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ABSTRACT
Time dependent quadratic Hamlltomms are well known as well in classical
mechanics as in quantum In icular for them the d

between classical and quantum mechanics is exact. But explicit formulas are
non trivial (like the Mchler formula). Moreover, a good knowlege of quadratic
Hlml.llomlnu is very uacful in l,hc study of more mner-l q\u.nmm Hamiltonians
and in the i

Our goal here is to give our own presentation of this important suh)cct We put
emphasis on computations with Gaussian coherent states. Our main motivation
to do that is appli ing revivals and Loschmidt echo.

RESUMEN
Los hamilt Irati i del tiempo son bien conocidos en
Ia mecanica cldsica y I|\ mecdnica cudntica. En particular se tiene una corre-
spondencia exacta, pero 1o son triviales las formulas explicitas como la férmula
de Meller. Ademis. un i mayor de los | i cuadriticos
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es muy 1til en el estudio de icos mds g asf como las
ecuaciones de odi; das en el régimen Nuestra meta
es entregar nuestra propia representacién de este hecho importante. Ponemos
énfasis en los cdlculos de los estados coherentes gaussianos. Nuestra mayor mo-
tivacion para hacer todo esto es la aplicacién referente a las i yel
eco de Loschmidt.

Key words and phrases:  metaplectic representation, coherent states, Weyl

symbols, Wigner transform, Maslov indez.
Math. Subj. Class.: 95Q40, 81Q20.

1 Introduction

This paper is a survey concerning exact useful formulas for time dependent Schrodinger
equations with quadratic Hamiltonians in the phase space. One of our motivations is
to give a detailed proof for the computation of the Weyl symbol of the propagator.
This formula was used recently by Melhig-Wilkinson [17] to suggest a simpler proof
of the Gutzwiller trace formula [3]

There exist many papers
mulas. In 1926, Schrédinger [21] has already remarked that quantification of the
harmonic (or Planck) oscillator is exact.

The best known result in this field is certainly the Melher formula for the harmonic
oscillator (see for example [5]).

Quadratic Hamiltonians are very important in partial dlﬂ'erem.lal equations on
one side because they give non trivial of wave p! and
in quantum mechanics and on the otherside the propagazion of coherent states by
general classes of Hamiltonians, mcludmg —R2A + V can be approximated modulo

iratic Hamiltonians and exact for-

O(h=) by luti of quadratic time d d il i [1, 19, 14].
In his works on pseudcdlﬂ'erenua] calculus A. Unterberger in 122 23] has given
several explicit formulas ing harmonic oscill, G it ions and the

symplectic group. This subject was also studied in [8, 13, 12). More recently de
Gosson (9] has given a different approch for a rigorous proof of the Melhig-Wilkinson
formula for metaploctic operators, using his previous works on symplectic geometry
and the metaplectic group.

Here we shall hasis on time d 3
Caherent States. It is well known and clear that this approach is in the heart of the
subject and was more or less present in all papers on quantum quadratic Hamiltoni-
. In this survey, we want to give our own presentation of the subject and cover

1 iratic Schrodi equation and Gaussian

a

n
most of results appearing in particular [13, 7). .
Our main motivation to revisit this subject was to prepare useful tools for applica-
tions to revivals and quantum Loschmidt echo [2]. We shall sce that in our approach

ae 0
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computations are rather natural direct and explicit.

2  Weyl quantization. Facts and Notations

Let us first recall some well known facts concerning Weyl quantization (for more
details see [11, 18]).

The Planck constant & > 0 is fixed (it is enough to assume A = 1 in the homogencous
quadratic case).

The Weyl quantization is a continuous linear map, denoted by e or by Op", defined
on the temperate Schwartz space distribution 8'(R?") into £,(S(R"), S'(R")) where
L,(E, F) denotes the linear space of continuous linear map from the linear topological
E into the linear topological I with the weak topology.

R*" is a symplectic linear space with the canonical symplectic form o(X,Y) = JX .Y

where J is defined by
ot (it Ve 0
i ( B
and 1, denotes the identity n x n matrix.
Let us introduce the symplectic group Sp(2n): it is the set of linear transformations
of R*" preserving the 2-form o.

For X € R*. we denote X = (¢.p) € R" x R™.
The Weyl quantization is uniquely determined by the following conditions:

(WO) A A is continuous.

(W1) (q)(a) = qu(a), (B¥)(a) = Dyvla), (Dg = 52)
for every ¢ € S(R").

(W2) expli(a - g+ 8- p)) = expli(a-G+B-p), V¥a,8€R"

Let us remark that o - ¢+ 8- j is self-adjoint on L*(R™) so, expli(a -4+ - p)] is
unitary. In particular, if 2 = (x,€) then

(e) = exply (€ -4 - x-5)]

is the quantized translation by z in the phase space (Weyl operators).
From (W1). (W2), using continuity and A-Fourier transform, defined by

Z(\'):/ e~ KXY A(X)dX
an
we have A
A= (2111)4"/ /i(u.u)oxp(%(u-,;w §)ldadg (2.1)
o

In general, equality (2.1) is only defined in a weak sense i e through the dualily bracket
botween §* and 8. < Ay, ¥ > for arbitrary ,y € S(R").

T e
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Definition 2.1 A is the Weyl contravariant symbol of A if they are related through

the formula (2.1).
Using the explicit action of Weyl operators on S(R™) and Fourier analysis, we get

the following formula (see [11, 18])
()@ = ey [ oolie-n-4 (Tphe) s, @)

In particular, if K4 denotes the Schwartz kernel of A, we have
Alg,p) = /R exp[—;iu‘pllﬂ (s+50-3)du

These formulas are true in the distribution sense in general, and pointwise if A is
smoothing cnough ( surely if for example A € S(R*")).

