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ABSTRACT
We give a version of Erhling’s inequality for LP-Sobolev spaces H*? on R™,
~-0<8<00,1< P < o0, and use it to cslabllsh an analogue of the Agmon

Douglis-Nirenb lity for pseud perturbed by sin-
gulu po\cm.mls on L*(R"), 1 < p < oo. Applications to essential spccl.ra of
p Pt and strongly

ed by pseud

on LP(IR"), 1 < p < oo, are given.

RESUMEN

Entregamos una version de la desigualdad de Erhling para espacios LP-Sobolev
H'7 en R", ~o¢ < 8 € 00,1 € p < 00, y los usamos para establecer una
desigualdad andloga’a la de Agmon-Douglis-Nirenberg para operadores seudo-
diferenciales perturbados por potenciales singulares sobre LP(R™), 1 < p < oo
Se mucstran aplicaciones al espectro esencial de operadores seudo-diferenciales
y semigrupos de un p i d
scudo-diferenciales en LP(IR™), 1 < p < oco.
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1 Introduction
Let m € IR. Then we define §™ to be the set of all C* functions o on IR" x IR" such
that for all multi-indices o and g, there exist positive constants C,, g for which
(D2 D{o)(x, )l < Cop(1 + €)™, z.6€ R"
We call any function in S a symbol of order m. Let o € S™. Then the pseudo-

differential operator T, is defined on the Schwartz space S by

(Tye)a) = (2m) =2 /m" e"olx, F€)dE. z e R,

for all functions ¢ in S. where
o =m [ o, ceR.
-

It is casy to prove that T, maps S into S continuously. It can be shown that 7}, :
§ — S can be extended to a continuous linear mapping from S’ into S’, where &’
is the space of all tempered distributions. The well-known L?-boundedness result
states that if ¢ € $™, then T, : H*P — H*~™" is a bounded lincar operator for
—x < s<ooand 1 <p< oo, where H*7 is the L”-Sobolev space of order s defined

by
H = {ue S : J_ue L'(R")),

and J, is the pscudo-differential operator with symbol o, given by

ou(€) = (L+]€)~*/%, €eR™
)I( can be casily shown that H*# is a Banach space in which the norm |||, , is given
¥
E el = 1J-sully, € H?,
where || ], is the norm in LP(IR").

Let o € S™.m > 0. Then we say that the symbol o is clliptic or the pscudo-
differential operator T, is elliptic if there exist positive constants " and R such that

lo(z. )l 2 C(1+[EN™. (€] 2 R

(T R
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Using parametrices and the LP-t of pseudo-di i we can
prove the following anal of the celebrated Agmon-Douglis-Nirenberg i li
for psendo-differential operators. The origin of the inequality dates back to the study
of partial differential equations in [1].

Theorem 1.1 Let ¢ € 8™, m > 0, be an elliptic symbol. Then there exist positive
constants Cy and Cy such that

Cillellmp € 1 Topllop + lIellop < Colllimp. €S-

“The results hitherto described can be found in the book [18] by Wong. As an easy
and interesting corollary to Theorem 1.1, we give the following result.

Corollary 1.2 Let 0 € S™, m > 0, be an elliptic symbol and let V be a pseudo-
differential operator of order s, where s < m. Then there ezist positive constants C,
and C; such that

Cillellmp < I(To + V)elloy + lI¢llon < Collplmp, @ €S.

Proof Let V
a + 7 is an cllipt

where 7 € S*. Then the proof is complete if we can show that
symbol in S™. Indeed,

[o(z,€) + 7(x.€)| 2 |o(x,§)| = [7(z.€)l, x,6€R™
Since o is elliptic, there exist positive constants €' and R such that
o(z.€)l 2 C(L+{ED™, €] > R-
Since = € S*. there is a positive constant C such that
[r(@ &l < Ci(1 +[€)*, =6 €R™
Thus, for |§] > R, we get

lo(z.6) +7(z,€)] 2 C1+[gh™ - Cr(1+el)*
= (1+]Eh™(C -1 +1gh™™).

Since (14 1€])*"™ — 0 as [€| — o0, it follows that there exists a positive constant R,
such that

G+l < S, 2R
Thus, for |§] > max(R, R). we get
¢
lo(a.€) + (@, €)| 2 51+ €)™,

which is the same as saying that ¢ + 7 is an clliptic symbol of order m. L ]
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do-dif ial operators, there

of pse

Remark 1.3 In view of the L”-b
exists a positive constant C such that

IVellop < Cligllsp, 9 €S- (1.1)

The simple proof of Corollary 1.2 is due to the fact that V is also a pseudo-differential
operator of the same kind as 7. It is an interesting problem to seek an analogue of
Corollary 1.2 in which the operator V satisfies (1.1) and the corresponding symbol
has some singularities in z.

