1. It
means in particular that P{|z;(t)| < K} = 1 for some a.s. finite K = K(w) > 0, for
every i = 1,...,n and for every ¢ > 0.

To prove the theorem it is sufficient to show that P {[l_i'm V()= 0} = 1. Sup-

=3
pose the opposite: P{’l_i‘m V(t) = o(w) > 0} = po > 0 for some (o = (o(w) > 0.
x

Then there exists a.s. finite N = N(w) such that P{Q} = po > 0, where @ =
{V(t) > Go(w)/2, t > N(w)}. We note that

g — (;r?"')%x, < ( 2“')51(
- - i

et <3 2ok (w0) <y («0)
: 2

V(t) = Z
i=1 i=1
n 4
<K (z:‘;’wm) = Kal[(X)u (). ()
1
Therefore

P{Ie0uor 2 &5} = >0 )

for t > T'(w) and for w €

n N n
/ a@®)|(X)u(s)lPds = / +/
o

2 [ > - Moo
N N

as n — oo due to condition (5). Hence P{A(z) =00} > pg > 0. This contradicts (29)
proving that P { lim V(#) =0} = 1. The last implics that P { lim [IX(0)]|=0} = |
o

| {é i
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3 Systems with discrete delay

In this section we suppose that functions f; (t,[X]:"") and oy ( :_h depend on
the values of X at points ¢t — hjx, with hjx > 0,7 =1,...m, k = 1,...n. Without loss
of generality we can also suppose that the a(t) from condition (5) is non-increasing
and is bounded by some constant K : a(t) < K.

We assume that gjx >0, j=1,...,m, k=1,...,n and instead of (13) and (15)

—

for every i = 1,...,n the following conditions are fulfilled:
m n
[ (LX) < 0303 aalate (e = hool + 10 @)
j=1 k=1

o (LX) < a) Ek,\

+a®) Y ginah T (= hy) + 00, (33)

i=1x=1
We put
m n
g= s (34)
J=1 =1
and suppose that
R+ SN e
———(“+9)A‘(“'4 e 2 e R = g < 1. (35)
Remark 3. Condition (85) is fulfilled if coefficients kx and gj,j = 1,...,m, K =
1,...yn, in (82)-(33) are small enough numbers. lt means in particular that stochastic

noise in the system (3) can be dependent on i , at point t as well as at previous
points t = hjx, with small enough coefficients. The deterministic part of noise can
also be dependent on 7:5\ (t = hjx) with small enough coefficients.

Theorem 2. Let conditions (4), (5), (14), (16), (32), (33), (35) be fulfilled. Then
Jid {ll'ﬂx;‘ X @ = 0} =1 for any solution X (t) of system (3).

Proof. The right-hand side of the system (3) depends on the previous states of

solution X. In this case we have to use Lyapunov functional instead of Lyapunov
function:

V=WV+V, (36)
/\k.t"" +1
W= 3
] ; T 37)
Vo= (,\ 8 ,\) 3 Z i / a(s)zh=(s)ds. (38)
J=1K=1 hin
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In Ito formula decomposition (17) for functional V(X (#)), defined by (36),

V(X (1) = V(Xo) + / Zu (Zpk.(t)z )+ £i [x}‘"")) "”/‘,( ‘1)_":,,‘

2/ Zk.u, it (6 X)) db A m(D), (39)

we have to estimate expressions

n
ZA:" @ (LX) and D AmistHe)o? (X",
i=1
and also to compute %‘f We note that
et (e =1) 2 (mi+1)
= )k (t=hjx) £ _Z;TI"“ )+ —;T:i“"(t— hix)

and
24Ot~ hyn) € 3 (87100 225 (0= )

For estimation of the first expression we do the following:

i=1 G=1R=1

S hatfi (B IXNTH) < D0 Nk 0) (a(t) Do) ot = his)l + ﬂ;(t))

< “mz % (ZZ i ( 204 (1) + a2 (& — hje) )) + znzz\;zﬁ“ﬂ.-(t)
i=1

=1 a=l {

|

”Z Nz (t) + a(t) )\ZZg,,‘zz““ (t = hjx) |

J=1 k=1 |

Nzt ealt 2(t)e~ta~! |

*‘Z iz ., a )+ Z AifE (t)e 2 @ (0) ‘
=1 & i=1
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5).