Let us remark that they are consistent and that A — A is a bijection from S'(R*")
into £,.(S(R"),S'(R")). In particular we have the following inversion formula
Proposition 2.2 For every A € £,(S(R"), 8'(R")), there ezists a unique contravari-
ant Weyl symbol A € S'(R*") given by the following formula

A(X) = 2" Tx[AS,m (X))

(23)

(24)

where Sy, (X) is the unitary operator in L*(R™) defined by
Sym(X)ip(q) = (wh) e E=D (22 — g)

for X = (z.€).
Sketch of proof:
We first prove the formula for A € £,,(S'(R"), S(R")). The general case follows

by duality and density.
We start with the following formula, casy to prove if 4, B € S(R*"),

TY[AB] = (21rh)"‘/ A(X)B(X)dX (2.5)
ran

Assume now that B is a bounded operator in L2(R™). The Weyl symbol B of B

satisfies: 5
TYAB) = (27h)™" < A, B >? (2.6)

we have to check that the Weyl symbol of Sym(X) is (wh)"6x where dx is the Dirac

mass in X.
To prove that lct us consider any ¢ € S(R") and denote by W, the Weyl symbol
We shall

the bracket <,> denotes the usual bilinear form (integral or distribution pairing)
denote (efs) the Hermitean sesquilinear form on Hilbert spaces, linear in the second argument
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of the projector ¢ =< 1, > p. W, is called the Wigner function of ¢. A direct
computation using (2.3) gives

Wo(ap) = /R cxp[-%u “Plelg + %)w(q & ;)du

We get the proposition applying formula (2.6) with B = Sym(X) and A
We shall see later that it may be convenient to introduce the covmmnc Weyl
symbol for A which has a nice ion with Weyl translati

Proposition 2.3 For every A € £,,(S(R*), 8'(R?")) there exists a unigue temperate
distribution A* on R*", named covariant Weyl symbol of A, such that

= (2mh)™" /n A*(X)T(X)dX (2.7)
Moreover we have the inverse formula
AM(X) = Te[AT(- X)) (2.8)
( As above, if A is not trace-class, this formula has to be interpreted in a weak distri-
bution sense)
The covariant and contravariant Weyl symbols are related with the following formula
AM(X) = (2rh) " A(JX). (2.9)
Ao J is named the symplectic Fourier transform of A
Proof. These properties are not difficult to prove following for example [20]. L]
We define the (usual) Gaussian coherent states . as follows:
=T(z)po, VzeR™ (2.10)

where !
po(a) = (wh)~/tem /2 1)

We get the following uscful formula for the mean value of obscrvables:

Corollary 2.4 With the above notations, for every p, ¥ € S(R"), we have

(oldv) = (2t [ ARCO(IT(X)0)dX (212)
L.
In particular for Gaussian Coherent States, we have
4 L=y 3
(pelAg) = (2m1)™" /l A#(X)oxp ('—m— & ﬁa(.\'.:)) AX (213
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Proof. The first formula is a direct consequence of definition for covariant symbols.
The second formula is a consequence of the first and the following easy to prove

equalities
P3P ( 2 io "\ 7 7

TRT(E) = exp(ﬁ(z.z))T(uz) (2.14)

(p=lpo) = o (2.15)

[]

For later use let us recall the following

Definition 2.5 Let be A, Be Ly,(S(R™),S'(R™)) such that the operator composition
AB is well defined. Then the Moyal product of A and B is the unique A#B € S'(R*")
such that o e PN

AB = A#B (2.16)
For details concerning computations rules and properties of Moyal products see [11,
18].

3 Time evolution of Quadratic Hamiltonians

fioa g dent Hamil

In this section we consider a
Hi(2) = ¥y < k<an Cik ()2 2k, with real and continuous coefficients ¢; k(t), defined on

the whole rcaf line for simplicity. It is convenient to consider the symplectic splitting
z=(g,p) € R" x R" and to write down H(z) as

1
Hi(,p) = 5(Geg-q+2Lg-p+ Kep-p)

where Ky, L, Gy arc real n x n matrices, K; and G, being symmetric.
The classical motion in the phase space is given by the linear equation

] Ge LT \ (4
| = o .17,
(,,) (L, K )\ » @17
where L7 is the transposed matrix of L. This equation defines a flow, £ (lincar
symplectic transformations) such that #y = 1. On the quantum side, H, is a family
of self-adjoint operators on the Hilbert space H = L?(R™) (this will be proved later).
The quantum cvolution follows the Schrédinger equation, starting with an initial state
pEH.

2 = T, o =9 (3.18)

Suppose that we have proved existence and uniqueness for solution of (3.18), we write
U = Uyp. The correspondence between the classical evolution and quantum evolution
is exact. For every A € S(R*"), we have
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Proposition 3.1 < Punlind
U,.AU = AR, (3.19)
Sketch of proof:
For any quadratic Weyl symbol B we have the exact formula
%[E,Iﬂ= (B, A) (3.20)

where (8,4} = VB - JVA denote the Poisson bracket, and [B, A] = B.A - A.B is
the Moyal bracket. So we can prove Proposition (3.1) by taking derivative in time
and using (3.20) (sce [18] for more details). [ ]
Now we want to P licitly the Upye in terms of
classical evolution of H,. !
One approach is to compute the time evolution of Gaussian coherent states, Uy, 1oz,
or in other word to solve the Schrodinger equation (3.18) with » = ., the Gaussian
coherent state in z € R". Let us recall that ¢, = T(z)po and go(z) = (wh)~"/*

oxp (FH5).

