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ABSTRACT

InR" (n > 3), an interesting property of the semi-linear equation

Ao + cn Koug' 0

is that, when K, is a positive constant, solutions can concentrate at any point.
When K, is not a constant, we show that concentration of solutions requires
strong conditions on K,. Through the stereographic projection, the discussion
can be extended to S™, and is related to bubbling, or the blow-up phenomenon.

RESUMEN
di de la i6n semi lineal

En IR" (n > 3), una propied

P
Ao +n KoudF =0

es que, cuando K, es una constante positiva, las soluciones pueden concentrase
en cualquier punto. Cuando K, no es constante, mostramos que concentraciones
de soluciones requicre condiciones fuertes en K,. A través de la proyeccién es-
tereografica la discusién puede ser dida a S", y relacionada con "bubbling”
o el fenémeno " blow-up”.
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1 Introduction
In this article we consider positive smooth solutions u of the equation
Agytu—can(n—1)u+c Kuvs =0 in S™ (1)

Here A, is the Laplacian for the standard metric g on the unit sphere S™ (n > 3),
and ¢, = (n —2)/ [4(n — 1)]. Equation (1.1) describes the scalar curvature K of the
conformal metric u7=7 91 (4] Under the stereographic projection P : S™ = R™ (cf.
[15] and § 7), with

n=2
o 2 E1e
Koy) =KP), wl) =wP0) () | for ve R (1)
equation (1.1) can be expressed as
BN o, B =) b T (1.3)

The geometric accent of the equations is reflected analytically in the crit-
ical Sobolev exponent. Together with conformal invariance, they may cause bubbles
to appear [26]. Active studies are conducted on existence of solutions and fine asymp-
totic properties, employing powerful ideas in partial differential equations and global
geometry (see, for instances, recent publications [1], [3], [7], (8], [9], [10], [11], [18],
(23], and the references within). However, key questions like the Nirenberg problem
and the Kazdan-Warner problem remain unresolved.

An exquisite result of Gidas, Ni and Nirenberg ([13], [14]; cf. [5], [24]) shows
il

that when K, is a positive constant, say (after rescaling), K, = 4n(n — 1), any
positive smooth solution of equation (1.3) is of the form
; s ) ng2
uxp () i= for y € R™. 1.4
(U (Az = Y (14)

Here p is a fixed point in IR", and A a positive number. Thus the rigidity and
flexibility of the equation are captured. As an interesting consequence, solutions can
concentrate near p when A — 0%. Indeed, direct calculation reveals that

2n

/'_ uﬁ(y)dy is independent on A and p,

/ "ﬁwySC(ﬁ) —0 as A0t
IR"\B;(p) P

Yo A\
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In the above, C'is a positive constant, By(p) the open ball in IR™ with center at p and
radius p > 0. Observe that uy ,(p) = 00 as A = 0F. We use the term concentration
to denote the general phenomenon when the solution is large in a tiny neighborhood
of a point, and small outside. The precise meaning is made evident in each of the
following theorems.

When K, is not a constant, we show that positive smooth solutions of
equation (1.3) in the form of (1.2) can only concentrate on particular places. The
first observation is that concentration cannot take place at a point p with K,(p) < 0
(see propositions 2.2 and 2.4 for the precise statements). Here we make use of the
fact that conformal deformations on (S™, g) tend to increase the L#-norm of the
scalar curvatures [16].

The second obstruction for concentration is || 7 Ko(p)|| # 0, a consequence
of the famed Kazdan-Warner balance formula:

/ X(K)uv=3dV,, =0. (1.5)
sn
Here X is an arbitrary conformal Killing vector field on (S™, g1) (cf. [10] [15]).

Formula (1.5), when projected onto IR" via P, and when X is generated by
rescaling, gives rise to the Pohozaev identity

ool v ED Uy =o0. (16)

From (1.6), we derive the third obstruction, namely, high concentration cannot take
place at a point p with A K,(p) # 0 (the precise statement is found in theorem 4.1).
Earlier, Chang-Gursky-Yang [6] and Schoen-Zhang [28] consider similar situation.
((1.6) is satisfied by solutions u, and K, related to u and K through (1.2), which
guarantees the convergence of the integral and non-existence of boundary terms. This
requirement can be relaxed by imposing suitable decay condition on u,. cf.[6].)