For estimation of the second expression we do the following

z":,\,;L,xﬁ‘-“‘(z)uf (:, |_\’]§"") <

{=1
3 A=A @) <2a<m e S Gy ))
i1 J=1xr=1
< [%au) D ke (G = D0 + (i + D22 0)
i=1 K=1
i ;u Z ZJ,K ( i = 1) () + (i + L)z (t = hj»e))
=1 x=1

A= Doz () | A+ Dy (t)s.'.—:aa:—:se(t)]
) 2

<alt [ZLZ ) (8 +Z “‘“ Zkzz'“

K=1

Z’\ 3 i D t)+2€A (”'_1 Jad (t)]

xl,nx

o Rt
i Z Sa®)y Z 9w s + D)z (8 = hi)

j=1 k=1

+Z'\(#x+l (le" trLTr"f(t)

Sﬂ‘(t)i ((R+§+e)1\—’l———)+,\k) @i (t)

i=1
m n

HFAa(t) DY aiman (t = hye) + 251(8), (41)

J=lik=L

where  and x are defined in (12), g in (34), Sy(t) in (22). Further,

m n

L)‘v (AH)ZZ%»“ 2 ()
j=1 k=1
= (,\ - 4\) Z Zgj,‘a(t - hj,()_-c?‘n.‘(t — hjx)
1=1 k=1
< (A+4)a Zax ()= (A+4) a0 i S g (t— hye) (42)

J=1kK=1
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as a(t — h) > a(t). Here g and X ave defined in (34). Let

s {4 — (R + 9N = 1) = 20k — 25— 4+ ,'\)g.-}

£ i + 1)
B 4(1-q)
= b N (it 1 (13)
@ = min {1 R+t s)i‘ﬂ‘;—'ﬁ = = ’\(Lz”—) 2 (X+J\)§;}. (1)

Substituting (40)-(44) in (19) we obtain (23). From Lemma 2 we get (29), and
then due to conditions (14), (16) obtain that P{V —} = 1. From the definition
of functional V', (36)-(38), we see that there exists H = H(w) < oo a.s. such that
P{sup;q Vi(t) < H} = 1 and P{sup,s, Va(t) < H} = 1. It implies in particular that
P{|z:(t)] < K} =1 for some a.s. finite & = K(w) > 0 and for every i = 1,...,n,....

By our assumptions a(t) is non-increasing function. Then we have two opportu-
nities:

a) a(t) = 0 as t — oo,

b) a(t) > ¢ for some ¢ > 0.

In case a)

B
W@l < (A+ ,\) S5 gik2n / a(r)dr
J=1 k=1 —hjx
<(A+ /i) Z i GinKH5a(t = )i = 0 (45)
j=1r=1

ik
when ¢ = 0. Then Y;_, Lﬂ:“:,— = Vi(t) = V{(t) — Va(t) has to converge also, and

we prove that P {Ilim 11X = O} = 1 in the same way as in the proof of Theorem 1.
-0
In case b) we note that V is a.s. uniformly continuous on [0, c0). It is easy to see
that V5(¢) is also a.s. uniformly continuous on [0, c0). Really, for ¢ < 8 we have

|Va(t) - Va(8)] =

= (,\ + ;\) i‘:éy” /ai/.“ a(r)a (r)dr — /:t/.. a(r)zn (7)dr ‘
A i " Ol t—hj, |
= (,\ + \) J
|

=(3+%) ZZv / a(aiie(r)dr [’h' a(r)ai=(r)dr
< (i+3) Z Z I < / ) /, :"" a(r)dT) <Kalt—6. (46) 3
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Then Vi (t) has also to be a.s. uniform continuous on [0,00). To prove that