We give a solution to the problem alluded to in Remark 1.3 for the case when the
linear operator in (1.1) is identified with the multiplication by a measurable function
V on IR" such that there exists a positive constant C' for which

Vellop < Cligllsp, ¢ €S-

To see les of such it with si ities, let M, , be the set of all mea-
surable functions V on IR" such that
1/p
Map(V) = sup { [ we- ynvua(:m} <o, (12)
ver" | Jjzi<1

where 1 < p < 00, a > 0 and

(ol 0<a<n,
wa(®) = 4§ 1-In|z|? a=n,
1 a>n.

Let s > a/p. Then, as a special case of Theorem 7.1 in Chapter 6 of the book [10] by
Schechter, there exists a positive constant C' depending only on a, s, p and n such
that for all functions V' in M, ,,

IVellop < CMap(V)ligllsp, ¥ €S. (1.3)
Moreover, if
tim [ Viz-y)Pua(e)dz =0, (14)
Ivl=0 Jjz1<1
then by Lemma 9.1 in Chapter 6 of the book [10] by Schechter, the multiplication by
V' is a compact operator from H*” into L”(IR").

Theorem 1.4 Let 0 € S™, m > 0. be an elliptic symbol and let V be a measurable
function on IR™ such that there exists a positie constant C for which

IVellop < Cligllap, €S,
where s < m. Then there exist positive constants Cy and C such that

Cillellmp < (7o + V)ellos + lI¢llop < Callglmp, veS
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To prove Theorem 1.4, we use a version of Erhling’s inequality for H*?, —co <
5 < 50,1 < p < o0, in the Ph.D. dissertation [5] by Iancu. To make the paper self-
contained, we state the inequality and give a more streamlined proof in Section 2.
Erhling’s inequality for H*?, —00 < s < oo, tells us that if s < t, then H%2 c H*?
and for every positive number ¢, there exists a positive constant C. such that

llells2 < ellellea + Cellelloz, w €S-

The proof is very easy because the Plancherel theorem for the Fourier transform on
L*(R") gives a characterization of H*? as

H? = {ue s : (1+]- )i e (R")

and

172
fabe ={ [ 0+ lePriuera)  wens

The proof of Theorem 1.4 is given in Section 3. The usefulness of Erhling’s inequality
is amplified by an application to essential spectra of pseudo-differential operators
on [(R"). 1 < p < do, given in Section 4 and another application to strongly
continuous one-parameter igroup: d by pses ffe ial operators on
L?(R"), 1 < p < o0, in Section 5.

2 Erhling’s Inequality for H°?, —00 < s < 00,1 < p < 00

Theorem 2.1 Let 1 € p < oo and0 < s < t. Then for every positive number ¢, there
exists a positive constant C, such that

llellsp < ellelles + Cellollop, €S-

Proof Let s be a positive number and let ¢ € S. Then, as has been shown in Chapter
11 of the book [18] by Wong,

Jup = (2m)"*(Gy v ),

where

Gula) = 1 v ~lz/2r_—(n-s)/24T cR"
Tz -—2'/7[‘(%) s e "% T =i = i
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Then
@ = @ [ Gwpe-nd
s

(Zvr)—"/?/ /°° /2=l /2r, -(,.—a)/2

e ) —y)di

TE) e U Pl —y)dy
e (Cm)ERE 15 —r/2,5/2 / =n/2p=ll*/2r 0 &
S T IS wlz—y)dy; —

om)=n/2 e i i
= Mﬁ ARG OE R
2
where 5
o) = =22 g e RY

Let 4 be a positive number. Then we can write

—-n/2
(L)) = ZZZ)F {(/ / ) Tl 4 o) (o

for all 2 in IR". By Minkowski's incquality in integral form, we get

n/2 5
sl < 2(3,7;)1“ {(/ / )8”’2r"’llwrtwll,’d¢}. (21)

Now. using Young's incqualimy and

el = (2m)/2, (22)
we get
5 5
Pty E = [ ol &
0
= @ / L),
2}
< @0 2SE el (2.3)

On the other hand, we get

[Ty, ol
) :

2 d;
= [y e T

[ e )+ e

o e d;
[ e (2.4)

In

(T
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Using the relationship between the Bessel potential and the Riesz potential given by
Part (i) in Lemma 2 on Page 133 of the book (12] by Stein, there exists a positive
constant K such that