Observe that equation (1.3) is invariant under translations. Using this,
we also discover that 7(A K,)(p) # 0 is an obstruction (theorem 5.1). Further
exploration on the Pohozaev identity shows that

i
3 (; aay’? (p)) +ATK(p) £0 o)

places an additional restriction on strong concentration, see theorem 6.1. Here,
A EN="N(A K.

A natural link with the kind of concentrations discussed in this article is

Ve oo
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shown in blow-up or bubbling. Let {u;} C C(S™) be a sequence of solutions of
equation (1.1). A point @ is called a blow-up point of {u;} if there exists a sequence
{z;} C S™ such that 11m ui(z;) = oo and l_l’m x; = zp . Point singularity of this type
is studied in detail by R, Schoen, Y.Y. Li (cf. [23]), Chen and Lin (cf. [7] [8] [25]),
and others. Under suitable conditions [10] [21], u; can be approximated near a; by a
standard solution as in (1.4).

In order to obtain a priori bounds and existence results, methods are de-
veloped to eliminate the possibility of blow-up (see the elegant works of Aubin (2],
Chang-Gursky-Yang [6], Chen-Li [10], Y.-Y. Li [21] [22], Chen-Lin (op. cit.), Schoen
[27], Schoen-Escobar [12], and Schoen-Zhang [28]). Conditions allow, uniform upper
bound also implies uniform lower bound, thanks to the Harnack inequality. This be-
comes crucial as certain blow-up tends to pull down the solution to zero outside a
small neighborhood of the blow-up point (see [8]). The conditions discussed here help
to avoid this specific type of bubbling (unboundedness).

Conventions.  Throughout this article, n > 3 is an integer; the functions u, €
C*(R") and K, € C*(IR") descend from the corresponding functions on S" via
(1.2). We observe the practice of summation over repeated indices, and use C, pos-
sibly with sub-indices, to denote various positive constants, which may be rendered
differently according to the contents.

2 Zeroth order condition

2n_
L — /u"-2dV,,—/]R =

T oe= / KuaZ2dVy = /,Kauo dy.
On account of (1.1), we have

T=ct [ va PV +nn-1) [ uPav,, > 0. @1
sn sn

Let

Proposition 2.2.  Let K, be as in (1.2). Assume that K,(p) < 0 for a point
p € IR™. There exist positive constants p, and €, such that for any positive smooth
solution u, of equation (1.8) in the form of (1.2), the concentration ineguality

20 2.
/ ug = dy < 5/ uo"—‘L’ dy (2.3)
JIR™\By () By (p)

cannot hold for p < p, and e < €, .

Y& )
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Proof. Take p, to be small enough so that sup K, < 0. Set
5 (Po)

-1
o= = ( sup Ko) =0, and g, = |sup K, o.
By (po) R"

Suppose that (2.3) holds for p < p, and € < &,. We have

Ay =
T = / iy U dy+/ Kous™ dy
By (p) R™\B, ()

an 3n
< -0 / wy ™t dy + (sup Ko> / us " dy
By (p) R" R™\B;(p)

an 2n
‘a/ ug~* dy + | sup K, s/ Uz dyi<0
By (p) R" Bp(p)

which contradicts (2.1). L}
From above, it is not immediately clear that concentration cannot take place at a
point p with K,(p) = 0. This can be shown with the help of a result in [16].

Proposition 2.4.  Let K, be as in (1.2). Assume that K,(p) = 0 for a point
p € IR". Given any positive number C, there ezist positive constants py and €, such
that for any positive smooth solution u, of equation (1.3) in the form of (1.2), the
concentration inequalities

/ uf% dy < 5/ u{,%’ dy and V<C (2.5)
IR™\By (p) By(p)

do not hold for p < p, ande < ¢, .

