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ABSTRACT

‘The paper is devoted to the reconstruction of a compact Riemannian manifold
from the Gel'fand boundary spectral data. These data consist of the eigenvalues
and the boundary values of the eigenfunctions of the Laplace operator with the
Neumann boundary condition. We provide the reconstruction procedure using
the geometric variant of the boundary control method. In addition to the unique-
ness and reconstruction results, we sketch recent developments in the conditional
stability in this problem. These conditions are formulated in terms of some geo-
metric restrictions traditional for the theory of geometric convergence.

RESUMEN
Este articulo se dedica a la i6n de una variedad com-
pacta de los datos espectrales de frontera Gel'fand. Estos datos consisten de
autovalores y los valores de frontera de las autofunciones del operador de Laplace

con condicion de borde . Ok el de reconstruccion
usando una variante geométrica del memdn dp control de la frontera. Ademas de
la unicidad y los Itados de § desarrollos recientes
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enla dicional de este probl Estas ici se formulan en
términos de algunas icci i ici de la teorfa de con-

vergencia geométrica.
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1 Introduction

Here we consider the Gel’fand Inverse Spectral Boundary Problem. Let us start with
a non-rigorous introduction to this class of problems. Assume we have a manifold
with boundary (M, M), a vector bundle A over M, and a linear elliptic differential
operator A acting on smooth sections of A which are denoted by F(M,A). The
operator is defined with some boundary conditions Bu = 0 where B is a local operator
making the boundary value problem Au = F, Bulay = 0 elliptic, i.e., D(A) = {u €
A = Bulga = 0}. Note that all operators that we consider here are linear. Consider
the boundary value problem

Au = Au;  Bulom = f. (1)

If A is not in spectrum of (A, B), the solution u = u( to (1) exists and we define the
" Dirichlet-to-Neumann” map as

Ry frs BufJon,

where B¢ is the "complimentary” boundary operator for B such that the pair
(Bulgar. Bulaar) represents the whole Cauchy data of u with respect to the operator
The Gel'fand’s boundary spectral problem (for the original form of the problem, see
[9]) is the problem of finding M, A and (A, B) from the knowledge of the boundary
dM  the bundle Alpps on the boundary and the map R, for all values of the spectral
paramcter A ¢ spec(A).

As we will see, Gel'fand’s boundary spectral problem does not usually have a
unique solution and the problem is to characterize (the group of ) possible transfor-
mations which preserve the maps Ry. It is also important to analyse subgroups of
the transformation group duc to various a priori restrictions on A and (A, B) and,
in particular, to find when the subgroup becomes trivial, i.e. Gel'fand’s boundary
spectral problem possess a unique solution. Here we discuss mostly such a case with
suitable a priori information.

The aim of this note is to concentrate on the following Gel'fand’s boundary spectral
problem:

(T
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Let M be an m—dimensional, m > 2, compact, Cc™ th Ri

manifold with non-empty boundary, 8M. Let A, be the Neumann Laplace opera-
tor on M acting on L? space of scalar functions. Thus, using Einstein summation
convention we have in local coordinates,

Agu=—g7'28,(g"*g¥dju), D(A) = {u € H*(M) : d,ulors = 0}. (@)

Here g;(x) is the metric tensor, g = det(g;;]. [9”] is the inverse matrix to [g;],
& = d/0zx" and 9, is the inward normal derivative. We note that the case of Dirichlet
boundary condition can also be treated by the same method.

Denote by 0 = A\; < A < ... the eigenvalues and by ¢y(z) = V=12 ¢,...
the orthonormal eigenfunctions of A,, V being the volume of (M, g). Then, for cach
A ¢ spec(A,), the data in Gel'fand’s boundary spectral problem are given by the
traditional Neumann-to-Dirichlet map,

Raf = wlom,
where u solves the problem
Agu= M, dyulom = f. (3)

One can show, e.g. [15] that these data are equivalent to the Gel'fand boundary
spectral data (GBSD)

OM,  {(Mk: dklone)}RZs- (4)

At this stage, let us make some remarks
i. It may seem that in the inverse problems occurring in real applications we deal only
with domains in IR™ and manifolds are introduced for the sake of maximal generality.
However, when dealing with anisotropic operators similar to (2) in a domain M ¢ R™,
we need to take into account possible coordinate changes in M. If y = &(x) are other
coordinates in M with ®[ga = id|gar, then operator (2) transforms into an operator
of the same form with the metric tensor g given by

S Whmstor )

o ar'
G(W)ly=2) = V-j(z)b%(y)lyzo(z)

