A Mathematical Journal
Vol. 8, N* 1, (17 - 27). Apnil 2006.

Nonlinear semigroup associated with
maximizing operator and large deviation

Fujisaki Masatoshi
University of Hyogo. 8-2-1, Gakuen-Nishi-Mati, Nishi-ku,
Kobe, 651-2197, Japan
fujisaki@biz.u-hyogo.ac.jp

ABSTRACT
We consider a class of uniformly elliptic second order differential operators
and also its maximizing operator. In this paper, we obtain a variational for-
mula for the principal eigenvalue associated with nonlinear semigroup, defined

by M Nisio ([11]), whose itesi generator ds to the
operator. Our result is an extension of (1] and (2], in which they considered the
problems relative to linear Moreover, as appl we shall discuss

lnrge deviation, rate function and other properties relative to the maximizing
operator. Our proofs are almost relied upon stochastic control method which
developped by NV Krylov (7), (8], W.Fleming (5], P.L.lions [9) and others.

RESUMEN

Conssderamos una clase de operadores diferenciales de segundo orden uni-
formemente elipticos asi como su operador maximizante. En este articulo obten-
emos una formulacién variacional para el autovalor principal asociado al semi-
yrupo nolineal definido por M.Nisio ([11]), cuyo generador infinitesimal corre-
sponde al operador maximizante. Como aplicacién discutiremos la desviacién
mayor. funcién de cuociente y otras propiedades relativas al operador maxi-
mizante  Nuestras demostraciones casi se basan en el método de control es-
tocdstico desarrollado por N.V.Krylov (7], [8], W Fleming (5] y PLlions [9] entre
atros.
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1 Nonlinear semigroup

Let A be a compact convex subset in a Euclidean space RE. For cach element a
of A, let L® be the operator given by the following;

d d
o= %igla,j(n,z)az/az.az, + ;b.(a,:)a/az. )

where the coefficients a = (a;;(a, ))1<i,j<a and b = (b(a, z))1<i<a, defined on A x
R? are symmetric d ® d-matrix and d-vector valued functions, respectively. Assume
the following conditions relative to a and b;

(A.1) (a) a(a, z) and b(a, ) are C*-functions of z € RY, and their partial derivatives
J.0,0,3,0;b. 9,0 and 9;b ! including a and b themselves, are all bounded on A x R?.
(b)

[f(z,0) = f(y.8)] £ lz =yl +plla = Bl), f = a,b,

where p is a concave, strictly increasing and continuous function on [0,00) and
p(0) = 0. and 7 is a positive constant.
(¢) ais uniformly positive definite, i.e. there exist positive constants 5 and K such that

d
Ny €< Z aij(e, )& < KZe 12)
i=1 ig=1
uniformly for all o € A,z € RY, and € € R%.
We denote by L the operator defined by the formula;

Lu(z) = sup L%u(z) (1.3)

a€A

or simbolically, we often write

L = sup L°, (1.3)"

aEA

to which we refer as the mazimizing operator. In (1.3), the supremum is taken for
cach z. Define o nonlinear semigroup associated with L, following M.Nisio ([11], sce
also [5]).  Let {a((w),0 € t < oo}, be a process, defined on a probability space

100,08 = 0%a /02,01, o.t.c
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(2, F, P; F,) satisfying the usual conditions!!. Assume that a is progressively mea-
surable with respet to {F,}, and that a¢(w) € A for all (t,w) € [0,2¢) x Q. Denote
by A the collection of all such processes.

Definition 1.1 A is called an admissible control class, and its arbitrary clement
{ve, t > 0} (o, for short) an admissible control, respectively.

For cach a € A and € R, consider the following Ito-type stochastic differential
equation;

dX¢ = o(ar, Xe)dfy + bla, Xe)dt,
(1.4)
Xo=uz,

where (4,),0 € t < oo, is a R'-valued Brownian motion with respect to (F¢, P),
defined on a probability space on which the process (a¢) is given. ¢ = o(a,7),a €
A.r € R is a d ® d matrix-valued function such that o - #* = a here, o° means
the tranposed matrix of o and o(a, ) is Lipshitz continuous uniformly with respect
to a. Then, it is well known that under the assumption (A.1). for cach a, € A and
e R (and also 3;) . there exists a unique solution of Eq.(1.2). which we denote by

{X{",t >0} or X", for short.