P {lim sup Vi(t) =0} = 1 we suppose the opposite: P {lim sup Vi(t) = Go(w) > 0}
t=roo t—oc

= po > 0 for some (o = (y(w) > 0. Therefore there exists sequence ¢ = t)(w) such

that P()) = po, where Q; = {w: Vi(tx)(w) > Co(w)/2 > 0}. Due to a.s. uniformly
continuity of V;(¢) on [0,00) for € = e(w) = (o(w)/4 we can find § = d(w) such that

. Valte) = Vi(s)l S € = Go(w)/4
when w € Q) and |s — x| < 8. Then for w € Qy and s € [tx — 4, + J] we have

Vi)l = Va(ti)] = Va(ti) = Va(9)l 2 Go(w)/2 = Go(w)/4 = Go(w)/4.  (47)

Let k(n) be a number of elements of the sequence {t,} in the interval [0,n]. Applying
inequality (47) and estimations (30), (31) we obtain for w € Q;

[t ¥ / ICOu(s) Pals)ds >

kit +5<n
2 §
Sa Z /"’+ 2c8¢3 (")L‘Mn
= cds = ——5 Z l=—7=
4K3 kit +o<n J =8 4K; k<k(n) 2K;

as n = oo, because k(n) — oo as n — co. Hence P{A(fo) = o} > po > 0. This
contradicts (29) proving the result. [ ]

4 Systems with general delays

In this section we prove two theorems on asymptotic stability of the trivial solution to
the system (3), when dependence of the right-hand side of the equations on the past
states of solution X, has a general form, which includes the discrete as well as the
distributed delays (see (6) in the Introduction). In the first theorem the asymptotic
stability is proved when coefficients in the noise part are small. In the second one
our assumptions are expressed in terms of the convergence of an integral on the
infinite time interval [0,00) of the function which is involved in the estimation. In
practice, the infinite time interval is of no interest, and any function restricted to a
finite time interval can be extended to [0,00) in such a way, that the corresponding
integral converges (see, for example [8, 9]). Of course the question of the speed of
such convergence remains open. In this sense the second result can be regarded as
more general than the first.

In the following two paragraphs we suppose that the function R(s) in (6) is con-
tinuous and non-decreasing for s € [0,A], h > 0, the function «a(t) is positive and
non-increasing for t € (0,00), 0 < Aj(t) < h and 1 — A;(f) >¢€ >0fort >0,

B Ve  cocciiieN
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R{t) = R() +1(2), z(g:{?‘ :;8

e:= ie,/ej <00, R:=R(c0)—R(0)+1.

4.1 Small parameter

In this paragraph we consider the following system of stochastic equations
n
dai(t) = 3 (pi @l + £ (& (X0 7)) de+ 3 (6 0 . (48)
k=1

As in the previous section we suppose that a(t) from condition (5) is non-increasing
and bounded by some constant K : a(t) < K. The following conditions will be
referred to below:

h = %
| (6. 1337) | < atyw [ o ||(x>u(t—s>|\2da<s>+zenl(xme—AJu))n!J . )
0

=1

2 o4 h %
fos (s 1x1i)] Sa(')V[/ 1|<X>,A<t4s>n’dms)+Ze,u<xm—A;(t»uz} . (60)
0 J=L

A+Ar(R+e) <1, (51)

where v is some parameter, (X),, is defined in (11), A and A are defined in (12) and
(34) respectively.

Theorem 3. Let conditions (4), (5), (49), (50), (51) be fulfilled.  Then
P {'IlnjlL IX@I? = 0} =1 for any solution X (t) of Eqn.(48).