Proof. By applying lemma 4.5 in [16] on S with the standard metric, and then
transferring to IR™ by the stereographic projection as in (1.2), we obtain

/IR“ [Ko|2 ud dy 5 [nn = 1)]2 wn. (26)

Here wy, is the volume of the standard n-sphere. Take p; to be small enough so that

[n(n = 1)]% w,

Ko < o

for y € Bp(p) - Let

2 =0
—1)]% wn
E‘l:[—n(ﬁﬁ).]—L(;l{EKq) 3

P o
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Here C is the positive constant in (2.5). Suppose that (2.5) holds for p < p; and
€ < e;. We have

/]R“ Kol ug™ dy
n s

- / || F ud dy+/ ey

By (o) R™\B, (p)

5 " 3 k.
< DesPen e () [
< B,(p) R R™\B,(s)
o 3
_—_(n =l +eV (sup Ko>
2 =

= [nn—-1)]2w,.

The strict inequality above provides a contradiction with (2.6). [ ]
Remark 2.7. In proposition 2.4, whether the bound on V can be removed is not
known. Interestingly, there are ezamples which show that V can become very large
due to strong concentration at a point, even though K, is very close to a positive
constant (see [19] and [30]; cf. also [17]). However, under mild conditions on K,
(see [18]), it can be shown that if my is a blow-up point as defined in the introduction,

then K(mp) > 0.

3 First order property

The stereographic projection P enables us to bring the discussion from R™ to S™, or
vice versa. For first order obstruction, it is more convenient to consider S™. Denote
by B, (r) the open (metric) ball in the standard sphere S™, where ¢ is the center and
r € (0, ) the radius of the ball.

Proposition 3.1.  Let K € C®(S™). Assume that (K(q) > 0 and) v1K(q) # 0
for a point g € S™. There exist positive constants p and 3 such that for any positive

smooth solution u of equation (1.1), the ation
/ w3 dV, <e / w3 4V, (3.2)
SM\B, (1) B, ()

cannot hold for v < p; and e < ey .

Proof. Let || V1 K(g)]] = 62 > 0. In the Kazdan-Warner formula (1.5), we can
choose the coordinate system so that the conformal Killing vector field X has the
property that || X (g)ll = 1 and X(g) is in the direction of 71 /& (g) . This is possible
because of the innate symmetry of S™. Furthermore, we may take [|X|| < 1 in S™.

T T\
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Fix a positive constant p, such that
5 82
(X, va K(2))g 2 T for z€By(p2). (3.3)
Let D be a positive constant such that
llvi Kjj<D in S".

It follows that X (K) = (X, vi K),, < |IX||- || 71 K| < D. Take

52

e=35.

For r < py, we have

/ X(K)ui5 dV,, =0
s

= X(K)un’z dV,, = -/ X(K)u= dV,
By () S7\B, (r)
52 &
= LT / R f ) w1 4V,
2 s, 57\B, (r)
2
/ uvE 4V, > T4 w3 dV, .
5%\B, (1) 2D Jg, ()
The imbalance renders (3.2) invalid for e < e, and 7 < p . ]

Related to the above, we refer to [29] and [31] for first order conditions on con-
centration for certain singularly perturbed elliptic equations in IR".

4 Second order property

Because equation (1.3) is invariant under translations, for the moment, we focus the
discussion on the origin.

Theorem 4.1. Let K, be as in (1.2). Assume that 7 Ko(0) = 0 and A K,(0) # 0.
Given any positive numbers C' and p, there exist positive numbers ¢, and ¢y, such
that for any positive smooth solution u, of equation (1.3) in the form of (1.2), the
concentration

(“_")“% G
ux,0

cannot take place for A\ < ¢; and 6 < ¢y. Here uy g is the standard spherical solution
defined in (1.4).

b / WAy <ON  (42)
G (Ba(n) IR"\B.(p)
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Proof. Consider the case A K,(0) = A > 0 first. As

(4.3) (y . vK’u)ua"zT“2 dy = 0 (the Pohozaev identity)

= v vK)u dy
/]R"\u,()( s ’

we intend to show that, under concentration as expressed in (4.2), the left hand side
of the above is O(A\2), and the other side O(\®). Thus (4.3) cannot be balanced for
small A. To this end we apply Taylor’s expansion and the fact that 77 K,(0) = 0,

/ (y- vKn)uo dy
Ba(p,

obtaining

il 9K,
Kolt) = Kol0)+ 5 3 05 5 O) + RO)-
i ¥

Here R is a smooth function with vanishing first and second order derivatives at the
origin. It follows that

v VKo (y ZM/J & (0)+y v R(y). (4.4)