4 Time evolution of Coherent States

The coherent states system {, }.eres introduced before is a very convenient tool to
analyze properties of operators in L*(IR") and their Schwartz distribution kernel. To
understand that let us underline the following consequence of the Plancherel Formula
for the Fourier transform. In all this section we assume h = 1. For every u € L*(IR")
we have

/ Ju(a)2de = (21')-"[ [, 02 Pdz (1.21)
mo R

Let R be some continuous lincar operator from S(IR") into S'(IR") and Kp its
Schwartz distribution kernel. By an easy computation, we get the following rep-
resentation formula

Kp(x,y) = (21)"‘/mh(f?w.-)(t)wa(y)d: (4.22)

In other words we have the following continuous resolution of the Schwartz distribution
kernel of the identity

8a =)= n [ pueimm
Ran
This formula explains why the Gaussian coherent system may be an efficient tool for
analysis of operators on the Euclidean space IR™.

Let us consider first the harmonie oscillator

(4.23)
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It is well known that for ¢ # kr, k € Z the quantum propagator e~*# has an explicit
Schwartz kernel K (t;z,y) (Mehler formula). 2

It is easier to compute with the coherent states @.. g is an eigenstate of H, so we
have

e~ ith gy = e~y (4.24)

Let us compute e~ Vz € IR?, with the following ansatz

c'“”v: = T (z)e~ 2y (4.25)
where z; = (gi,p¢) is the generic point on the classical trajectory (a circle here),
coming from = at time ¢ = 0. Let be . the state equal to the r.h.s in (4.25), and
let us compute 6;(z) such that 1. satisfies the equation ifo = Hp  ¢liao = U,z

We have |
Pz )u(z) = elP==aP/Du(z - q)

and
. (@) = O —t/24piE—ae/) oo (2 — ) (4.26)
So. after some computations left to the reader, using properties of the classical tra-
jectories
Q= po=-a, PG =P+

the equation

i 01a(2) = 302 + 2 hale) (421)
is satisfied if and only if
&(z) = %(m: - P9) (4.28)
L}
Let us now introduce the following general ions for later use.

Fy is the classical flow with initial time ty = 0 and final time ¢. It is represented as a
2n x 2n matrix which can be written as four n x n blocks :

I A B
F“(c: o ) (4.29)

Let us introduce the following squeezed states. @' is defined as follows.

¢F(z) = arexp ( ﬁrz 1 z) (4.30)

where ' € £, 8, is the Sicgel space of complex, symmetric matrices T' such that
3(I') is positive and non degenerate and ar € C is such that the L%-norm of »" iy
one.

We also denote ¢ = T(z)e".

For I’ = i1, we denote p = 't
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Theorem 4.1 We have the following formulae, for every = € R™ and z € R*",
U (@) = ¢"(a) (4.31)
Upl(z) = T(Fz)e™(z) (4.32)
where Uy = (Cy + iDT)(A +iB,)~" and ar, = ar (det(A; + iB,I")™"/2,
Beginning of the proof
The first formula can be proven by the ansatz

Urpo(w) = a(t) exp ('zl—nl"gz . .z)

where I'; € £, and a(?) is a complex valued time dependent function. We first get a
Riceati equation to compute I'y and a linear equation to compute a(t).

The second formula is easy to prove from the first, using the Weyl translation opera-
tors and the following known property

0:7(2)0; = T(Fez).
Let us now give the details of the proof for z = 0.

We begin by computing. the action of a quadratic Hamiltonian on a Gaussian (h =
1).

Lemma 4.2
Lz Dyed™% = (LTz Tz - %nL)c%“ =

Proof This is a straightforward computation, using

il z; D¢ + Dizy
Lo Dy == Z b
1<5k<n

and, for w € R",
(w.Dg)ed ™™= = (Tz - w)ed ™=

Lemma 4.3
(GDy - D;)ed™* = (Glz - T'z — {Tx(CT)) i+
Proof. As above, we got
Hed™ = = (%m x4+ LTz + %cr; Tz - %Tr(l, - cr)) o )
We are now ready to solve the equation

9 :
Hv= Hy (4.34)
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with h
Blizo(e) = g(a) i= (2m) e~ /2.

We try the ansatz

¥(t,z) = aft)et" == (4.35)

which gives the equations
I, = -K-2ITL-T.Gr, (4.36)
) = ~3 @r(L+GT) /() (@31)

with the initial conditions
To =il, a(0) = (2m)~"/?
Remark: I'7L et LT determine the same quadratic forms. So the first equation is a
Ricatti equation and can be written as
[y = —K =T.LT ='LF; =T,GT,, (4.38)

where LT denotes the transposed matrix for L. We shall now see that equation (4.38)
can be solved using Hamilton equation

3 KL
F o= J(LT G)F} (4.39)

Fo =1 (4.40)

L A
nf(c- Dx)

is a symplectic matrix Vi. So we have det(A, + iB;) # 0 Vit (see below). Let us
denote

‘We know that

M, = A, +iB,, Ny=C,+iD, (4.41)
We shall prove that T, = N;M;"!. By an easy computation, we get

M, = LM, +GN,

N, = —KM,-LN, (4.42)
Now, compute
{ ! ;
;—l(/\',M,") = NM™ = NM~ MM
= -K-LNM™'-NM~(LTM +GN)M™"
= —K-LNM™' - NM™ LT - NM-'GNM~'  (4.43)

(T
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which is exactly equation (4.38).
Now we compute a(t), using the following equality,

T (LT + G(C +iD)(A +iB)™") = Tt(M)M ' = Tr (L + GT)
using TrL = TrL”. Let us recall the Liouville formula
d ’
7 log(det My) = Te(M, M, ") (4.44)

which give directly
a(t) = (2r)~"/2 (det(A, +iBy)) /2 (4.45)
To complete the proof, we need to prove the following

Lemma 4.4 Let S be a.symplectic matriz.

s=(¢5)

Then det(A +iB) # 0 and S(C +iD)(A +iB)~! is positive definite.