Thus X\ = Ax, gk((b(z)) = ¢x(z) and we see that the boundary spectral data for
g and g arc the same. Therefore, in anis pic inverse probl it is i

to factorize out the i due to diffe phisms preserving M, i.c., to
work in the manifold formalism. Although this lies outside the scope of the current
presentation, we note that in practical problems the domain M often contains some
a priors unknown "cavities” and measurement can be done only on the external part
of the boundary. In invariant terms, the measurements can be done only part of a
boundary of manifold which, in principle, may have non-trivial topology. This brings
the problem even further into the realm of differential geometry.
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The method we will apply is applicable to a mder range of inverse problems to
mclude general (scalar) 2nd order elliptic diff which are selfadjoi
with respect to an appropriate (smooth) measure on M [13], some classes of non-
selfadjoint operators [19] and Maxwell’s system [20, 21]. When dealing with inverse
problems for general operators, another source of non-uniqueness comes from gauge
transformations. Indeed, by multiplying functions by a smooth (complex) factor,
a(z) #0, alom =1,

u— au

and changing the measure accordingly, we obtain an operator with the same boundary
data. We can factorize out this source of non-uniqueness by working with orbits of
operators with respect to the action of the group of gauge transformations and choos-
ing a canonical representation in each orbit. In the case of a general 2nd order selfad-
joint elliptic operators with real coefficients, one can choose a canonical representation
to be a (Riemannian) Schrodinger operator, A, + q [14].

iti. Although we will discuss only the boundary spectral problem for the Laplace-
Beltrami operator, the method is based essentially on properties of the wave equation

0. (6)

Uge + Dgu

Historically. it goes back to works of M. Krein at the end of 50th who used causality
principle in dealing with the one-dimensional inverse problem for an inhomogencous
string, uy — ¢?(2)ur, = 0, see e.g. (18]. In his works, causality was transformed into
analyticity (after Fourier transform). A more clear and straightforwardly hyperbolic
version of the method was 1 by A. Blag henskii at the end of 60th-70th
[6]. In the multidimensional case the method was pioneered by M. Belishev [4] in late
80th who understood the role of the PDE-control for these problems (and gave it the
name the boundary control (BC) method). Of crucial lmportancc for the method was
the result of D. Tataru [25) ing a Holmgren-typs theorem for non-
analytic coefficients. BC method was extended to anisotropic case (to deal exactly
with the uniqueness problem of finding (M, g) from boundary spectral data of its
Laplacian) by M. Belishev and Y. Kurylev [5]. The geometric version of the method,
which we are going to present in this paper is developed by A. Katchalov, Y. Kurylev
and M. Lassas in late 90th. It is summarized in [14], which will be the main reference
for Section 2. In section 3 we will discuss some stability results for this problem based
on [1] and [17]. In these notes, especially in Scction 3, we often skip detailed proofs
concentrating instead on basic ideas and referring to the literature, [1] and [14], for
details.

2 Reconstruction with complete boundary spectral
data

In order to reconstruct (M, g) we use a special representation, the boundary distance
representation, R(M) of M and later show that the boundary spectral data determine
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R(M). Consider a map R: M — C(dM),
R(z) =r:(:); r(2) =d(z,2), z€ M, (7)

i.e., r2(+) is the distance function from x to various points on M. The image R(M) C
C(OM) of R provides the boundary distance representation of M. The set R(M) is
a metric space with the distance inherited from C(@M) which we denote by do. The
map R, due to the triangular inequality, is Lipschitz,

deo(raymy) < d(x,1), ®)

and, by compactness of (M, d), the metric space (R(M),dw) is also compact. Our
first observation is

Lemma 1 The map R : (M,d) — (R(M),dx) is a homeomorphism. Moreover,
given R(M) as a subset of C(OM) it is possible to construct a distance function dp
on R(M) that makes the metric space (R(M),dR) isometric to (M.d).

Remark. In the case when (M, g) is a simple manifold, that is all geodesics are the
shortest curves between their endpoints and all geodesics can be continued to
that hit the boundary, the claim is easy to prove. Indeed, then ||r, — ry||con) =
d(z,y) for .y € M and R is isometry of (M,d) and (R(M), d). Next we prove this
result for the general case.
Proof. We start by proving that R is a homeomorphism. Recall the following simple
result from topology:

Assume that X and Y are Hausdorff spaces, X is compact and F : X =Y is a
continuous, bijective map from X toY. Then F is a homeomorphism.