Definition 1.2 Let (2. F. P;F,) be a probability space satisfying the usual condi-
tions. Let a; and 5, be an admissible control and a Brownian motion respectively,
given on this space. Let also X, be the unique solution of Eq.(1.4) associated with
these (ag, d¢). Then the 7-tuple (. F, P, Fy, ar, B, X¢) is called an admissible system.
Moreover. we refer to the process X as the response associated with a, and x.

Denote by C the space consisiting of all R'-valued bounded and uniformly contin-
uous functions on Y, then the space C is a Banach space with the sup-norm || - ||.
For cach ¢ € C and for (2, ) € (0,00) x R4, put

Tip(x) = sup Blp(X7), (15)
acA

where X, " denotes the response given by Eq.(1.4) associated with a € Aand z € RY,
and the supremum is taken among all admissible systems. Then M.Nisio proved that
{Te.t = 0} defines contractive, monotone and strongly continuous nonlinear semi-
group of operators from C to C. Denote by G the infinitesimal generator of 7} and by

D(C ) its domain respectively, then €2 ¢ D and
Gu(z) = sup L°u(z) = Lu(z), (1.6)

aEA

where u € €% and €? = (v € C;30,y, 30,0,y € C} (sce M.Nisio [11] or [3]).

(2 £ P) i & complete probability space, ¥t > 0, F is an increasing family of sub-o fields of ¥,
vight continsous, Voo Fr =
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Let T > 0. Denote by Q% the cylindrical set (0,7) x R? and put Q5. = [0, 7] x RY.
Consider the following Cauchy problem relative to L = sup,, L®;

{ ufot+ Lu=0, (t,z)€ Q%
(1.7)

w(T,z) = p(z), =€ RL

Then it is known ([5] p.169, Theorem 4.4.2, e.g.) that if ¢ € C*® !, 0 < a < 1, then
u(l,x) = Tr_,p(x) is the unique solution of Eq.(1.7) in C*3(Q%) (for the definition,
see §2).
Set C; = {p € C;3e1, ey suchthat 0 < ¢ < p(z) < 2 < o0,Va € R'} and
C; N C24 e.c.” Note that if ¢ € C3® then for all t > 0, Typ(z) € C2(=
C.NC?). Let D be the domain of G, and let also D, be the subset of D defined in
the analogous way to Cy.. Denote by M the space of all probability measures on RY. :
For each p € M, define /(y) by the formula;

I(p) = — inf / (Gu/u) (z)p(dz). (1.8)
u€Dy Jpa
Note that /() is nonnegative. Moreover, for each 1 € M, define /(4) by the following;
T(u) = = inf / (Lufu) (2)u(dz), (19)
uec? Jpa
Then we have the following.

Proposition 1.1 For any p € M, I(n) = I(p).

Proof 1t is sufficient to show that 7(p) > (). Suppose that ¢ € C5°. Then it fol-
lows that 7;p(-) € C2 for all ¢ > 0 and that T is the unique solution of Eq.(1.7)
Hence one obtains

E aT,
51 - tou i) @hutas) = [ GEE@ua Tt (w10)

2 /n | UTip(a)u(de)/Top(@) > ~1(4)

because of (1.9). Since Typ(z) = p(z), log Tow/e = 0. Integrating the both terms of
1.10) from 0 to ¢ with respect to ¢, we get

[, s Tipt) @utaa) = =0 T, ()

¥ € CF and £ > 0. Let p € Cy, then there exists a sequence {ip,} € CF
1 converges to y uniformly on compact sets in R% Therefore, the inequality

wh

My € O, By, 0,0,0, Y4, J, are all a-order Holder continuous
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(1.11) holds for any ¢ € Cy and t > 0. Thus, if p € Dy then ¢ € C;, and it follows
from (1.11) that for all ¢ > 0,

[, ow i) @tan) = ¢ T,
Dividing this by t, and letting ¢ | 0, one sees;