We shall prove a more general result concerning the Siegel space %,.

A B
e
is a symplectic matriz and Z € I, then A+BZ et C+DZ are non singular and
(C+DZ)(A+BZ) ‘ez,

Lemma 4.5 If

Proof. Let us denote E := A+ BZ, F :=C+ DZ. F is symplectic, so we have
FTJF = J. Using
=8 2 )
T e z

(ET,FT)J( = ) < (I,Z)J( 2 ) -0 (4.46)

we get

which gives
ETF="FTF'

In the same way, we have

zem s § ) =guarr( }) (@an
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We get the following equation

FTE - BTF =232 (4.48)
Because SZ is non degenerate, from (5.68), we get that E and F are injective. If
z € C", Ex =0, we have ; 5
Bz = zTBT =0

hence
2782z =0

then 2 :

So, we can define,

a(8)Z = (C+ DZ)(A+ BZ)™* (4.49)

Let us prove that a(S) € £,. We have:

a(M)Z = FE™' = (o(M)2)" = (E™")"FT = (B-")TE"FE™ = FE' = o(M)Z.

We have also: Sl e e

Tl B S LA e ol R B
2 %

and this proves that S(a(M)) is positive and non degenerate.

This finishes the proof of the Theorem for z =0 .

Remark 4.6 For a different proof of formula (4.31), using the usual approach of the
metaplectic group, see the book [8].

The family {.}.exen spans all of L*(R™) (see for ezemple [19] for properties of the
Fourier-Bargmann transform) so formula (4.31) wholly determines the unitary group
l‘/,v In particular it results that E is a unitary operator and that H, has a unique
self-adjoint extension in L2(R™). This is left as ezercises for the reader.

Remark 4.7 The map S — a(S) defines a representation of the symplectic group
Sp(2n) in the Sicgel space Tn. It is easy to prove that a(S1Sz) = a(S))a(S). This
representation is transitive. Many other properties of this representation are studied

in (16].

5 The metaplectic group and Weyl symbols compu-
tation

A metaplectic transformation iated with a linear symplectic tranformation F €
Sp(2n) in R?", is a unitary operator R(F) in L?(R™) satisfying one of the following
cquivalent conditions

R(F)'AR(F) = @AoP. VAeS(R™) (5.50)

R(F)'T(X)R(F) = T[F7'(X)], YX e R*" (5.51)
R(F)'AR(F) = AoF,

for A(q.p) =q;,1<j<n and A(gp)=pe.1<k<n (5.52)

(T
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We shall see below that for every F € Sp(2n) there exists a metaplectic transforma-
tion R(F).

Let us remark that if Ry (F) and R3(F) are two metaplectic operators associated to the
same symplectic map F then there exists A € C, |\| = 1, such that Ry (F) = ARy (F).
It is also required that F — R(F) defines a projective representation of the real
symplectic group Sp(2n) with sign indetermination only. More precisely, let us de-
note by Mp(n) the group of metaplectic transformations and m, the natural projec-
tion: M, — Sp(2n) then the lecti fon is a group h
Fres R(F) from Sp(2n) onto Mp(n)/{1, 71) such that m,[R(F)] = F, VF € Sp(2n)
(for more details concerning the metaplectic representation see [15]). We shall show
here that this can be achieved straightforward using Theorem 4.1.

For every F' € Sp(2n) we can find a C'- smooth curve F, t € [0,1], in Sp(2n),
such that [, = 1 and Fy = F. An explicit way to do that is to use the polar decom-
position of F, F = V|F| where V is a symplectic orthogonal matrix and |F| = VFTF
is positive symplectic matrix. Each of these matrices have a logarithm, so F = /el
with K. L Hamiltonian matrices, and we can choose F; = e'fetl. Any way, I},
is clearly the linear flow defined by the quadratic Hamiltonian Hi(z) = 1Sz - z
where S¢ = —JEF,". So using above results, we define R(F) = 0. From this def-
inition and Theorem 4.1 we can easily recover the usual properties of the metaplectic
representation.

Proposition 5.1 Let us consider two symplectic paths F; and F] joining 1 (t = 0)
to F (t =1). Then we have Uy = :t[/’ (with obvious notations).
Moreover, if F', F2 € Sp(2n) then we have

R(FY)R(F?) = +R(F'F?).

Proof. Using (4.31) we see that the phase shift between the two paths comes from
variation of argument between 0 and 1 of the complex numbers b(t) = det(A, + iB;)
and b'(t) = det(A} +iB}).

We have arg[b(t)] = & (u‘ :'j ds) and it is well known (see Lemma (5.4) below and

its proof) that
¢ b(s) b(s)
“(u [6) ) °<n Vo) )”"”

with N € Z. So we get
b(1)™V/2 = iV (1)=1/2

The second part of the proposition is an easy consequence of Theorem 4.1 concerning
propagation of squeczed coherent states with little computations.