By definition, R is surjective and, by (8), continuous. In order to prove injectivity,
assume the contrary, i.e. r.(:) = r,(-) but z # y. Denote by 2, any point where

d(z.0M) = mm 72(2) =1z(20) = ry(20) = léléll"\' ry(2) = d(y,0M). (9)

Then z; is a nearest boundary point to z implying that the shortest geodesic from
zy to z is normal to M. The same is true for y with the same point z5. Both =
and y lic on the geodesic v;,(s) to M. It starts from zy normally to M with s
being the axclcngth As the geodesics are unique solutions of a system of ordinary

iffe it i (the Hamil Jacobi equation), they are umquely determined
by their initial points and directi that is the geodesics are hing. Thus
we sce that = 7., (s0) = y, where so = 2(20)-

Notice that, although (M,d) is h phic to (R(M),d..), they are not, in

general, isometric. Imagine e.g. a unit sphere with a small circular hole near the
South pole of, say, diameter €. Then, for any z,y on the equator and z € M,
m-c<ry(z)<mand 7 — € < ry(z) < 7. Then deo(rs,1y) < &, while d(z,y) may be
equal to 7.

Before going further, introduce the boundary normal coordinates on M which we
have already used implicitly in the proof of the first part of this lemma. For a normal
geodesic 7. (s) starting from z consider d(v:(s),dM). For small s,

d(7:(s),0M) = s, (10)
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and z is the unique nearest point to v:(s) on 8M. Let 7(z) be the largest value for
which (10) is valid for all s € (0,7(2)]. Then for s > 7(2),

d(7:(5),0M) < s,

and z is no more the nearest boundary point. 7(z) € C(dM) is called the cut locus
distance function and the set

w={z:: z €M, z. =:(7(2))}, (11)

is the cut locus of M with respect to M. This is a zero-measure subset of M. In the
remaining domain M \ w we can use the coordinates

z > (2(2), t(2)), (12)

where z(z) € M is the unique nearest point to z and t(z) = d(z,dM). (Strictly
speaking, one also has to use some local coordinates of the boundary, y : z ~—
(E)2e y™=1(2)) and define that

- (y(2(2)), 1)) = (¥' (2()); ..,y V(z(2)), () € R™, (13)

are the boundary normal coordinates.) We will now use these coordinates to introduce
a differential structure and metric tensor, gr, on R(M) to have an isometry

R:(M,g) = (R(M),gr)-

We will concentrate mainly on doing so for R(M) \ R(w), referring to [14] for details
concerning vicinity of R(w).

Observe first that we can identify those r = 7, € R(M) with z € M \ w. Indeed,
if r =r, with z = 7.(s), s < 7(2) then
. () has a unique global minimum at some point z € dM;

u. there is # € R(M) having a unique global minimum at the same z and r(z) < 7(z).
This is equivalent to saying that there is y with r,(-) having a unique global minimum
at the same z and r,(z) < ry(2).

A differential structure on R(M \ w) can be defined by introducing coordinates
near cach ¥ € R(M \ w). In a sufficiently small neighborhood V' C R(M) of "
the coordinates 7 — (Y/(r), T(r)) = (y(argmin, ¢y r), min.eans r) are well defined.
These coordinates have the property that the map z — (Y (rz), T(rz)) coincides with
the boundary normal coordinates (12,13). When we choose the differential structure
on R(M \ w) that corresponds to these coordinates, the map R: M \w — R(M \ w)
is a diffeomorphisin.

Next we construct the metric gg on R(M). Let r° € R(M \ w). As above, in a
sufficiently small neighborhood V C R(M) of r° there are coordinates r — X(r) :=
(Y(r).T(r)) that correspond to the boundary normal coordinates. Let (y°,t%) =
X(r"). We consider next the evaluation function Ky, : V — R, Ky (r) = r(w), where

' A
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w € M. The inverse of X : V — IR™ is well defined in a neighborhood U C IR™ of
(1°,) and thus we can define the function By, = Ky 0 X~!: U — IR that satisfies

Bu(v,0) = d(w,7:()(1), (v,t) €U, (14)

where 7.()(t) is the normal geodesic starting from the boundary point z(y) with
coordinates y = (y',...,y™}

Let now grp = R g be the push-forward of g to R(M \ w). We denote its
representation in X-coordinates by gjk. Since X corresponds to the boundary normal
coordinates, the metric tensor satisfies gmm = 1, gam =0, @ =1,... . m— 1.

Consider the function E,(y,t) as a function of (y,t) with a fixed w. Then its
differential, dE,, at point (y°,t°) defines a covector in Ty, o) (U) = R™. Since the
gradient of a distance function is a unit vector field, we see from (14) that
9B, 9E,

%E‘,)u (9r)*? e oyﬂ =1, o,f=1,...,m—1.
Varying w € dM we obtain a set of covectors dE,(y°,t°) in the unit ball of
(77,0 10,V g;x) which contains an open neighborhood of (0,....0,1). This determines
uniquely the tensor g7%(y°, t°). Thus we can construct the metric tensor in the bound-
ary normal coordinates at arbitrary r € R(M \ w). This means that we can find the
metric ggr on R(M \ w) when R(M) is given.