By the remainder theorem for Taylor’s expansions, we have
[y B < lyl- Il v Rl < Cullyl®  for lyll < p. (45)
It follows from (4.4) that
[y v E.)| < Calyl*  for {ly]| < p. (4.6)

Assuming that (4.2) holds. We have

@) [ wor)u®ay
Bo(p)

= VKU d +/ . =
/nm,)(y % R Hn(o)(y VK")[ S oJ dy
> / (- VE)uf i d —/ VK,
Ba(s) SRR e lo- v Kol dy
K, & 2,
> 0 7=
> .Z,: {ﬂy.ayj ( JJ ./B"(,,) Yiyiuy o dy — CJJ/ llyHZu,\ >

il /’( I dy (using (4.2), (4.4) - (4.6)).

Bo

n
u,;‘ = u 0

S T
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As uy, o depends only on r = ||y||, by symmetry, one obtains

/( y.y,ui“‘?dy =R TorSt £l
)

o (P
/ Vuiedy = / i dy,
Bo (p) B, (p)
oy 1 =
= / Vulgdy = = Puledy
Be (p) B, (p)
‘We compute
. an
(4.8) / r? u;—“oi dy
Bo (p) )

i A s
b n
E w"_l/o ()\2+rz) )

arctan (p/A) A GE R oo !
= w,.‘l’/o (m) A tan""' ¢ sec® pdg  (r = Atan ¢)

arctan (p/A) s ont1
= /\zu"_lf cos?("=1) ¢ (sm ¢) do
0

cos"t g

arctan (p/A)
= \dun / sin"t g cos"Ppdp  (n>3)
0

N s
Here

arctan (p/A)
JE = bt / sin™! ¢ cos" 3 ¢ do, (4.9)
0

and wy,—; is the volume of the standard sphere S"~!. As it can be seen in (4.9), Ipn
is bounded from above, and its value is larger for smaller A, assuming that p is fixed.
Similarly,

arctan (p/A)
/" 1] |||,1(3uA i dy AR ey /o sin™*2 ¢ cos"* pdg. (4.10)
When n >4,

[l ufe ay < e,
Bo(p)

Ve N
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Whenn =3,
arctan (p/))
/ sin™? ¢ sec ¢ do
0
arctan (p/A)
/ sec pdp
0
= In |secy + tany| y=arctan (p/x) = In |{/1 + tan®y + tany
y=arctan (p/)

]

i <,/1+§:—+§> <In (?) g,/i\—” (st = i,

Thus %
/ lylPuls dy < CsAE for A<p (n23),
Ba(p)

where Cj is a positive constant that depends on p and n only. It follows from the
symmetry and (4.7)-(4.10) that

[ wvrgud® a2 cd pae o am
Ba(p)

We choose

o S
“=me
so that when § < Ay, we have

[AK"(O)—Cﬁ]zﬁ-A:i,
n n o 2n  2n

By the decay property of K, as in (1.2), there exists a positive constant C7 such that
|y K, (y)] < C; for all y € IR™. From (4.3) we have

(112) (pg) #-orbi f v Ry
= (1,/A 2‘%) Nl o ML
;2{120 <G )\:f (providcd that A < min {% 1})
= A> [%ICZ%J ;

Hence we may choose

oo [Ty 3
Gt ol s
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From (4.12), we conclude that (4.2) cannot hold for A < ¢; and § < ¢;. The case
A K,(0) < 0 is similar. [ ]

Remark 4.13.  Fizing p in (4.2), we observe that when X\ is small enough, (4.2)

guarantees that
2 an
/ ugtdy < )\2/ ug 2 dy.
R \Bo(p) Bo(p)

(Compare with the calculation in the introduction following (1.4).) It follows that
(4.2), when projected back to S™, also implies mequalxty of the form (3.2).

5 Third order restriction
Theorem 5.1. Let K, be as in (1.2). Assume that |7 K,(0)|| = A K,(0) = 0 and
7 (A K,)(0) # 0. Given any positive numbers C and p, there ezist positive constants

¢y and cq, such that for any positive smooth solution u, of equation (1.3) in the form
of (1.2), the concentration inequalities
|

U =
|Gs) =

cannot take place for X < c3 and 6 < c¢4.

