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ABSTRACT

A problem of extracting information about the location and shape of unknown
cracks in a background medium from the Dirichlet-to-Neumann map is consid-
ered. An application of a new formulation of the probe method introduced by the
author to the problem is given. The method is based on: the blowup property
of sequences of special solutions of the governing equation for the background
medium which are related to a singular solution of the equation; an explicit lower
bound of an L?-norm of the gradient of the so-called reflected solution.

RESUMEN

Se considera un problema de extraccién de informacién acerca de la ubicacién
y forma de grietas de forma desconocida sobre un medio de fondo proveniente de
la aplicacion de Dirichlet a Neumann. Como aplicacién se muestra una formu-
lacién nueva del méfodo del experimento introducido por el autor. El método
sc basa en la propiedad de explosién de las sucesiones de funciones especiales de
la ecuacién que modela el medio de fondo, el cual se relaciona con la solucién
singular de la ecuacién; se encuentra una cota inferior explicita de la norma L?
del gradiente de la llamada solucién reflejada.

"This rescarch was partially supported by Grant-in-Aid for Scientific Research (C)(2) (No.
15540154) of Japan Society for the Promotion of Science. The author thanks Klaus Erhard and
Roland Potthast for providing me with their stimulating preprint (6]
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1 Introduction

The aim of this paper is to develop a general method for extracting information about
unknown cracks in the domain from the associated Dirichlet-to-Neumann map(or
Neumann-to-Dirichlet map).

In [9] the author introduced the probe method which gives a general idea to obtain a
reconstruction formula of unk objects embedded in a known back d medium
from a mathematical counterpart(the Dirichlet-t map) of the d
data of some physical quantity on the boundary of the medium. The method has been
applied to an inverse boundary value problem in elasticity [12] and inverse obstacle
scattering problems [10, 11]. The recent study of [16] also is based on applying
the probe method to an inverse boundary value problem related to cracks in an
inhomogeneous anisotropic elastic medium.

Recently Erhard-Potthast [6] studied numerically the probe method by using tech-
niques in [17, 18]. It is a quite exciting work and the author gained again interest
about the probe method itself. The paper [14] is one of the results of reconsidering the
probe method. In the paper the blowup property of the special sequence of solutions
of the governing equation for the background medium is clarified (see Lemmas 3. l and
3.2 of this paper) and a new ch. ization of an unk vol i
by using the associated Dirichlet-to-Neumann map is given.

In this paper, we continue to reconsider the probe method and introduce an ap-
proach in applymg the probe method to inverse problems related to cracks(inverse
crack probl The approach is different from existing applications
(15, 16] of the pl‘ube method to the problems, clarifies another side of the probe
method and is extremely simple. Since we are interested in methodology in inverse
problems, this paper restricts ourself to an inverse crack problem for the Laplace
equation. However, there is no doubt that one can apply the approach presented in
this paper to other inverse crack problems, for example, those in elasticity. Those
applications shall be reported in subsequent papers.

2 Formulation of the problem

Now let us formulate the problem precisely. Let £ be a bounded domain in R™(m =
2.3) with Lipschitz boundary. Let X be a (m — 1)-dimensional closed submanifold
of R™ of class C° with boundary. ¥ is divided into two parts the interior and the
boundary denoted by Int ¥ and 9%, respectively.
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We say that ¥ is eatendable of class C%!, if ¥ admits the existence of an open
subset D with Lipschitz boundary of Q, having finitely many connected components
and satisfying the following:

Dco;
(*){ Q\D is connected;

T caD.

Of course, there should be infinitely many D satisfying (x) for given extendable .
In this paper, we always assume that ¥ is extendable of class C! unless otherwisc
specified. We denote by v the unit outward normal relative to D unless otherwise
specified. Set 9D =T Let 2y = Q\ D and write D = Q_. For a function v € L2()
O e

Define

X(@Q\5;D) = {ve L}(Q)|vs € H' (), v- € H'(Q),v4In\z = v-In\z)s

Ivllx @) = v+l g + o=l @)
X(Q\ £; D) is complete with respect to the norm || - | x(\x p). Define
Xo(2\E;D) = {ve X(2\ ;D) |v=00n 9N in the sense of trace}.

Given f € H'/2(9Q) we say that u € X(2\ 2: D) is a weak solution of the elliptic
problem

Au=0inQ\Z,
du
v
u=f ondQ
if u satisfies u = f on 9 in the sense of trace and, for all p € Xo(22\ I; D)

=0on%, (2.1)

/ Vu - Vedy = 0. (2.2)
o\

The starting point is to establish the existence and uniqueness of the weak solution
of (2.1) and the invariance of the solution with respect to the choice of D. One can
casily prove

Proposition 2.1. For each fized D satisfying () there ezists a unique weak solution
of (2.1). Moreover the solution does not depend on the choice of D.