To complete the reconstruction, we need differential structure and metric tensor
near R(w). Observe that for any © € M™ there are points L Zm on OM such
that the distance functions & +— d(z;,Z) form coordinates for Z near x. It is these
coordinates we use near R(w), and this determines on R(M) a differential structure
that makes R : M — R(M) a diffeomorphism. Since the metric gg is a smooth tensor,
and we have found it in a dense subset R(M \w) of R(M), we can continue it in local
coordinates. This gives us the metric on the whole R(M) (for details, see [14]). W

(ldEullfy,

Note that, if i only in the uni rather than reconstruction, we
could refer, at the last stage of proof, to the Myers-Steenrod theorem yielding that
two Riemannian manifolds isometric as metric spaces are isometric as Riemannian
manifolds.

To construct the set R(M) from the boundary data we start with two auxiliary
results related to the initial-boundary value problem for the wave equation. Let
u! = u/(z,t) be the solution of

ulp+Agw! =0; Wlico=0; du!|omxm, = f€CT(@OM xRy),  (15)

where C=(8M x IR ) consists of smooth functions equal to 0 near ¢ = 0. Denote by
F i L*(M) — £ the Fourier transform,

o
Fa={a}i2,, fora(z)= Zamk(l)»
k=0
Let uf(t) = (! (-,0), k) 1a(ar) be the Fourier coefficients of u/(-,t) with Fu/(t) =
{u{O),

_ /T
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t=2tp
t=1tp
t=0

) (3
Figure 1: Double-cone of influence

Lemma 2 We have
u’(f)~/ /aM ’"‘[‘/_“ sinlvMelosly oy aal, ds (16)

where dA, is the Riemannian volume of (M, g).

The proof of this assertion is i ward. If we ti twice the iden-
tity ul(t) = (w/ (1), px (")) La(aryr U5e (15) and apply integration by parts, we obtain

uly(8) + Muf(6) = /o (@ 00x(z) dAs.

Invoking the initial data, we get (16).
The other result is based on the following fundamental theorem by D. Tataru [25]

Theorem 2.1 Let u(z,L) solve the wave equation uy + Ayu = 0 in M x IR and
Ul e (0,260) = Outlrx(o,2ts) = 0, where @ # T C M 1s open. Then

u=0in Kry,; where Kpy, ={(z,t)€ M xR:d(z,T) <ty— [t —to]} (17)
is the double cone of influence (see Fig. 1).
(The proof of this theorem, in full generality, is in [25]. A simplified proof for the
considered casc is in [14].)

The obscrvability Theorem 2.1 gives rise to the following approximate controlla-
bility:

(T



E , idi ional Gel'fand Inverse Boundary Spectral Problem: ... 49

Corollary 2.2 For any open T'C OM and ty > 0,
clyaqan{w (1 to) : f € CF°(T % (0,t0))} = LA(M(T, o))

Here
M(T,to) = {z : d(z,T) < to} = Kre, N {t = to}

is the domain of influence of T at time to and L*(M(T,to)) = {a € L*(M) :
supp (a) © M(T.tg)}.

“This result lies within the realm of the well-known identity,
Ran(A) = N(A*)*.
Namely, let a € L*(M(T,ty)) be orthogonal to all u/(-,to), f € C§°(T x (0,t))}.
Denote by v the solution of the wave equation
(d,z +A)v=0; U=ty =0, vli=t, = a;  uvlarrx(o,ee) = 0-

Using integration by parts we obtain

to
/ / j(m,s)u(;u,s)dA,ds:/ a(z)u! (z,t)dV =0,
0 oM M

due to the orthogonality. Thus v|pr(0,i,) = 0 and, as v is odd with respect to t = t;,
we conclude from Theorem 2.1 that a = 0.

Note that if the surface measure dA, which corresponds to the metric g in (16)
is replaced by an arbitrary smooth positive surface measure dA,, the collection
{f(x,8)dA.ds : f € C3°(I" x [0, to])} of measures do not change, that is,

{f(z,3)dA.ds : [ € CF°(T x [0,to])} = {f(x,5)dAsds : f € C5(T x [0,t0])}

Thus, by combining Lemma 2 and Corollary 2.2, we see that GBSD determine,
for any open I' € dM and ty > 0, the subspace £2(T',t) C £,

(T, tg) = FL*(M(T, ty)).
Also, we define (z,7) = FL}(M(z,7)), = € M. This set may be found using
GBSD as limit of sets ¢2(I',, 7) when T, — {z}.