Proof. Let we define Lyapunov functional V' by the formula:

V=Vi+V, (52)

T e /dns> / 110, (lPa(r)dr

0 s

&
PR+ S ety [ 100uean, te@o), 69

i =45(t)

o —
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where Vj is defined in (37). Applying the Ito formula we obtain

VX)) = V(o) + /Z“ (Zpk(tx““(t)+f‘(tk )d!+/ "’Vadt

2/ Zx,u.z" 163 (t, X (B))dt + my. (54)

We need to estimate some terms in the right-hand side of (54). Before doing this we
note that

h i’ h If
B8 (1) = ( """(t))* < (/a:i’“’(t—s)dl(s)) < (/z“*(t—s)dﬁ(s))
0

0

1

(/n Jult - o)|[PaRt s)+2e,n(«\>» t— At )||2) 2 (s5)
And in a similar way,
w0 = (s )
h i S
< ( / It = 9PARE) + 3 sl (e~ A,(t))nz) . 60)
Then using (49), (50), (55) and (56) we obtain
i,\.xf-f. (t0xi)
< 2hva(t) (/“u(_\'),‘(: ~ 9lI*dR(s) +§eju(xmr - A,-m)n?) ‘
Z,\.,:.z A e ()

h o0
< 2(A - Ava(t) (/ (0t = 9)PdR(s) + 3 511 (X),u(¢ Aj(t))”?) ¢
0 =1

.
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Since a(t) < a(s) for t > s we get from the above

i Natf, (61) + 3 ixiu.-z.-""‘(t)&? (xR 22

<A+ (/ IX)u(t = 9)la(t ~ s)dR(s) + ZEJII(X)u(t = 8;(®)Palt - A;(t) )

=1

+(A+A)v (R +e) a( @I
~(A+ )y (/ 1(X)u(t = 9)%a(t = s)dR(s) + Y e;ll(X)ult = A;()]alt - Aj(t)))
0 =1

= (A + v (R + e) a®l|(X) @I

After substituting everything in (54) we obtain (23) with a; = 1 —¢, &6 = (A +
v (R +e).

Now we proceed in the same way as in Theorem 2. The only difference is that
instead of functional V, we consider V3 and instead of estimations (45) and (46) we
have for some constants K, K, K3 > 0

401 < () v R +e) Ky [/Lh a(®)dr + /‘; a(ﬂ)er

< K> max{a(t — h),a(t — A)} = 0

when t — o0, and

h
Wa(e) = va(®)| < (A + ) 0/ ar®) | [ a0, - [ awne,etar

(54 5) Setey
i=1

(XM)V(RH)IQ(

0 t
/ a(|(X)u()lFdr —/ a(M)I(X)u(r)l*dr
0-4,(0) =4;(1)

0 6-4,(0)
/ a(r)dr| + / a(r)dr
¢ t-5()

) < Ksjt—4|.

4.2 Integrable parameter
We consider the system of stochastic equations

dzi(t }3 (pk, t)al () + fi (:, (x];"‘) +fi (c, [x];-")) dt

k

+ (n, ( X\ ") +6i (t B ")) dw,. (57)
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‘The following conditions will be referred to below:

h o0
|4 (t.[.\']:f,.)r-ﬂ < ity {/v,(: — s)dR(s) + Ze,xa(t = A,(t))} (58)

i+
|g. ( £, (Xt ")|“ <a®F (1) [/v,(z — s)dR(s) + Ze,‘ (t— A,(t))] (59)
o
/n(s)zls<cc, (60)
0
where V; is defined in (37).
Theorem 4. Let conditions (4), (5), (14), (16), (32), (33), (35), (58), (59), (60) be
fulfilled. Then P {‘1'590 X = 0} =1 for any solution X (t) of Eqn.(57).
Proof. We define Lyapunov-Krasovskii functional V by the formula:
=V +1), V=Vi+Vh+Vs (61)
h t
(i) = s [ dR(s) [ atr)¥iiryar
0 t=s
t

308 Sheny / a(DVi(r)dr, te(0,m), (62)

=LA

where V; and V; are defined in (37) and (38) respectively, Hy is some constant which
will be specified below. We note that

W _ et o'W A.-u.z{-‘“l(V+1)—(/\a1‘,-“) A,u.z“-'

dz; V+1 027 V+1)2 5 ALV 8
BW _0x (V1) NabiNall Atk .
dz0z; V+1)2 = A Y A \63)