For cach fixed D satisfying (), define the bounded linear functional Asf on
H'Y3(992) by the formula

<Asfh>= / Vu-Vudy, he H'*(99) (2.3)
me

M
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where u is the weak solution of (2.1) and v € X(Q\ ;D) is an arbitrary function
with v = h on 9 in the sense of the trace. The f in (2.1) denotes a given voltage
potential on 9§ and Agf the corresponding current flux. The map Ay : f — Agf
is called the Dirichlet-to-Neumann map. We set Az = Ag in the case when £ = (.
From Proposition 2.1 and (2.3) we know that Ay does not depend on the choice of
D satisfying (x). Since Ay isa mathemaucal model of the measured data, this can
be considered as a math ion of the : the d data are
d dent of the rep ion of unk objects.

We are interested in the following.
Inverse Crack Problem Extract information about the shape and location of ¥ from
Ay or its partial knowledge.
This is a I ical model of el and related to a
nondestructive evaluation of the material. ¥ corresponds to the union of perfectly
insulated cracks. The problem raised here is not a uniqueness one. For the study
of the uni in several formul of inverse crack problems see [2, 5, 7] and
references therein.

We cite also [4] for an approach to Inverse Crack Problem by using Kirsch’s fac-
torization method and refer the reader to [1, 3, 13] for inverse problems related to the
cracks having special geometry.

3 Two Sides of Probe Method

The purpose of this paper is to give an answer to Inverse Crack Problem by using the
new formulation of the probe method given in [14].

3.1 Needle, Needle Sequence

Given a point = € Q2 let N, denote the set of all piecewise linear curves o : [0, 1] — Q
such that : (1) 7(0) € 89, o(1) = z and o(t) €  for all ¢ €]0, 1[; (2) o is injective.
We call o € N, a needle with tip at .

Choose an arbitrary fundamental solution G of the Laplace equation in R™ and fix
it in this paper. Let ¢ € N,. We call the sequence € = {v,} of H'(R) solutions of
the Laplace equation a needle sequence for (z, ) if it satisfies, for each fixed compact
set K of R™ with K ¢ 2\ ([0, 1))

Jim ((lon() = G- = )llza) + 1V{va(-) = G(- = 2)Hlz2x)) =0,
The existence of the needle sequence is a consequence of the Runge approximation
property for the Laplace equation.

3.2 Indicator Sequence/Function

Definition 3.1. Given 2 € Q, needle ¢ with tip z and needle sequence € = {v,,} for
(x.0) define »
I(x,0,€)n =< (Ao = As)fu, fr >

(T
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where fu(y) = va(y), y € O
{I(z,0,8)n}n=12... is a sequence depending on £ and ¢ € N;. We call the sequence
the indicator sequence.

In short, the probe method is a method of probing inside ©2 by using the indicator
sequence. For the study of the behaviour of the indi asn — oo we
prepare
Definition 3.2. The indicator function I is defined by the formula

I(z) =/ |Vws[Pdy, z € O\ T
o\

where w; € Xo(Q\ ; D) is the unique weak solution of the problem:

Aw=0inQ\ %,

dw a9
5 = »E(G(- —z))onZ,

w =0 ondN.

The function w, is called the reflected solution by L.

3.3 Side A of Probe Method

The following theorem describes the behavi of the indi function I(z) as =
approaches a point in Int £ and gives a way of calculating the value by using the
indicator sequence for a suitable needle.

Theorem A. We have:

o (A.1) given z € Q\ T and needle o with tip at z if ¢(]0,1]) N & = @, then for
any needle sequence £ = {v,} for (z,0) the sequence {I(x,0,£).} converges to the
indicator function I(z);

o (A.2) for cach ¢ >0

sup I(z) < oo;
dist(z,Z) > ¢

o (A.3) given point a € IS

llir_.nn I(z) = co.

Theorem A is the essence of the previous formulation of the probe method.
The proof is based on the convergence property of the needle sequence outside the
needle; the divergence property of the L2-norm of the gradient of G(- — z) over an
arbitrary finite cone with vertex at z.

Using (A.1) to (A.3). we can define another indicator function along a given path
joining two points on dQ and extract the first hitting parameter of the path with
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respect to ¥ from Ag — Ag. This is the original formulation of the probe method.
Note that: if Int X is smooth, a corresponding fact to Theorem A in terms of the
original formulation of the probe method has been established in [15]. The proof
therein is completely different from that of this paper.