N / WAy <OX  (52)
€ (Bo(p)) IR™\B.(p)

Proof. We proceed as in the proof of theorem 4.1, and observe the effect of
translations. Take a point p = (p1, - - -, pn) € IR" such that

7:=p:V(AK,)(0)>0. (5.3)
Consider the translation
Kp(y) = Ko(y—p) and wup:i=u,(y—p) for y e R". (5.4)
It follows that wu, satisfies the equation
na
Aty +on Kpup = =07 i TR™. (5.5)

In addition, u, has similar decay property as expressed in (1.2). We also have

“ —1 <éx, / Wy <CN.  (56)
ux0(y — l’) o (B, (0) R"\B,(p)

n-2

A L #
ux,p(Y) = ux0(y —p) = Y rv=r for y € R™

T



Man Chun Leung '% )

One obtains
e

[ wvr)uiTay

By (p)

/B (-0 vEJui™ dy+/ V)

i

S RCE R 2
By (p)
i dy.

al
g~ — gy

“dy
20 2,
up T — Uy,

dy

/ [y —p) v K u;,‘,, dy
By (p)

A
+f o vE)uTay- [ vkl
By (p) By (p)

'
We apply the Taylor expansion
1
Ky) = Kpp)+; Z(yx —pi) (Wi~ p; 6y;8; ()
(yi — pi) (U5 = Ps) (Y — P&) ——(11) +R(y),
3’ 1JZk 0yi0y;0yx
1 %K,
= Ko<01+52 b= p) 5 = 23) g ()

1 8K,
= N D (0 ) e () 3 1)
+a % = i) (43 = 25) 0k = P8) g o ) + R(y)
Here R is a smooth function with vanishing derivatives (up to at least third order) at

p. Asin (4.4),
=0 VEW) = T ;s =2i) (U — ) s (0)
+5 5050 = 2i) (U = 23) (i = 2#) e () (BT)
+y-p) VE@).
By the remainder theorem for Taylor’s expansions, we have
Ip- v Rl < Glly=»lP,
(5.8)
lw=p)-9RW)| < Cilly-pl|t for |ly —pll < p-
From (5.7), we also have




, QuBo Concentration of solutions of non-linear elliptic equations ... 13
[(y = p) - v Kp(®)| < Cally = plI*  for |ly—pll <p. (5.9)
Likewise,

P K@) = & Xy [pilys —ps) + 25 (i - p)] ke (0)
& S sk o (i = p) (e — pi) + (Wi —p) o (wk — i) (5.10)

3
+ (i — pi) (05 — P) 2] mylntyr 0) + P~ V R().
By symmetry,

"
[ w-mufma=o,
By (p)

(i = pi) (5 — ps u”(u)dy 0 for i#j,
By (p)

wepuli =1 [ rufFea  mee =y,
B;(p) By(p)

: y.—p;)(yj—Pj)(yk—m)u;“z,::(y)dy=0 for 1<, j, k<n.
By (p)

Similar to the proof of theorem 4.1, A K, (p) = A K,(0) = 0 and (5.8) imply that

Low-nvnda = [ fw-p-vrua
By (p) By (p)

IA

arctan (p/)
(RS i) / sin™*3 ¢ cos" S pdep.
0

In the above, if n = 3, we have
arctan (p/) arctan (p/A)
/ sin™*3 ¢ cos" % ¢ dp < / sec? ¢ dp = p/\.
0 0
Whiles n > 4, the situation is akin to (4.9). Hence
[ tw-p-o sy <o, (511)
By(p)

Assuming that (5.2) holds, it follows from (5.10) that

Ve oo
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Jo, (P 7 K () ]u;“,f (p)dy

= my—}fyj (0) x [, oy i (w5 = P3) (ke = Px) + (i = Pi) Pi (v = Pi)

= 2 s = ) e U )y = C fy =l uk (= Py

= & [0 5L () fi, Spils—pi? o2 () dy
(all three indices equal)

+ Ty B8 0) Jy 97 05—l S )

(exactly two indices equal) (5.12)