We apply Ito formula to the functional W (X (t)) and get

: n
W(X(@) = u’(x“)+/(v+1)“ [ZA;:;“ (Zm. (O +f.+f.>
8V, oV 1 o'W . .
+ 3{14,__3}(1” /Zawz (07 + 63) (0 + &) dt +my, (64)

where

m._/ (V+1)" ZA.I"'(z (0i + 6:) dw, (65)

Py
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is a martingale. We note that

My 1 i’ A i
a0 = (' 0) ™" < (“" = s)dMs))
k

Ak
o

i it s
< <”"A:r L /m(z — $)dR(s)+ Y e;Valt A,(:))) !

% =1

ZAf (1)
- (0B
< EA. (

e h o<
1) B </ VA(t = $)dR(s) + 3 e Vit — Aj(t))) (66)
0 =1
and
a4 =(0)a2 (8, 1X);~")

s A 1o
<Z( % )w (/V]t—s)dR(s)+Zle,-V1(t7Aj(t))1)‘(57)
=

i=1 0

From the definition of 1 (see (61)) we have: V > -—'Z—I\Iz“"“ Then for i # j and
some constant Hy, which depends only on p, Ag, k ,...,n, we have

t)o; 21i ;2 243 (1)
( :r a; im f; gy zil (t)o}
1)? SR (R0 R )

i m;”‘l(t)uf
V1 i

The similar estimates are correct for J:ﬁ"(t)z;-" (t)5i0; and = (t)z}" (t)3i65. Then

1 & W

%105, (0i + 6:) (0 + 65) <ZII-, V+ 1)zt (0 +67).

i=1

Yaam =\
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Using the monotone property of the function o we obtain

~tppa OV :
Z,\.x L+H;Zx“' Y(t)a? t“ (68)

j=1

h 0
< Ha(t) (/ Vit — $)dR(s) + 3 esVi(t — A,(z))) + Hs (R + e) a(t)Vi(t)
0

k 0
Y (/ Vi(t = s)a(t = s)dR(s) + Y e;Va(t — A, (t)alt - s))
o j=1
= Hy (R +e) a(O)Vi(t) < Hy (R + e) a(t)V. (69)
We note that constants 1-12, Hj depend only on p, Ak, k = 1,...,n. Substituting (40),

(41), (42) and (69) in (64) and applying the inequalities: (V+1)~! < 1, V(V+1)~! <
1, we obtain

W(,\'(z)):W(,\'(o))—m/ (V+1)~ Zx’“-(e)da
f=1

+ /’(v + 1)~ Hy (R + o) a(8)Vd + /'(v +1)-18(6)d8 + m(t)
0 0
t 13
W) o, / al®)(V + 1)1 (X)(60)[2d6 + Ha (R + e)/ a(0)db
0 0
+/ S(8)df + my, (70)

where S(6) = HyS(8) and « is defined similar to (44).
Now we proceed in the same way as in the proof of Theorem 2, noting that

Va(ol < (A+ ,‘\) v (R +e) Ky [/LI a(9)d9+/liA o((i)dﬂ]
< (A +A)r R+ o) Ky [/l:u(ﬂ)d0+/‘:u(0)d9] 50

when ¢ — oo, because an integral f:o a(B)df converges. We consider two cases about
the function a(t): a) a(t) = 0 as ¢ = o0, b) a(t) > c for some ¢ > 0. In the case a),
Va(t) = 0 as t — oo (see (45)), and we prove that P{ lim ||X(2)]| = 0} = 1 similar
to the proof of Theorem 1.

In case b) we note that V, V5, V3 are a.s. uniformly continuous on [0,00). Then
Vi(t) is also a.s. uniformly continuous on [0,00). We complete the proof in the same
way as in the Theorem 2.

Remark 4. Theorem 4 can be also proved in case of unbounded delay, h = oo

e
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