3.4 Side B of Probe Method

The following theorem is not an improvement in proof technique and a technical
weakening of hypotheses of an existing known result. It is new and not covered in
[15. 16] (even in the case when Int ¥ is smooth). It gives an answer to the natural
question: what happens on the indicator sequence when the tip of the needle is just
located on the crack or passing through the crack?

Theorem B. Let 2 € Q\ 0% and o € N satisfy @ # 0(]0,1])) NS C IntS. Then for
any needle sequence € ="{v,} for (z,0) we have lim, . I(z,0,£), = co.

The proof is given in Section 4 and a consequence of Lemmas 3.1 and 3.2 described
below. which have been established in [14]. For their description we make a definition.
Let b be a nonzero vector in R™. Given z € R™, p > 0 and 0 €]0,7| the set
V={yeR"||ly—z|<pand (y—z)-b> |y —x||b| cos(/2)} is called a finite cone
of height p, axis direction b and aperture angle # with vertex at x.

Lemma 3.1. Let z € Q be an arbitrary point and o be a needle with tip at x. Let
& = {v,} be an arbitrary needle sequence for (x,0). Then, for any finite cone V with
vertez at x we have

lim / |Vun () |2dy = co.
vnn

n—soc

Lemma 3.2. Let z € 2 be an arbitrary point and o be a needle with tip at x. Let
€ = {v,} be an arbitrary necdle sequence for (z,0). Then for any point z € o(]0, 1[)
and open ball B centred at z we have

lim / |Vvn(y)I*dy = co.
n—wxJpna

These two lemmas tell us that any needle sequence for any needle blows up on the
needle.

4 Proof of Theorems

4.1 The Reflected Solution

Let v € H'(Q) be a weak solution of the Laplace equation in Q and u € X(Q\ £; D)
be the weak solution of (2.1) with f = v]an. The function w = u — v € Xo(Q\ ¥: D)
does not depend on the .choice of D satisfying (*). w is called the reflected solution
of v by E.

(I
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For the proof of Theorems A and B we start with describing the following elementary
lemma which can be casily proved (see also [15]).

Lemma 4.1. Let v € H' () be a weak solution of the Laplace equation in 2 and
u € X(Q\ ;D) be the weak solution of (2.1) for f = v|agn. Then w = u—v €
Xo(\ 5; D) satisfies, for all ¥ € Xo(Q\ E; D)

/ 6_v(\1’+ —\L)dS:/ Vw - V¥dy. (4.1)
x O o=
Moreover the formula
<(ho-A)fT>= [ (Vulay, (12)
o\

15 valid.

4.2 A Key Lemma

We called w in Lemma 4.1 the reflected solution of v by X. The following lemma is
the key of this paper and gives an estimate of |[Vwl||z2(q\x) from below by using v
only. The proof is quite clementary and everything has been donc in the context of
the weak solution.

Lemma 4.2. Let n € C°(R) and M > 0 satisfy
Inllz=ca) + 1Vall=@-) < M (4.3)

and
supp (n|r) € . (4.4)

Set (=), = Q- N suppn. Let v € H'(Q) be a weak solution of the Laplace equation
in @ and w € Xo(Q\ 5; D) be the reflected solution of v by T. If
v
2 £ LA ol =
[, 1wuan=1 [ G- nywasi >
then we have two estimates:
v
12 Wy fetha} s = 2
([ wokay=1 [ S - nvasy
([ viays [ pla)
@), @),
([ 1way-i [ S nyas)?
0 % r v .

CRa2M( / |Vofdy + / v[2dy)
(f-)y (),

< IVwliZaga.y,)s (4.5)

(4.6)

< IVwli}aq

+)
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where Cy > 0 and Cz > 0 are independent of v(see (4.9) and (4.10) below).
Proof. Define
0, ifyey,
Y(y) =
-n@uly), ifye_.

The trace of ¥ onto 99 vanishes and we see ¥, — ¥_ = 7v on I'. (4.4) ensures that
V¥ € Xo(Q\ T; D). From (4.3) we have

IVl = "V(W)"ir(nq < Mz(_/“ ) |V”|2dll+/( ; [v[*dy). (4.7)
i) G}
Integration by parts gives

/ |Vu|?dy = /—udS nud5+/ (1 - n)vdS

/ g, —w_ )dS+/ (1 = n)uds.
From (4.1) we have
/ |VoPdy < |/ Vuw - Vw;,|+|/ 7 (1 - n)udS|
1l
8)
v -
< Vwllza ) IV¥Iz2as),) + |/ 6_(1 — 1)vdS|.
r ov

A combination of (4.7) and (4.8) gives (4.5).
Next from the trace theorem ([8]) one can choose p € H (224 ) in such a way that

p=mnvonl,
p=00ndQ
and satisfies
Il 24y < Crllvlell vz ey (4.9)

where Cy = C1(£24) is a positive constant and independent of 7 and v.
Define
py), ifyey,
V'(y) =

0, ifyeq..