In a recent paper [17] the authors use a nice explicit formula for the Weyl symbol of
metaplectic operators R(F). In what follows we detail a rigorous proof of this formula

‘m
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including computation of the phase factor. In principle we could use Theorem 4.1 to
compute the Weyl symbol of the propagator Uy, .. But in this approach it seems
difficult to compute phase factors (Maslov- Conley-Zehnder index).

For technical reason, It is easier for us to compute first the contravariant Weyl symbol,
Uy, for the propagator U, defined by H,. In any case, U, is a Schwartz temperate
distribution on the phase space R?".

We follow the approach used in Fedosov [7].

It is enough to assume h = 1. In a first step we shall solve the following problem

‘%ﬁf & ﬁtl/]}
g =T (5.53)

where 1° is a smoothing family of operators such that lin(]] 1° = 1. It will be conve-
nient to take 1°(X) = exp(—¢|X[?). g
Let us recall that # denotes the Moyal product for Weyl symbols. So for the
contravariant symbol U, (X) of U, we have
)
i, Ue(X) = (He#Up)(X) (5.54)
Because [, is a quadratic polynomial we have
1
(He#U)(X) = H(X)Uu(X) + 5-{ He, U} (X)
1
—5(0d, — 8:0,)2Hy(X)Up(Y)|x=y (5.55)
where 8, = £, X = (z,€), Y = (y,7).
It seems natural to make the following ansatz
Uy(X) = a(t)E(X), where
Ey(X) = exp(iMyX-X). (5.56)
«(t) is a complex time dependent function, M, is a time dependent 2n x 2n complex,
symmetric matrix such that SM, is positive and non degenerate.
A. B being two classical observables, we have:

{A, B}=VA.JVB

and
(8:3y = 8,0¢)* A(x,€) B(y,n)lx=y = 0%A%B+3:B GhA—20%A B
= -Tx(JA"JB") (5.57)

where A” is the Hessian of A (and similarly for B). Applying this with

A(X) = %s,x.x, B(X) = cxp(iM:X.X)

e &\
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we get:
H#E(X) = H(X) E(X) + IS X . M X E(X) + %T\'(JSJB")

However,
VB = 2iB(X) M, X

(B")jx = 20 (Me)j + 2(MX); (McX)x) B(X)
s0 that:

%’I\'(JS,JB") = (%’I‘r(Jb‘tJM,) - %M,X 4 JS,JMLX) B(X)
Therefore the Ansatz (5.56) leads to the equation:
ia(t) — ()M X . X = %(S,X X+ MJISX . X -SJIMX . X)a(t)
+%n(t)'ﬂ’(M,S¢) = %a(t)M,X SSIM X (5.58)
where we have introduced the Hamiltonian matrices
My :=JIM;, S;:=JS,
Then equation (5.58) is equivalent to
M, = %(M, +1)Si (M, - 1) (5.59)
G = %’I\'(M,S,)u, (5.60)
The first equation is a Riccati equation and can be solved with a Cayley transform:
M= (1-N)(1+N)7!

which gives the lincar cquation

Ne = SN,
s0 we have, recalling that S, = FFyY,
Ne = FNo
Coming back to M, we get
Mo = (1+ My = F(1 = Mo)) (1+ Mo + Fe(1 = M) ™" (5.61)

Let us now compute the phase term. We introduce

X& =1+ Mo+ F(1- My) (5.62)

Y e
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Using the following properties

Xi = xi —2R(1-Mo) (5.63)
™S, = 0 (5.64)
ISt =5 B, Pk (5.65)
we have
Tr(MS:) = =2 (% () ™) (5.66)
50 we get
a; = agexp (f%[logdetxf]f,) 5 Coj=ils (5.67)

In formula (5.67) the log is defined by continuity, because we shall see that x;" is
always non singular.

Until now we just compute at the formal level. To make the argument rigorous

we state some lemmas.

It is convenient here to introduce the following notations.

sp (2n.C) is the sct of complex, 2n x 2n matrices M such that M = JM where M
is symmetric (that means that M is a complex Hamiltonian matrix) and such that
M is positive non degenerate.

Sp, (2n,C) is the set of complex, symplectic, 2n x 2n matrices A" such that the
quadratic form
28 (1-F7'N) 202
is positive and non degenerate on C?".

Lemma 5.2 If F is a real symplectic matriz and M € sp,(2n,C), then 1+ M +
F(1 - M) 1s invertible.

Proof. Write M = JM. It is enough to prove that the adjoint 1+ FT +M"(1- FT)
is injective. But M* = =M J. So if z € C?" is such that (1+FT + M*(1- FT))z =0

then we get
(A+FT)z-MJ(1-FT)z)- JA-FT)z=0 (5.68)

But, using that F is symplectic, we have that (1 + F)J(1 — FT) = FJ — JFT is

symmetric so taking the imaginary part in (5.68), we have
S(MJ(-FT)z-JA-FT)z) =0.