= fa,(/,) lly = ol w2 (= ) dy

= 1[0 P 0+ Do o O] f 05 = 20 o o
=C i, lly = 2I° u;'; (v)dy

= 3lp VAK) O] [, ) 5 = PP Ul p)dy— O S0l = Il ) dy

> Ll (§) X =Cadk
Here I,/ is defined as in (4.9). Simila;r]y,

S
R 2 3
Joy | = D) VIl [up™ —uii [ dy < Cs6X )

e

Jo,0) 1P VK| up? — u;‘; dy < CodN2,
where we use (5.6) and the estimate |p- K| < C7 [ly—p|| for y € By (p) . Using (4.3),
(5.10), (5.12) and (5.13) (compare also with the proof of theorem 4.1), we obtain a
contradiction when & and A are small enough. L}

6 Fourth order

One may ask what is likely to happen when A K(0) = || K(0)|| = 0?7 (Interesting
examples include A harmonic poly ials of higher degrees, see the next
section.) The method expounded in theorem 4.1 can be used to search for algebraic

relations on higher order derivatives of /&, cf. [21]. Here we continue with the fourth

order condition.
s W
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Theorem 6.1.  Forn > 5, Let K, be as in (1.2). Assume that || 7 K,(0)| =
AK(0) =0, and

T:=3 (i a;;;" (0)) + A2 K,(0) #0. (6.2)

i=1
Given positive constants C' and p, there ewist positive numbers cs and cg such that

for any positive smooth solution u, of equation (1.3) in the form of (1.2), the concen-
tration inequalities

el
ux,0 Bo(p)

cannot hold for X < ¢; and § < ¢g.

<N, / "%"dy<cx” (6.3)
IR"\B.(n)

Proof. We explore the main ideas in the proof of theorem 4. Starting with the case
that T > 0, consider the following Taylor expansion

o) = PK,
Ko(y) = K.(0)+ Z i ——— ay ay ,Z UiVt e ©)
94K,
+ 5 s ]ZZ‘ U e (0) + Bs (),

which implies that

i

oK, oK,
y- v Koly) ZJHJ]a 7 (0)+ Z y-y,yxm(ﬂ)

il 91K
s e 0 R,
t3 ; jgk ‘yd/;wy: ayay"ay‘ayl 0)+ y-VRs(y)-

Here
ly- v Rs@)| < Crlyl®  for |yl <p. (6.4)
As in the proof of theorem 4.1, by symmetry and the fact that AK,(0) = 0, we have

3°K, e £
o ( — R dy) =0,

/ J.J,mu”dy—o for 1<4, j, k<n,
Ba(p)

/ ViV Yt “,\ o Zdy=0 for i, j, k, | being all distinct,
B.(p)

/ Viuuk vl g dy=0 for j#k,

A0

]

/ y?yﬂtﬁd}/:(} for i#3j.
Ba(p)

V. N
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Assuming that (6.3) holds, it follows as in (4.7) that

S 9 Eo)ud = dy % ¢

1K, R 4 ne
23 [E- 5t (0) [, ¥ UR Ay + T Syzgsr 0) S, ) Y5 Ui dy] (65)
on n
~C20 [, MW uRs dy = s [ 0P u3T dy-

To compute the first two integrals in (6.5), let 6 be the angle to the yn-axis. That is,
Yn = |y| cos@. Set

o = /7c0s40sin“‘29d0— Sy
Rl e o T nn+2)’

o e ey e I.=37
I o= e s cos® @sin™ 0 df = _‘*—n(n+2) =" T Sk

Here we use the formulas

/‘ sin' cos™ A df = T_—l sin' 6 cos™ > 6.df,
0 m+l Jo

™
Wil = wn_z/ sin®~24.df,
o

where [ > 1, m > 2, n >3, and wn_y is the volume of the standard sphere $"=2.
It follows that

(3 » ™ A n
T e » 3 4 (0 gyn—2
/B»(m Yn Uy Ay /ﬂ [wn z/U (7 cos )" (rsin6) rd&] (/\2+r2) dr
@ & A4 s =2 A % n+3
= w,._g/o [/0 cos” 6 sin €d9J (W) redn
4 A B
= I"/n (/\2-;-72) (i

arctan (p/A)
= T / sin™* ¢ cos™ 5 ¢ dp
0

(using the substitution 7= A tan ¢).