Theorem 2.3 Let {z,}5%, be a dense set on OM. Thenr(-) € C(OM) lies in R(M)
if and only if, for any N > 0,

N N
v 1 1
= [ Blenrlen) + )0 (] Eonsr(za) = ) # (0): (18)
Moreover, condition (18) can be verified using the Gel'fand boundary spectral data (4)
Henee the Gel'fand boundary spectral data determines uniquely the boundary distance
representation (R(M),gr) of (M,g) and therefore determines the isometry type of
(M, g).

T
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Proof “If"-part. Let € M and denote for simplicity r(:) = rz(-). Consider a ball
By/x(z). Then,

Byn(®) € M(z,7(2) +1/N)\ M(z,r(2) - 1/N).

Thus if supp(a) C By (), then Fa € 1.
"Only if "-part. Let (18) be valid so that there is

X 1 1
ax € () (MCen,rGen) + )\ MCamr(en) =

n=1

). (19)

By choosing a suitable subsequence of zy (denoted also by z), there exists a limit
7 = limu—~ zy. By continuity of the distance function, it follows from (19) that

d(z,zn) =r(za)y =120 0

Since {z,,} are dense in M, we sce that r(2) = d(z, 2) for all z € M, that is, r =
|

Note that this proof provides an algorithm for construction of an isometric copy
of (M. g) when the Gef'fand boundary spectral data are given.

3 Stability of the inverse problem

This section is based on joint results of authors with M. Anderson, A. Katsuda, and
M. Taylor in [1].

It is well-known that inverse problems are ill-posed, i.e., arbitrary small variation of
data can bring about arbitrary large change in the model (this is just a manifestation
of the unboundedness of the inverse map). However, in order to deal with inverse
problems in applications; we need to "stabilize” them, i.e., to find a priori conditions
which render an inverse problem to become continuously dependent on data. The
principal tool lies in the following basic topological lemma (already used in the proof
that R is a homeomorphism).

Lemma 3 Let X and Y be compact Hausdorff spaces unth F : X — Y being contin-
uous and bijective. Then F~"' is also cont; ie. Fisah phism.

Typically, in inverse problems in domains in IR™, we assume that coefficients of the
unknown operator, say the Schrédinger one, —A + g, where now A is the Euclidean
Laplacian, are bounded in some "strong” function space and then derive continuity
in a "weaker” function space. As far as we know, the first result in this directions
was obtained by G. Alessandrini (2] who proved that if g is a priori bounded in
H?, o > m/2. then inverse problem is continuous in L. For the Laplace-Beltrami
operator in a domain in IR™, P. Stefanov and G. Uhlmann showed in [24] that, if
the coefficients of the metric tensor, gi; arc close to 4,; in C*(™) (A7) then the inverse
problem is continuous in C(M). Both results, and others obtained in this direction,
fall in the framework of Lemma 3 since the embedding of H® into L? and C°(™)
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into (’ are mmpwt It should be noted that the above works provnded a.lso some

for the ding moduli of i For P
inverse problems, due to possible changes of 1 which can d Ily alter
the metric tensor (cf. (5)) but do not affect the physical nature of the process, it is
important to i duce a priort ints in a i iant form. Even more
this is true for the inverse probl ifold

on when, in the beginning, even the
topological type of the manifolds is not known. To be more rigorous, let Sy be the
class of compact, connected Riemannian manifolds with the same, i.e. diffeomorphic
boundaries A'. The boundary spectral data correspond to the direct map,

Ds i (M,g) = (M)fZr (9x|n)RZ1) € B, (20)

where By is the space of all pairs of sequences (u, 1) = ((ux)iZ,, (Yk)5Z,) with
Jix — oc and vy € L*(N) (some other functions spaces are also appropriate as to be
seen from further conaldcrations).

For a sequence (W:)Inl of functions we define the set B((v,)"’ 1) € L*(N),

B((v;)N) = {ve P(V) i v= mek Z Jaxl? < 1}.
k=1
Next we define a basis of open sets in the space By. This basis consists of scts
Uy (p, ©) that are defined to be collection of sequences ((i;)5,, (¥)5%,), such that
the following is true:
There is a finite number of disjoint open intervals I, € [0,e7Y], p = 1,..., P with
lengths |1,] < &, such that

a. Each pu, jix < e~' = ¢ lies in some I;
b }:’d”{D((v.v, i€ To), B((vﬁ, 1 jij € I}) < = where dy is the Hausdorff
distance in L*(9M).