/ﬂ (Gol) @ulde) > =), (112)

This inequality being true for all p € Dy, we can conclude that /() < I(u) because
of (1.8) and (1.12). L]

2 Nonlinear semigroup on a bounded domain

Let D be a bounded open set in B¢ with smooth boundary 4D. Put D = D|JaD
and C(D) = {f : D — R, bounded on D, continuous in D}. For any fixed T > 0, let
Qr = (0,7) x D,Qr = [0,7) x D, and 8°Qr = [0,T) x BDU{T} x D. [0,T) x 8D
and (7'} x D arc called the lateral boundary and terminal boundary, respeetively. We
write ¢ € CPHQr) if v is real valued function defined on Q7 such that its partial
derivatives dyv, A, 8,8;v,1 €1, j < d, and ¥ itself are all continuous in Q7. For any
o € (0,1), we also write y € C19(Qr) if ¥ € C"3(Qr) and its partial derivatives
S, 0, B, 1 < 4,5 < d, and itself are a-order Holder continuous uniformly with
respect to (¢, x).

Consider the fol 5 bolic Bellman equation with the Dirichlet boundary
condition;

Ou/dt+ Lu+ V(z)u=0, on Qr, (21)

u(t,z) =0, 0<t<T, z€dD
(22)
u(T,z) = p(z) z € D

where L is given by (1.3) and V is a real valued function defined on R? -uch that
Ve C*(RY)(= €7 in §1) and its partial derivatives up to the second order are all
bovnded. Then we obtain the following.

Theorem 2.1 Assume the hypothesys (A.1). Then:

(0)if ¢ € C*2(D) for some a € (0,1), then Eq.(2.1) with (2.2) has a unigue solution
u(t,z) € C*3(Qr).

(b) if p € C*2(D) and p(z) vanishes at the boundary 8D, then Eq.(2.1) with (2.2)
has a unique solution u(t,x) € C'*(Qr) C(Qr).

The theorem is a special case of general theorem about fully nonlinear parabolic
cquation with Dirichlet boundary condition ([4],[9).e.g.), but we can also prove it
directly wsing stochastic control methods (sce [6]).
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For each ¢ € O(D),¢ > 0 and a € D, define T p(z) by the following formula:
¢
7Y o(z) = sup E[exp(/ V(XS=)dr}o(X8™)it < 757)it > 0,z € D,
a€A 0

Ty =1,7Vp(z) =0 if z € 3D and t> 0. (2.3)
Then T defines nonlinear semigroup on C(D) (see Remark 2.2 below). Put p(z) = 1
in (2.3). and define ||7Y|| by the formula:
171 = sup [T 1(x)] (2.4)
zeD

Since [|7}]] is submultiplicative with respect to ¢ in view of the semigroup property,
7)., = TYTY, the following limit exists, we denote it by Ay,

Av = lim log [T ||/t (2.5)
(=
Definition 2.1 )y is called the principal eigenvalue of L + V.
Remark 2.2 (a) Ay > —. Indeed, it follows from (2.3) that
log |7 1/¢ > log 1T,/

Jor any a € A and t > 0, where T[V"x means linear semigroup associated with the
operator L® + V. But the right side converges to the principal eigenvalue of L® + V
as t tends to infinity (see [6),e.9.). Moreover, Ay is not necessarily positive. In fact,
1f V' 1s nonposttive, then Ay might be nonpositive.

(b)If A 1s an arbitrary real number such that A > Ay, then it is easy to see from (2.5)
that for any € C(D) such that ||| < 1,

/ ('xp(A/\l)T}Vnp(z)dtS/ e M TY||dt < oo, (2:6)
0 o

because TV ¢|| < [TV [lllpll. These facts suggest us that for any A such that A > Ay,
there exists resolvent in a sense, while \y itself is in the spectrum. For further
discussions about these topics, see (6] or [10].

() uumwh we do not know if Ay is an e lue of G, the infi l

of 1Y it will be shoun ([6]) that if there ezists the largest eigenvalue (dcnatc it by
Vo) of G then Ay = N, so that Definition 2.1 can be justified in this case.