Then using that SM is non degenerate, we get successively (1 — FT)z = 0,

A+ FT)z=0and z=0. [ ]

Lemma 5.3 Assume that -1 is not an eigenvalue of N'. Then N € Sp,,(2n,C) if and
only if M € sp, (2n,C) where N and M are linked by the formula

M=(1-N)(1+N) "

T )
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Proof. Assuming that A + 1 is invertible, and
M=(1-N)A+N)™.

then we can easily see that A is symplectic if and only if M is Hamiltonian.
Now, using N/ = N*7T, we get

1-N"'N =201 - F)~ ' (M - M)A + M)~?
If z = (1+ M)z’ we have, using (J(1+ M))T = —J(1 - M),
A-N"'N)z - Jz =2(M - M) - 7.
So the conclusion of the lemma follows easily from the last equality [ ]

The last lemma has the following useful consequence.
Let us start with some Mg € Sp. (2n,C) without the eigenvalue -1. Tt not difficult
to see that M,z = —z if and only if Mou = —u, where u = (x{")~'z. In particular
for every time ¢, -1 is not an eigenvalue for M.
Furthermore, using that Ay = FNp, we have N; ‘A, = Ny 'No. So we get that the
matrix M, € sp, (2n,C) at every time ¢.
If M, has the cigenvalue —1 it is no more possible to use the Cayley transform but
we see that M, is still defined by equation (5.61)(from lemma (5.2) ) and solves the
Riccati equation (5.59).

Now we want to discuss in more details the phase factor included in the term
a; and to chlsidcr the limiting case My = 0 to compute the Weyl symbol of the
propagator UP. Then we shall recover the Mehlig-Wilkinson formula, including the
phase correction Maslov-Conley-Zehnder index).
Let us denote

14 Mo + F(1- M

8(Fe, Mo) = det.( .

Hence we have

e O B (s Mo
o o MY

Lemma 5.4 Let us consider t — F, a path in Sp(n,R). Then for every My €

sp, (n.C) we have, for the real part:

t§(Fy, Mo)
o 8(Fy, Mo)

L sE Mo
S (M(Fo,Mo)l) y

If F, is 7-periodic, then 3
7 O(#, Mo)
o 8(F, M)
with v € Z. Furthermore, v is independent on My € sp+(2n,C) and depends only on
the homotopy class of the closed path t — Fy in Sp(2n).

ds = 2imv

_ /A
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Proof. For simplicity, let us denote 8(s) = d(Fy, M) and
t
= [ de)ate) s, o) = Os0)
0

g is clearly constant in time and g(0) = §(0) = 1. Then we get R(h(t)) = log|d(t)|.
In the periodic case we have e*(") = 1 so we have

6(1":, Mo)
——————ds=v, vEL.
5(Fe, Mo)
By a simple continuity argument, we see that v is invariant by continuous deformation
on My and F}.

We can now compute the Weyl symbol of R(F) when det(1+ F) # 0. Let us

consider first the case det(1+ F) > 0. The case det(1+ F) < 0 is a little bit more
complicated because the identity 1 is not in this component.
We start with an arbitrary C, path t — F, going from 1 (t =0) to F (¢t = 1). It is
known that Sp*(2n) = {F € Sp(2n), such that det(1+ F) > 0} is an open connected
subset of Sp(2n). So, we can choose a piecewise C* path F} in Sp*(2n) going from 1
to IF and My = ie.J. We have, using Lemma(5.4),

O(Fy,ied) | _ ' d(F, ied)
9( A mdl) ~27r|/+3( | mdt) (5.69)

But det(1 + F/) is never 0 on [0,1] and is real; so if ¢ > 0 is going to zero, the last
term in r.h.s goes to 0 and we get
1 §(Fy, ied)

i modadate Y =
lmg(a J(F},iej)dl 27y
So we have proved for the Weyl symbol R(F,X) of R(F) the following Melhig-
Wilkinson formula

R(F,X) = ¢"™|det(1 + F)|~/2exp (=iJ(1 - F)(1+ F)™'X - X) (5.70)
such that

Let us now consider F' € Sp_(2n) where Sp_(2n) = {F € Sp(2n),
det(1+ F) < 0}. Here we shall replace the identity matrix by

=280
e
forn=1and F" = F{ ® I, for n > 2 where Iz,_» is the identity in R* =2,
Let us consider a path connecting 1 to F° then FO to Fy = F. Because Sp(2n) is
open and commeeted we can find a path in Sp(2n) going from FO to Fy = F and that
part does not contribute to the phase by the same argument as above.
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Let us consider the model case n = 1. The following formula gives an explicit path

in Sp(2).
o = ( costm —sintr n(t) 0
7\ sintr  costm 0%} =t o
where 7(t) is analytic on a complex neighborhood of [0,1], n(0) = 1, n(1) = 2,
1 <n(t) <2forte[0,1]. A simple example is 7)(t) = 1+ t. Then we can compute:

: 1V §(Fy ied)
lim S ( | Frent) =" (5.71)

Proof. Let us denote F} = R(t)B(t), where R(t) is the rotation matrix of angle tm
and for € € [0.1],

Lemma 5.5

() = det[(1 - ieJ) + F{(1 - icJ)]

We have

Jo(t) = det(R(~1) + B(1)) = 2 + cos(tr) (1 AP ﬁ)
Jo has exactly one simple zero ty on [0,1], fo(t1) =0, fo(ty) #0).
This is casy to scc by solving the cquation costm = h(t). for a suitable h, with a
geometric argument
Then by a standard complex analysis argument (contour deformation) we get the
equality (5.71).

_ So in this case we have the formula (5.70) for the contravariant Weyl symbol of
R(F), with index v € Z + 1/2. Summing up the discussion of this section we have
proved:

Theorem 5.6 We can realize the metaplectic representation F — fl(F) of the sym-
plectic group Sp(2n,R) into the unitary group of L*(R™) by taking for every F a
C'- path ~ going from 1(t = 0) to F(t = 1) and solving ezplicitly the corresponding
quadratic Schrodinger equation for the Hamiltonian Hy(z) = -1/2JF‘}F,"z-z. So let
us define i/(:(l-‘). the propagator at time 1 obtained this way.