19-ctrelly < K(-chells + 19rll2), >0, (25)

where /- is the Riesz potential defined by
(I-p)(@) = (2m)~"/* /m" =l p(e)de, = e R™,
for all ¢ in 8. Now, we note that for » > 0 and all z in R™,
(@), = ™ [ =i de
= n [ emege Hag
= e [ e g
Hence for r > 0,

W=l = =2 el (29)
\ Therefore, by (2.2), (2.4), (2.5) and (2.6), there exists a positive constant C such that

i
[ ey ol
5 T
5
< o[ errong s L),
! -

s 2
¢ (2 (3) + 2250007 el @9

So. by (2.1), (2.3) and (2.7), we get

In

ool s 25 s/2p (2
vl < e {2 1oty + 0 (2770 (3) +

E=15]

97 Nl .

Hence, for every positive number €, we can choose § such that

1

ShE/ae
AT (3) 26 <e

Thus. for this choice of §, there exists a positive number C, such that

selly < ellelly + Cell el
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Therefore for every positive number &, there exists a positive number €, such that

lleley = I-sllp = Ie-sd=ellp < ellJ-t@llp + CellJed=eioll,
= ellgllep+ Cellells, v€S.

Using a simple density argument, we can extend Erhling’s inequality from Schwartz
functions to functions in LP-Sobolev spaces.

Corollary 2.2 For 1 < p < o0 and 0 < s < t, we have H*? C H*?. Moreover, for
every positive number ¢, there exists a positive number C, such that

lullap < ellullep + Cellullop, ue H*.

3 Proof of Theorem 1.4

To prove Theorem 1.4, let ¢ € S. Using the inequality in the hypothesis and the
Agmon- Douglis-Nirenberg inequality in Theorem 1.1, we get

(75 + V)elloy +lielor < NIToellop + IVelos + lello,
< NTe¢llop + Cliellap + llellon
<

(C2+ O)lgllm.p
On the other hand, for gvery positive number ¢, we can use Erhling’s inequality in
Theorem 2.1 to get a positive constant C, such that
I(Te + V)elow 2 ITowllor = IVellos 2 ITepllop = Cliellsp
2 | To¢llos = ellelimp = Cellpllos-
So, using the first half of the Agmon Douglis-Nirenberg inequality in Theorem 1.1,
we get
I(Ts + V)elloy 2 (Cr = )l@llmp = (Ce + Doy
and the proof is complete if we choose £ < Cy.
Remark 3.1 We obscrve that the proof of Theorem 1.4 does not depend on the

fact that V' is a multiplication operator. In fact, Theorem 1.4 is valid for any lincar
operator V from § into LY(IR") satisfying (1.1).

4 An Application: Essential Spectra
Let o € $™, m > 0, be an clliptic symbol. Following the approach in Browder
[2]. Hormander (4], Kato [6], Schechter [9, 10, 11], Vishik [13] and Wong (18], we

look at the pseudo-differential operator 7, as a linear operator from 17(R") into
LP*(R"). 1 < p < oo, with dense domain S. Then we denote the minimal operator of
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T, : § — LP(R") by Ty 0. To recall, a function u in LP(IR™) is in the domain p(T,_P)
of Ty and T, ou = [ if and only if there exists a sequence (w,-);?';,. of functions in
S such that ¢; — u and Top; — f in LP(R") as j — co. Then, using the Agm:r;—
Douglis-Nirenberg inequality in Theorem 1.1, we can prove SHALFD(T2 ) = HTP.
Details can be found in the works [14, 18] by Wong. -

Let V be a measurable function on R™. Then we can look at the multiplication
operator D(V) 3 u— Vu € LP(R"), where the domain D(V) is given by

D(V) = {ue LP(R"): Vu € LP(R")}.
It is an casy matter to prove that V : D(V) — LP(IR") is a closed lincar operator.

Theorem 4.1 Let 0 € S™ m > 0, be an elliptic symbol. Let V be a measurable
function on R" such that the multiplication operator V : H*? — LP(R"). s <m, is
compact. Then Ty + V : H™P — LP(R") is a closed linear operator such that

Be(Too +V) = Ze(To0),

where the notation ¥,(A) is used to denote the essential spectrum of a closed linear
operator A from a complex Banach space X into X.

Remark 4.2 Let us recall that $.(A) = €\ ®(A), where ®(A) is the set of all
complex numbers A for which A — A/ is Fredholm with zero index. This notion of
the essential spectrum is due to Schechter [9] and explained in details in the books
[10, 11} by Schechter. E les of functions V' satisfying the hypothesis of Theorem
1.1 are given by (1.2) and (1.4). Information about the essential spectrum X (T5,0)
can be found in the papers 15, 17) by Wong.