The trace of ¥’ onto 9§ vanishes and we see ¥, — ¥’ =77 on I'. (4.4) ensures that
Ve X(Q\Z;D). Let Cp = C5(2-) > 0 satisfy, for all o € H'(Q2_)

llelorllar2(ry £ Callellay- (4.10)

g N
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From (4.3), (4.9) and (4.10) we have
IV 0y < CRlmnlsse oy < CICEME( /m | (Voltay+ /( . @
Sk a-),
Hereafter the completely parallel argument to the previous one yields (4.6). |

4.3 Dominance of Gradient
We prove

Lemma 4.3. Let x € Q and o be a needle with tip at . Let £ = {v,} be a needle
e e

lim/ |Va|2dy = o,
n—os o

then there ewists a natural number ng such that the sequence

[ ey
("—_

/n_ |an\2dy)"2n.,.

is bounded.

Proof. We describe only the case when Q_ = D consists of a single domain for
simplicity of description. Choose a sequence {K;} of compact sets of IR™ in such a
way that K, € 2\ ¢()0,1]); K; € Kiyy for L =1,---; Q\ 0(]0,1]) = U2, K. Then
|KinQ_| — |-\ ()0, 1])| = |2-| as | — co. Thus one can take a large [ in such
a way that the set A = K;, N satisfies |A| > 0. Then, from the Poincaré inequality
(c.g.,(14, 19, 20]) we have

[ a2 [ o= @alav+2 [ foala
Q- - a_
S0 AF [ 1Vuady + 200 l|w)al
n

where C(Q-, A) is a positive constant independent of v, and

1
(Un)a = T /Avndy-

We know that the sequence {(v,) 4} is always convergent since A € 2\ (]0, 1]). Now
we have the desired conclusion. L]

A
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4.4 Blowup of Indicator Sequence

We are ready to prove Theorem B. Let & € Q\8% and o € N, satisfy 0 # (]0, 1))NE ¢
Int $. The point is the choice of a suitable modification of the original D.

Define t(0;Z) = sup{0 < t < 1|Vs €]0, t{o(s) € 2\ £}. The number t(o; L) is
nothing but the first hitting parameter of o with respect to . If o(]0, t(s; £)[) C Q4
then choose a modification D’ satisfying () of the original D in such a way that
a(]0.1]) NT C Int £ where I'" = @D’. If not so, choose another D' C Q, satisfying
(%) in such a way that ¢(]0, t(c; B)[) C 2 where @, = Q\ I’ and apply again the
former argument.

Thus we can assume, in advance, that D satisfies that ¢(]0,1]) NI’ C Int £. Since
a(]0,1]) N T is compact and ¢(J0,1]) NT C Int ¥, there exists n € C§°(f2) such that
n = 1 in a neighbourhood of ¢(]0,1]) N T and 7 satisfies (4.4). Let £ = {v,} be an
arbitrary needle sequence for (z,0). We see that

v — G(: — ) inleoc(Q\a(]O, 1))).

Since the set {y € T'|n(y) # 1} is contained in Q \ ¢(]0,1]), we conclude that the
sequence

v o
| F (1~ m)Taas)
is bounded. On the other hand, from Lemmas 3.1 and 3.2 we have

lim |V, |?dy = co. (4.12)
o

n—aoo Jq

Thus we have 2
/ S (1=n)7,dS
v r v
lim f—o— =

Sl
{18

On the other hand, from Lemma 4.3 we know that there exists a positive constant K
such that, for all n

/ \Vv,.|“dy+/ |onl?dy < K/ |V, [2dy. (4.14)
E{ by . (1.

0. (4.13)

Now from (4.12), (4.13), (4.14) and (4.5) we see that, as n — oo

| [ 520 - mw.asi
MRy, 2 (= <2 [ [unPdy — co.
[ oy a-

This completes the proof of Theorem B.
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Remark. Using a similar argument and Lemma 4.2, one can easily conclude the
validity of (A.3). The validity of (A.1) and (A.2) are almost trivial. Thus finally we
got a solid understanding of the probe method.

Received: March 2005. Revised: June 2005.
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