If 7' is another path going from 1 (t = 0) to F (t = 1) then there exists an index
N(7.7") € Z such that

R (F) = ™V (F)

The metaplectic operator R(F) is the two valued unitary operator R, (F).
Moreover if det(1+ F) # 0, R(F) has a smooth contravariant Weyl symbol R(F, X),
given by formula (5.70), where v € Z if det(1+ F) > 0 and v € Z+1/2 if det(1+ F) <
0

It will be useful to translate the above theorem for the covariant Weyl symbol. Before

that we start to discuss the general case, including det[F + 1] = 0. The Weyl symbol
of R(F) may be singular, so it is casier to analyse it using coherent states (for our

. e
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application it is exactly what we need).
Let us recall that

RA(F,X) = (2nh) / (pesx| R(F)p:)e 19X (5.72)

/Ran

Let us denote Uy = R(F) and U§ the contravariant Weyl symbol at time 1 constructed

above, such that US(X) = e=¢IXI*,
For every £ > 0 we have computed the following formula for the contravariant Weyl

symbol:
US(X) = afexp(iMX-X), where
Mi(X) = =-J+ieJ — F(1-ieJ))(A+ieJ + F(1 - iJ))™!  (5.73)
of = det(1+ie] + F(1-ie]))™*/? (5.74)

At the end we get the result by taking the limit:
lim (p:4x|0f0:) = (0ot x| R(F)p:) (5.75)
emtoo

The computation uses the following formula for the Wigner function, W. ., v (Y), of
the pair (:. @z4x).

2 Xl i
W x(Y) = 22" exp (— |v e R 5)) (5.76)

So. we have to compute the following Fourier-Gauss integral

4 | 2 ¥
(per x|0f i) = 22"(2m) "0 /x Y exp (iM‘Y»Y—}Y—z—ﬂ —io(X, Y~ ;))

(5.77)
So we get
(ps+xUfps) = 2" (det(1 - iM*)) ™2 at. (5.78)
5 Bl —i i
e <- bep 7’ +3i0(X,2) + (1= M) e + 52‘—”‘)-(” X_X))
Now we can compute the limit when & \, 0. We have
1-iM¢ = 1+iJ(1+ieJ — F(1-ieJ))(1+ ieJ — F(1 - ieJ))! (5.79)
Then we get, using that (1+ F + iJ(1 - F)) is invertible (see Lemma 5.2),
lim(1=iM*)™" = (1+ F)(A+ F +iJ(1- F))~! (5.80)
and
lim det(1 - iM)~V2af = (det(1+ F +iJ(1- F))~'/2 (5.81)
e

So, finally, we have proved the following

(T
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Proposition 5.7 The matriz elements of R(F) on coherent states ., are given by
the following formula:

X exp (~

where

(parx|R(F)p) = 2" (det(1+ F +iJ(1 - F))™'/2.

X —zi.lX) s —21'JX)) o

e 2
24 5‘ + %iu(X,z) +Kp(z+

Kp=(1+F)1+F+iJ1-F)™! (5.83)
Now we can compute the distribution covariant symbol of R(F ) by plugging formula
(5.82) in formula (5.72)..
Let us begin with the regular case det(1 - F) # 0.

Corollary 5.8 If det(1 ~ I") # 0, the covariant Weyl symbol of I’l:(l'") is computed
by the formula:
) (5.84)

where p = v+ %, 7 € Z is an index computed below in formulas (5.88), (5.89).

R¥(F.2) = ¢™|det(1 - F)| /2 exp (—%J(l +F)(1-F)'z

Proof. Using Proposition (5.7) and formula (5.72), we have to compute a Gaussian
integral with a complex, quadratic, non degenerate covariance matrix (see [11]).
This covariance matrix is Kp — 1 and we have clearly

Kp—1=—-iJd - F)1+F+iJ(1-F))™' = —(1—-iA)7!
where A = (1+ F)(1 - F)~'J is a real symmetric matrix. So we have
R(Krp—1) = —(1+A?)™!, S(Kp—1) = -A(1+A?)™* (5.85)

Therefore 1- K is in the Siegel space Xg, and Theorem (7.6.1) of [11] can be applied.
The only serious problem is to compute the index p.

Let us define a path of 2n x 2n symplectic matrices as follows:

Gy =e'™an if det(1 - F) > 0 and:

Gy = G?@c'™n-1 if det(1 - F) < 0, where

t 0
#=("%" &)
(e
where 7 is a smooth function on [0, 1] such that 5(0) = 1, 5(t) > 1 on ]0, 1] and where
Ja,, is the 2n x 2n matrix defining the symplectic matrix on the Euclidean space k2",
/1 and F arc in the saric connected component of Sp, (2n) where Sp, (2n) = {F ¢

Sp(2n). det(1— F) # 0}. So we can consider a path s — F! in Sp,(2n) such that
F)=Gand F{ = F.

(T
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Let us consider the following of d i " functi for families of
complex matrices.