Tu layman terms the definition means that the first eigenvalues, puy, fix and re-
strictions to A of the corresponding eigenfunctions are close. However, we also need
to take into account the ibility of multiple ei Because of this, we group
the close eigenvalues to clusters and require that for two operator having close spec-
tral data have same number of cigenvalues is properly chosen clusters. Note that
the eigenvalues in interval [e=! — £,e7!] may or may not to belong to the considered
clusters.

“I'his definition may be given in a number of different forms. For example, instead
of Dy, direct map, D, may correspond to the heat flow associated with the Laplacian,

Dy i (M,g) = Hiz,u,t), z,y€N, t>0. (21)
Here I7 is the heat kernel for
(G +A)H =0onM xRy, 8uHlomxm, =0, H(z.y,O)eo = 6,(x)

Then H(z,y,), 2,y € N.t > 0 is in C(N x A x IR;) which has topology of the
uniform convergence on compact subsets of N’ x A" x IR .. Spaces By and C(N x A x

/AT
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IR ) are not homeomorphic. However, on the classes of Riemannian manifolds which
we intend to consider, convergence of GBSD in By is equivalent to the convergence
of te heat kernels in C(NM x N x IRy). This is not surprising as

H(z,y,t) = exp(-Mt) dx(x) 6x(v)-
k=0

In the class X the convergence of the boundary data either in Byr or C(N x N x
IR ), by no means implies the convergence of the underlying Riemannian manifolds
(although, of course, we should rigorously define what we mean by the convergence
of Riemannian manifolds). Let us consider some examples of difficulties which may
oceur.

Example 1. Let S, be a two dimensional unit semisphere. Let us attach in a
smooth manner a small handle near its north pole to obtain a Riemannian manifold
Mj, where § characterizes the size of the handle. Then the first eigenfunctions almost
do not feel the handle, namely, for any € > 0, we can choose 4 so that BSD of S, and
Mjs are =—close in Byr. Also the corresponding heat kernels can be made e—close on
an arbitrary given compact K C N x N x IR,

Example 2. Let again S be a two dimensional unit semisphere and Q be an
arbitrary closed connected surface in IR®. Connect S; with © by a thin long tube,
close to the north pole of S;. We obtain a ifold M, with 4 ct izing the
size of the tube. Then, for any € > 0, we can make tube so thin and long that the
boundary values of the heat kernels of Sy and Mj are =—close in C(N x N x R4).

In both examples, Sy and M; are, geometrically and even topologically, very
different which we can not identify from our incomplete, imprecise boundary mea-
surements. Clearly, such situation should be avoided. Observe that, in both cases,
when & — 0, then the curvature tends to oo, and, in Example 2, diameter tends to co.
Also, the second fundamental form of @M = A should be controlled. For technical
reasons, namely, to prevent collapsing manifolds to those of smaller dimensions, we
should control, in addition, the injectivity radii of manifolds in £.. This type of re-
strictions is typical, at least for manifolds without boundary, in the Cheeger-Gromov
theory of geometric convergence (11], [7]. Thus, it is natural to seek for conditions to
guarantee stability of Gel'fand’s boundary spectral problem in a properly modified to
include manifolds with boundaries, framework of this theory.

Let us introduce the classes of manifolds we intend to consider. For a while, we go
beyond the limits of inverse problems and intend to work both with manifolds with
and without boundary.

Definition 3.1 Let A, D, ip > 0. Denote by £™(A, D,ig) the class of closed m-
dimensional ('™ —smooth Riemannian manifolds such that

a. || Ricy||. || Ricom|| < A,
b diam(M,g) < D,

¢ |IKlicorann < A,

d. inj 2 i
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Here Ricyy, Ricga are the Ricei curvature of M and M, respectively and K is the
mean curvature of 9M. (Clearly condition c. and the second condition in a. are
void for manifolds without boundary). inj stands for the minimum of all three in-
Jectivity radii on a manifold with boundary, namely, injectivity radii of Riemann
normal coordinates on'M and OM and injectivity radius of boundary normal, i.e.
mingean 7(2).

The principal geometric result to get conditional stability of Gel'fand’s boundary
spectral problem in a class £™(A, D, ip) is the following:

Theorem 3.2 For any m,A, D,ig > 0, the class £™ (A, D, o) is pre-compact in the
€'~ topology, for any a < 1, and in the Gromov-Hausdorff topology [11]. Its closure,
Y™(A. D, ip) consists of Riemannian manifolds with the metric tensor g which is, in
proper coordinates, C'®~smooth for any a < 1. Conditions a. and c. of definition
3.1 are valid for the manifolds in the closure ¥ (A, D, ig).