Remark 2.3 1t 15 not difficult to show that TV, given by (2.8), defines nonlinear
semigroup operator on C(D) having the following properties. For the proof, sec (6]
of [5]. Th.5.2.1, p.219)

maps C(D) into C(D). Especially it maps Co(D) = {¢ € C(D);p(x) =
aD} nto itself.

= Mlpll for all p € C(D) and 0 < t < T, where M is a positive constant
only on I" and the dominant of V.
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(¢) (monotomicity) TV o < TV ¢ if p < Y,0 < L.
(d) (continuity i t) Par any ¢ € (D), 1T o =TV @ll = 0 as t — s.
(0) For any ¢ € C*(D)N C(D),
Um {7 p(z) — p(@)}/t = (L + V)p(z),z € D. 27

() For cach T > 0, and for any t € (0,T),p € C**(D) for some a € (0,1), TY_,p(x)
18 the unique solution of Eq.(2.1) with the boundary condition (2.2).
(8) (semigroup property) For any ¢ € C**(D) and t,s > 0,

T.(@) = TV T) (), = € D. (28)
(h) Denote by G the infintesimal generator of TY , then the domain of GV contains
CHD)N (D). Moreover, GVip = Lp + Vi for ¢ € C*(D) N C(D).

3 Variational formula

The following theorem is the main result of this paper.

Theorem 3.1 Gien V € C(D), we have

N =y [/ V(@)uldz) - l(m] (3.1)
" ll(D)u
Denote by £y the right side of (3.1),i.c.,
to= s [ Vi - 160]. @2)
i u(D)-

Then We can show the inequality that Ay < £y by using the way almost similar
to that of [2] . while the reversed one will be done by using the stochastic control
mothod. For the detail, see [6).

Let p be any probability measure on R such that u(D) = 1, then we can obtain
a variational formula for /(x) in torms of Ay, which means the uniqueness of the rate
function in the large deviation principle ([12]).

Theorem 3.2 For each y with supp. p ¢ D,

=~ inf [AV -/R‘ V(z)p(d.t)]. (3.3)

Vec=(r)
Proof On account of (3.1) in Theorem 3.1, the right side of (3.3) is equal to

- el [ s { [ vena -1} - [ V(X)u(dz)]

sup [ 1(») +./n- V(x)y(dz) _/n‘ V(x)p(dz)] 4

nf
K ‘r-m'l, (D)1
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Since we can exchange the order of sup and inf in the above formula by the same
reason as in Theorem 3.1, the rest of the proof is the same as [2](Theorem 2.3). &
Remark 3.3 Using these results we can show that Ay is equal to the largest eigen-
value of GV if it exists. We will show this. Consider the following eigenvalue problem
with Dirichlet boundary condition;

(L+ V)u(z) = Au(z), =€ D,

u(z) >0, z€ D, (3.4)

u(x) =0, = €d8D
Suppose that there exists a solution aqu (.Y 4), (Ao, uo), where Xy is an eigenvalue and
wy 1s a corresponding smooth ei It is easily seen that Ay < Ay because,
for each element o of A, Aa < Ay from the definition of Ay and Ay = sup, As. On
the otherhand, note that for all u € C3(RY),
we get the inequality.

1) < /R (Lu/wldz).

by means of (1.8) and Proposition 1.1. Using this inequality, we can show that for
cach € M and u,

/\'mmm () < /V(a:)p(dr)+/(Ln/u)(z),z(dz) =/((L+V)u/..)(,),‘(4;;.

Here. note that we may cxtend this result for any u € C*® and u > 0 in D (cf.[6]).
Therefore, of Ay and uy are solution of Bq.(5.4), then

/R V@)~ 1) < X,

from which follows the inequality Ay < A immediately.