0|F) = arg[det(1+ F +iJ(1 - F)] (5.86)
BIF] = argy[det(1- Kr)™'] (5.87)

where arg, means that ¢t — 6[F] is continuous in ¢ and (1] = 0 (F; = 1), and
S — arg, [det(S)] is the analytic determination defined on the Siegel space £, such
that arg, [det(S)] = 0 if S is real (see [11], vol.1, section (3.4)).
With these notations we have
_ BF] - 6[F]
w=EE==E (5.88)

Let us consider first the case det(1— F) > 0.
Using that J has the spectrum +i, we get: det(1+ G, +iJ(1 - Gy)) = 4”e""* and
1= Ko; =1,
Let us remark that det(1 — Kp)~' = det(1 - F)~'det(1 - F +iJ(1+ F)). Let us
introduce A(E, M) = det(1 — E + M(1 + E)) for E € Sp(2n) and M € sp, (2n,C).
Let consider the closed path C in Sp(2n) defined by adding {G:}o<e<1 and {F/}o< 1.
We denote by 27v the variation of the argument for A(e, M) along C. Then we get
casily
B(F) = 0[F] + 270 + nm, n€ Z. (5.89)
When det(1 - F) < 0, by an explicit computation, we find arg, [det(1 - K¢,)| = 0.
So we can conclude as above. n
Assume now that F' has the eigenvalue 1 with some multiplicity 2d. We want to
compute the temperate distribution R¥(F) as a limit of R*(F*) where det(1-F*¢) # 0,
V= > 0.
Let us introduce the generalized cigenspace £ = | J ker(1~ F)? (dim[€’]=2d). and

321

£" its symplectic orthogonal in R?". We denote F’ the restriction of F to £ and
F" the restriction to £”. We also denote by J’ and J” the symplectic applications
defined by the restrictions of the symplectic form a: o(u,v) = J'u - v, Yu,v € £ and
the same for J”. Let us introduce the Hamiltonian maps L' = (1— F')(1+ F')~! and
Lhe = LieeJt.

It is clear that det(L"€ — 1) # 0 for 0 < € small enough, so we can define F"¢ =
(14 L"*)(1 - L'*)=". Let us remark that

Q= J(F -1 (P +1)=—(L'J +¢)! (5.90)
is a symmetric non degencrate matrix in £ defined for every £ > 0.

Lemma 5.9 We have the following properties.
1) F'* is symplectic.
2) lim F' = F'

3) For e # 0. small cnotgh, det(F"¢ — 1) # 0.
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Proof. 1) comes from the fact that L'¢ is Hamiltonian.

2) is clear.

For 3). let us assume that F"¢u = u. Then we have L"*u = 0 hence J'L'u = cu.
Now, choose 0 < & < disc(ﬂ spec(J'L')\{0}} then we have u = 0.

Finally we define F* = F"'* ® F"¢. It is clear that F'* satisfies also properties 1), 2),
3) of the above lemma with F¢ in place of F"*.

Proposition 5.10 Under the above assumption, the covariant symbol of R(F) has
the following form:

R¥(F, 21, 29,2") = ™ |det(1 — F")|~/25(z1)
xexp( J(A+ F)(F - 1)~z +2") (~2+-")) (5.91)

= ((21,22),2") 1s the decomposition of the phase-space for which F = F' g F"
21 + 29, with z5.€ Im(F' = 1), z; € Im(F' — 1)*, the orthogonal complement
in &' for the Euclidean scalar product. §(2)) denotes the Dirac mass at point z; = 0.
i € Z+1/2 is given as follows: jy = p + 252 where " is the limit of the i index
for F*. computed in (5.84), and sg*Q' is the limit for € — 0 of the signature of Q"*.
defined n (5.90).

Proof. We use the same kind of computation as for Corollary (5.8). The new factor
comes from the contribution of £’. So we can forget £”. So we assume that £ = R**
and we forget the superscripts . We have to compute the limit in the distribution
sense of R*(F*) which was computed in Corollary (5.8).

Let us consider a test function f € S(R?") and its Fourier transform f. Using
Plancherel formula, we have

/ e (—%J(l+ F)(1 = F)~'z. z) P
L
2ot (@ VAR [ exp (i1 + F) 1 - G Q) Qe (592)

So we get the result by taking the limit for € — 0 in (5.92).
Let us remark that we have used that J'(1+ F)(1 - F)~! is an isomorphism from
ker(1 - F')* onto itsclf.

In our paper (2] the leading term for the return probability and for fidelity on
coherent states is computed with a Gaussian exponential defined by the quadratic
forin which was defined in Proposition 5.7.

Ve (X) = % (Kr(1=-iJ)X - (1 —iJ)X — |X]?) (5.93)

In our application we shall have X = z, — z where t — z, is the classical path starting
from z. So we nced to estimate the argument in the exponent of formula (5.82) for
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Lemma 5.11 we have, VX € R*",

Re (X)) < XL (5.94)

2(1+sF)
where s is the largest eigenvalue of FFT (FT is the transposed matriz of F) .
Proof. Let us begin by assuming that det(1+ F) # 0. Then we have

Kp=(1+iN)"", where N = J(1- F)(1+ F)~".
So we can compute
R(Kp) = (14 N?)~' = KpK}; and S(Krp) = -N(1+N?)~'

So, we get,

r(X) = % (A + IN)KpKp(1= NJ)X - X = 2|X[?) (5.95)
By definition of K, we have

M+ IN)Kp =2 (A+i)F +1-i7) ™ (5.96)
Le us denote Tp = ((144J)F~" + 1 —iJ)~'. We have, using that F is symplectic,
Tpm'TRt = 2P~ TR +1).

hence we get
TpTp = (2(F~VTF~! + 1))~}

and the conclusion of the lemma follows for det(1— F) # 0 hence for every symplectic
matrix F by continuity. "

Received: August 2005. Revised: September 2005.
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