I prove Theorem 4.1, we need an extension of Theorem 1.4 from Schwartz func-
tions to functions in H™?,

Theorem 4.3 Under the hypotheses of Theorem 1.4, there exist positive constants
€y and C; such that

Cillullmp < (Too + Viullop + llullop < Callullmp, e H™P.
Proof Let w & H™P. Then thero exists a sequence {; 32, of functions in S such
lI'm: @y = win ™7 as j — oco. Using the second half of the Agmon-Douglis-
Nirenberg inequality in Theorem 1.1, Typj = Toou in LP(IR™) as j — co. Now,
Vs = Viprllop < Clig; = @kllap < Clig; = prllmp — 0

)k = 0080, Vip; = v for some v in LP(IR") as j — c0. Since V' : D(V) — LP(IR™)
is closed. we get Vu = v, By the Agmon-Douglis-Nirenberg inequality in Theorem
1.4, we have for j =1,2,...,

Cillgsllmp < W(To + V)psllop < Callgsllmp,
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and the proof is complete if we let j — oo. | ]

Proof of Theorem 4.1 To prove that T, o+ V : H™» — [P(IR™) is a closed linear
operator, let (u_,) >, be a sequence of functions in D(T, o + V) = H™? such that
u; — uand (Ty 0+ V)uj — v in LP(R") as j — oo. By the L”-boundedness result
for pseudo-differential operators, there exists a positive constant €’ such that

I Tousllon < C'llwsllmps G=1.2,....

Hence, by the first half of the Agmon-Douglis-Nirenberg inequality in Theorem 4.3,

175 0wsllop < C_.(“(Tvﬂ +WV)usllop + lusllop), 7=1,2,....

So, T, gu; — w for some w n-TP(IR") as j — co. Since T, g is closed, u € D(T,9) C
D(V) and T, yu = w. Thus, Vu; — v —w in L”(IR") as j — oo. Since V' is closed,
we get Vu = v — w and consequently,

(Too+ Vu=w+(v-w)=v.
Thercfore T, o+ V + H™P — LP(IR") is closed. Since V' : H*# — [P(IR") is compact.

it follows that V : H™?» — LP(IR") is compact. Since the essential spectrum is
invariant with respect to relatively compact perturbations, the proof is complete.

5 Another Application: One-Parameter Semigroups

Let us begin with an explicit semi-inner-product (, ) in LP(IR"), 1 < p < oo, which
is compatible with the norm || ||, in L”(IR").

Theorem 5.1 The Banach space LP(IR"). 1 < p < oo, has a semi-inner-product (, )
compatible wth the norm || ||, in LP(IR") given by

(9= [ S@T@

where
9 9(@)lg@)IP~*/Nlgl;™2,  9(x) #0,
9" (x) =
0, g(z)=o0.

See the paper [7] by Lumer for the notion and propertics of a semi-inner-product,
Dissipative operators on Banach spaces defined in terms of semi-inner-products can
be found in the paper (8] by Lumer and Phillips. To sce an example of a dissipative
operator, let V € LY, (IR"),1 < p < co. Then, by Theorem 5.3 in Wong [16], the
multiplication operator V : D(V) — LP(IR") is dissipative if and only if Re V(x) < 0
for almost all 4 in R"

The following result is the same as Corollary 3.8 in the book [3] by Davies.

T
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Theorem 5.2 Let X be a complex Banach space in which the norm is denoted by || ||.
Let A be the inf lg of a one-p ter strongly i semigroup
of contractions on a complex Banach space X. Let B be a dissipative operator such
that there exist positive numbers a and C for which a < 1 and

[|Bz| < al | + Cllzll, = € D(A).

Then A+ B 1s the lg of a
semigroup of contractions on X.

o strongly

Theorem 5.3 Let a € S™, m > n/p, be an elliptic symbol such that T, is the
nfinitesimal generator of a strongly continuous semigroup of contractions on LP(IR™),
| < p<oc. LetV be a measurable function on IR" such that Re V(z) < 0 for almost
all 7 in R and M, (V) < 0o, where My (V) is defined by (1.2). Then Ty + V.
i the mfinatesimal g of a P strongly i

contractions on LP(R"), 1 < p < 00.

group of
Proof Let s € (n/p,m). Then, by (1.3),
Vullop € Map(V) llullsp, ue H*P.

Lot « & (0,1). Then, by Erhling's inequality in Corollary 2.2, we can get a positive
constant (', such that

[Vullop < (| Tooullop + llullop) + Cellullop, we H™P.

Hence, by Theorem 5.2, the proof is complete.

Received; January 2005. Revised: March 2005.
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