Let us explain what is meant by convergence in the above topologies. For €' —case,
a sequence of Riemannian manifolds, (M), g™) converge to (M. g) if, starting with
some ng, there are diffeomorphisms

Doy : M = MM B, € C2OMM™), ||B7,(6™) —gllcre — 0. (22)
Although in this paper we will speak predominantly about the C'®—topology, let us
explain briefly the Gromov-Hausdorff one and its i to the inverse bl
The Gromov-Hausdorff distance is defined on the space of all compact metric spaces
(X,dx) with

den((X,dx), (Y.dy)) <e,
if there are e-nets {z)....,2y} C X and {y1,...,yn} C Y such that

|dx (i, 2;) = dy (i, ;)| < &

Clearly, the Gromov-Hausdorfl topology is weaker than C'®. Its importance, in
particular for the inverse problems, lies in its ability to compare objects of different
dimensions. For example, let Sy be a unit circle in IR* and 7* be a two dimensional
torus with its second radius equal to e. Then dgy (S, T%) < 4<.

Theorem 3.2 has a direct analog for manifolds without boundary proven by M.
Anderson [3]. However, the presence of boundary necessitates development of new
techniques which is to be discussed later.

Let us discuss now the geometric properties of £ which are needed for the analysis
of Gel'fand’s boundary spectral problem. According to the basic topological lemma,
for the class ¥ to be a proper candidate for the conditional stability of Gel'fand’s
boundary spectral problem, the map Dg should be well-defined and continuous from
¥ to By and injective. The first two statements follow easily from Kato’s perturba-
tion theory [16]. To analyze injectivity, recall two critical elements in the proof of
uniqueness of Gel'fand’s boundary spectral problem:
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1. Tataru’s unique i ion used in i ility, Corollary 3.4. It
requires Lipschitz continuity of the metric tensor and, evidently, is valid on 3.

2. Non-branching of geodesics used in the proof of the injectivity of the map R : M —
C(8M). Theorem 3.2 fail to guarantee it, indeed, there are counterexamples going
back, essentially, to Hartman [12] which show the existence of g € Ny o<, C1* with
branching geodesics. The remedy lies in the following

Theorem 3.3 Let (M,g) be a complete Riemannian manifold with C'® a > 0
metric. Assume, in addition, that conditions a., c. of Definition 3.1 are satisfied
(in the case of non-compact manifolds we can assume only local boundedness of the
Ricei curvatures and Lipschitz constant of the mean curvature). Then, in a proper
coordinate system, "

9 €C2,

C2 being the second Zygmund space.
Recall that a continuous function f € C! if

Ve -2+ DD W, o
lz =yl
and f € C?if f,Vf € C!. For this and further properties of Zygmund spaces sec c.g.
H. Tricbel [27) or M. Taylor [26].

Combining Theorems 3.2, 3.3, we see that ¥™(A, D, 1) consists of Riemannian
manifolds with C? metric. It is compact with respect to C*®—topology, for any
[t

Corollary 3.4 Let (M, g) € £™(A, D ip). Then the geodesics in M do not branch.
Moreover, if M™ — M in T™(A,D,ip) with respect to C** or Gromov-
Hausdorff topology then the geodesic flow on M™ converge to the geodesic flow on
M.

Summarizing Theorems 20, 21 and Corollary 3.4, topological lemma implies our
principal result

Theorem 3.5 The map Ds : X(A,D,ig) — Ds(Z(A,D,is)) € By is a homeo-
morphism, 1.e., Gel'fand’s boundary spectral problem depends continuously on the
boundary spectral data.

Similar result is valid for the heat kernels.

In the rest of these lectures we give principal ideas of proofs of Theorems 3.2,
3.3. They are related to the notion of proper coordinates which are the boundary
harmonic coordinates. On manifolds without boundary, harmonic coordinates go
back to Einstein and are widely used in differential geometry starting from DeTurck-
Kazdan [8]. with applications to geometric convergence by Peters [22], Greene-Wa [10],
Anderson [3]. cte. Coordinates (z'....,z™) arc harmonic if they satisfy the Laplace
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equation, A,z' = 0 (e.g. Cartesian di in R™). i di enjoy
a number of useful properties, in particular,

i. The metric tensor has maximal smoothness in these coordinates;
ii. Its components, g;; satisfy, in h i i the Ricci
Ay9i5 = Bij(9,Vg) - 2Ricy;. (23)

Here B, is a quadratic function in Vg and rational in g;;.
When R:cu is bo\mded and gisa pnon sufficiently smooth, e.g. in C%!, interior

elliptic I d to Zyg 1 spaces implies that g € C? inside M. To
deal with the boundary we use the following