p—
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On the other hand,
/ W2+ R ule dy
Ba(p)

3
= / VAR — )l dy

Bo(p)
L i 2 sin 0)2(r sin )2 r df sl
= /0 [u),,_g/ (7 cos 0)*(r sin6)*(rsin 6)" = r ] (W) dr
= (n—l)/( uvjuwdy (i#7)
JB,

e A n
:h}"vg/ (/ c<)sz9sin?€sin"’29d9> (—2——,) ™3 dp
o o NS
O B0 P T
i 00 50 = o

arctan (/)
=i / viv; u;"o'dy—JnA / sin"*? g cos" P g dp, i#j.
B (p)

Setting o =T Jn, we obtain
Je. W VKo Yui dy
> (g) A& frreten /D) inntS g cosn=5 ¢ dg — C2 8 [,y A [IvlI? u;"o- dy (6.7)
=G5 5.0 Illl® uf’? dy.
As in (4.8) and (4. 9)
e o e i Zdy DSt ele Gl R Caat=S glie €4 XY,
RN [ s Sl SRR i sin"“oﬁcos"‘sé < (O,

Here n > 5 and £ € (0, 1) is a positive constant. With (6.3), (6.7) and (6.8), we con-
clude as in the proof of theorem 4.1 that contradiction arises wl*en A and 4 are small

enough. The case T < 0 is similar. [ ]

i}

(6.8)

7 Homogeneous harmonic polynomials
Here we present some simple functions which satisfy the conditions in theorem 6.1.

Let
Qx(z) = ZC;..»-»,",‘ Ty T, (7.1)

be a h harmonic pol, ial of degree k > 2 in R™. It is shown in [20)
that Q satisfies the Kazdan-Warner type identity, namely,

[ x@yav, =0



Man Chun Leung

OB
7,1 (3005)
for any conformal Killing vector field X on S™

Assuming that the indices 1y,

i1, & n (7.1) are all smaller than n + 1
Consider the stereographic projection P from

S™ =z = (21, ugr) € RM | |2 =1}
to IR", with Cartesian coordinates (y, - - -, y»). It is given by
o = ﬁ:_; SRRl
T =

2
W}', 1<i<n, and .4 =422
Using P, we transfer Qj into IR and obtain

(12)
ylF+1

9 k
Qrly) = (W) zci,,---.ik Yir e

Yy - (7.3)
It follows that 7 Qx (0) = 0 (as k > 2). Moreover,
9 k
Ay Qrly) = (W) Ay (Z @ty "'yu)
ok+1 I
~ @+ [P Y G [y Ty @5 98]
22k(k+ Dl 2 kn
i { (1 + |jy]?)*+2 (1 F [[vlZ)FH ZC‘,,. Vi Yin 0 Ui
Qk+1 2

- T & Gt

2542k (k + 1) lyl2 _ 2*tlkn STt e
+[ @+ W)+ ‘UTWJ g
oy [E+2 =) [yl = (ot &
gk+1p [< e (lz)[}ﬁ;lg)k+g(n+ )] Q)

=

A, Qk(0) =
Likewise, 77, (A, Qx)(0) = 0 and A, (A, Qi)

:)(0) = 0. Here we make use of the fact
that Qy is a harmonic polynomial and @n41 is not present in Qk(z)

Using above, one can construct the desired functions. For instance, let Qy
be the homogeneous harmonic polynomial defined by
Qu(2) = o + 25 — 6 23

forz(€ SPE REHE
Using the stereographic projection, we obtain

4
2 L 21
L(y) = yd 4yt — 6
Qs(y) (1 ||]/||2) (i +v2 Yi¥a)

e |



L uso Concentration of solutions of non-linear elliptic equations ... 19

Let K, := 1+ Q4 in IR, We have

K, (0)=1>0, vK,(0) = 0, AK,0)=0, v(AK,)(0)=0,

1}

najla 4
but 3 (Z %y-Q,—‘ (0)) + A2 Q4 (0)

i=1

B
3(2 %‘%ﬂm) £0.

i=1

Received: July 2003. Revised: October 2003.
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