4 Large deviation

In this section we shall discuss some topics of large deviation pinciple in connee-
tion with the variational formula (3.1). Indeed, we can interpretate that (3.1) is a
special form of Laplace principle and /() is the rate function (see [3),e.g.). We shall
sct up the problem following [12]. Let X{* be the response associated with a € A
and x € D. For cach ¢ > 0, define L{"* : @ — M such that

o
L) = [ (X nds, (1)
0
wheze T is a Borel set in R". For cach (a,t,z), put
QPE()=P(Ly™ et <75 )

ther 290" is a measure on (M(D), BM(D)), where M(D) = (s € Miu(D) = 1)
A(D)) means Borel o-field in the sense of weak topology.
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Theorem 4.1 [(-) 1s grven by (1.8). Then,
(1) for all closed subset F of M(D),

» 1 o,
I ) =(F)) < — inf I(v), (42)
P P R A < g
2) for all open subset G of M(D),
lim nf - log(sup sup Q2=(G)) 2 — ink I(v), (1.3)
1= 1 "zeDoagd VEG
Proof We first prove the upper bound (4.2) for closed subsets F in M(D). Since
this can be done in the same manner as [12)(Theorem 8.1), we shall describe only the

outline. Put ¢ = inf,cp I(v). For any ¢ > 0 and v € F, there exists V,, € C(D) such
that

/\’,,(r)vlu(m) —Ap2t-¢ (4.4)

by means of (3.3) in Theorem 3.1, On the otherhand, for cach v € F. choose an open
neighbourhood B, of v such that

sup. |/V.,dy - /V.,du] ol (4.5)
nes,
Since F s compact, we can select a finite sequence {vy, 1. vy} from F so that

C UM, By, Then it is shown that
1
lim sup — log(supsup Q7" *(F)) < max lim sup log(supsup Q" *(8,,).
[ | T a t t—eo x a
But it is not difficult to see that for v € I,
supsup QF'*(B,) < supsup Blelo V(X sy o 755 x sup e=*Jo Vodu
2 @ | fi HEB,
Due to (4.4),(2.3) and (24),
supsup QF(By) < [T || x etle=d Ve,
+ a
Thus,
hm.-up1 log(sup sup Q" (B,) < Ay, +¢ - /V..du < =+ 2
(S ¢ T 0EA
beeause of (25) and (4.4). Since ¢ > 0 is arbitrary, we get the conclusion.
Next, it is hard to prove dircetly the lower bound (4.3). However, as in many
references (12 eg ). one can still show (4.3) by the following way. Firstly under
some appropriate conditions, it will be scen that there exists an another rate function

I, which satisfies (4.2) and (4.3). Then we can show that 7 = I. For the detail, scc
(12] (Chapter 6) "
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Next we shall consider an analogous problem as [12](Corollary 7.26), in which
I(v) = 0 if and only if v is invariant. Here it is said that v € M(D) is invariant if
v(V) = v(T;V) for any t > 0 and V € D, where T is given by (1.5) and v(V) =
JV(z)dv(z).

Theorem 4.2 Let v € M(D).

(a) Suppose that there ezists o € A such that v(V) < v(T2V) for allV € C and t > 0,
then I(v) = 0, where TV (z) = B[V (X{"%)].

(b) I(v) = 0 implies that v(V') < v(T,V) for any t > 0 and V € C.

Proof Since the second assertion can be shown in the same manner as [12](Theorem
7.25), we will prove only the first one. Let X;"* be the response associated with a, z.
Then, given any ¢t > 0 and bounded V, we have the following inequality.

iog/E[e/»‘ VTS gy () > /log Eleds VX454 ()

> /ﬂl ds/T,"‘V(z)du(z) :t/Vdu,

duc to Jensen’s inequality and the assumption. Let {V,} be a sequence of bounded
C? functions on R? such that V, =V on D and V;, — —nc as n tends to oo outside
D. Then the above inequaliy yields that for any ¢ > 0 and n,

log / sup Eleds VeXS)ds)gy > ¢ / Vdv,
RY a€A
since V,, =V on D. Letting n — oo, one sees that
log / TY 1(z)dv(z) > t / Vdv(z),
by means of the definition of 7). Dividing the both sides by ¢, then letting ¢t — oo,

we can sce that for all V, Ay > v(V). In virtue of Theorem 3.1, this means that
I(v) < 0. But from the definition, I(v) > 0 for any v, so that I(v) = 0. [ ]

Received: September 2004 . Revised: January 2005.
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