Definition 3.6 Coordinates (a',...,2™) are boundary harmonic coordinates near
M +f
i (£',....x™) are harmonic coordinates inside M;
i, OM s defined by =™ = 0;
iti. Lety” = 2'|am, 7 =1,...,m=1. Then(y",...,y"™ ") are harmonic coordinates
on dM.
It may be shown that, in boundary h di the of the
metric tensor, in addition to (23), satisfy the Dirichlet boundary conditions
oy = hyy, hgy € C}@OM), By =1,....m—1, (24)
and third-type boundary conditions
dyg™™ = ~2(m - 1)K g™, (25)
1 Ik
B,¢"" = =(m - 1)K ¢"™ + a7 ™

where K is the mean curvature. A proper generalization of the boundary elliptic
regularity to Zygmund spaces shows that gy,,¢'™ € C2. In turn these imply that
gy € C2 proving Theorem 3.3.

The proof of Theorem 3.2 is based on regularity results of a geometric nature.
They say, roughly, that any manifold from £ can be covered by a uniformly finite
number of domains of boundary harmonic coordinates which are uniformly large and
smooth, namely

Lemma 4 For any A, D, iy > 0, there are r > 0 (harmonic radius) and C > 0 so that
there 1s a uniformly finite covering of any (M, g) € E(A, D, 1) by coordinate patches,
U, of boundary harmonic coordinates,

Xp:Up = R™,  with X,(Up) = B, or B},

B, BY being, respectively, a ball and half-ball of radius r in R™. Moreover, the
metric tensor, in these coordinates, satisfies

1
3l <l <28 Nlgslle: <€

T
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The proof is based on blow-up arguments. Assuming the contrary, i.e. an existence
of a sequence of manifolds M™ with their harmonic radii £(,) — 0, we rescale the
metric tensors, g™ — g™, §™ = ¢;3g(™ to obtain a sequence of Riemannian

manifolds, M™ with
Riczy(m, Ricygm — 0 K™ = 0;  injgz, — oo, (26)

with the radius of boundary harmonic coordinates, at some point, being equal to 1.
Using the Riccati equation for the second fundamental form near the boundary or the
Cheeger-Gromoll splitting theorem far from the boundary, we obtain a subsequence of
M'™ swhich tends either to IR or IR™. By the lower semicontinuity of the harmonic
radius, we conclude that the harmonic radius of RY' and IR™ are less than 1, which
is a contradiction.

Below is a sketch of the proof of this statement for the case when the point ("),
where the geodesic radius 7 of M(") equals to 1, is near the boundary. We concentrate
on this case since it reflects specific features of manifolds with boundary, otherwise the
proof is essentially the same as for manifolds without boundary [3]. We use a rather
standard construction of differential geometry, going back to J. Cheeger (7], see e.g. P-
Petersen [23]. It says that if a pointed family of Riemannian manifolds, which have a
locally finite coordinate covering by "uniformly large” charts with uniformly bounded,
say in ("%, metric tensors, then this family is pre-compact in C'#—topology for any
3 < a. Note that, due to the blow-up procedure, we are exactly in this situation
taking as coordinate charts those of the boundary harmonic coordinates, and by (26),

Ricas, Ricom =0, K =0, injy = oo, (27)
where M is the limit manifold.
We use a of the fund | ions of Ri ian geometry (see
eg. [23])
B,r™ = K™ on {z: 7™M(z) =c}, (28)

where 7(*) is the distance function to 8M(™, and
R < L (R)? ~ Ricgyi (3r,3,), (29

Conditions (26) imply that K™ — 0 in any layer 7" < ¢. Thercfore, K = 0
cverywhere on M, and by (28), 7 is harmonic on M. In turn, this implies that A(c) = 0
for any ¢ > 0, where A(c) is the second fundamental form of the surface 7 = c. At
last, we obtain from the Above that M is isometric to the direct product dM x [0,00)-
Since the arguments adopted from the case of manifolds without boundary show that
AM is isometric to IR™~Y, which completes the proof of Lemma 4.

The above arguments lead to Theorem 3.2 and, therefore, to Theorem 3.5. To
this end. we appeal again to the above standard geometric construction using as
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coordinate charts those for the boundary harmonic coordinates and invoking Lemma

Let us finish with few Lomments abput reconstruction. We start with a finite
approximation {px, Vxloa}, k ..k, to the boundary spectral data. We can
then construct, using vari inciple, a finite approximation R ¢ C(M) to
the boundary distance representation R(M). On R we can find approximate images
of geodesics on M hitting M and, using Alexandrov’s lemma, equip a subset X of
R with a metric, dy so that (X,dy) is an approximation to (M,d) in the Gromov-
Hausdorff sense [17].

Received: June 2005. Revised: September 2005.
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