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ABSTRACT
In this work, we consider the boundary problem for Hamiltonian difference
system
Ax(t) = A(t)z(t + 1) + B(t)u(t) + AWau(t)

Au(t) = (C(t) — AW (t))a(t + 1) — A* (t)u(t),
on an discrete interval I. Applying the concept of symplectic geometry, we give a
complete account to the form of all possible symmetric boundary conditions with
respect to separation or coupling at the endpoints for the complete Lagrangian
space, following the development of the GKN-theory.
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RESUMEN

En este trabajo consideramos el problema de frontera para el sistema de
diferencia Hamiltoniano

Az(t) = A(t)z(t + 1) + B(t)u(t) + AWau(t)

Au(t) = (C(t) — AWA(t)z(t + 1) — A™(t)u(t),
en un intervalo discreto I. Aplicando el concepto de geometria simpléctica damos
una descripcién completa de la forma de todas las condiciones de fronteras simétri-

cas posibles con respecto a la separacién o unién en los puntos finales para el
espacio Lagrangiano completo, siguiendo el desarrollo de la GKN-teoria.

Key words and phrases: ian diff system; boundary space;
symplectic invariant ; boundary condition.
Math. Subj. Class.: 89A10; 39A70; 47B39; 4TE05; 34B16.

1 Introduction

The GKN-theory for the Hamiltonian difference system (1.1) has been developed
by authors in [13]. In the paper [13], we considered the self-adjoint extension problem
for a class of singular discrete linear Hamiltonian system defined on finite or infinite
interval. We gave the complex symplectic geometric characterization of all self-adjoint
extensions of the minimal difference operator generated by the formally Hamiltonian
difference operator. The result shows that there is a one to one correspondence
between the set of all self-adjoint extensions and the set of all complete Lagrangian
subspaces of the boundary space S. In this paper, following the development of the
GKN theory we have given in [13], we relate the concept of symplectic geometric
to the boundary space in the classification of boundary conditions for self-adjoint
extension, and we give out a complete account to the form of all possible symmetric
boundary conditions with respect to separation or coupling at the endpoints for the
complete Lagrangian space corresponding to the self-adjoint extension.

2 Main results
Consider the following linear Hamiltonian difference system

TBy(t) == (AW () + P(6)) R(y)(t), 1)

T
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for t € I, where I is a discrete interval [a, b]

R(y)(t) = ( :‘E;;’ ) ),wim () = ( ;8)) )

A aws (W 0 L
) )

From now on we shall always make the following hypotheses (H): A(t), B(t), C(t),
Wi (t), Wa(t) are n x n complex-valued matrices, and A*(¢) is the complex conjugate
transpose of A(t). B(t),C(t), Wi(t), Wa(t) are Hermitian matrices on I, Wi(t) is a
n % n positive definite matrix, Wa(t) is a n X n non-negative definite matrix, and
I, = A(t) is nonsingular on I.

In the context, we always assume the system is definite over I, that is if y is a
solution to the equation above, then

{a,a+1,--- ,b},a,b € Z, b < +o0.

Y R@) ()W ()R(w)(s) =0Vt € 1

if and only if y = 0,¢ € I*, where I* = [a,b+ 1], if b < +00; I* = [a,0), if b = +o0.
Define the formally Hamiltonian difference operator for the system (2.1)
U(y)(t) := JAy(t) = P(t)R(y)(t)

for y € D(1), where D(l) := {y: I — C?"}.
Let 13,(I) be

b
Iy(1) = {y € DO Y Rw)" ()W ()R(y)(2) < oo}

t=a
We introduce the following equivalence relation in {3, (I).

91~ Y2 <= |y — vellw = 0.

b

Then the induced space with inner product (y, 2)w = > R(2)*(t)W (t)R(y)(t) is
a Hilbert space under the above equivalence relation. i
Definition 2.1 Denote D(T1) := {y € [, (D)|3f, f € {3 (L), such that ly = JAy(t)—
POR(y)(E) = {W(OR(f)(t), ¢ € T}.

Define a operator Ty by setting Tyy = f if and only if ly = WR(f),for all y €
D(Ty).

T is said to be the maximal Hamiltonian difference operator associated I.

Lemma 2.11"% (Green’s formula) Let f,g € D(T}),a < 8 € L, then
8

S {R@) OWORT )(H) ~ R(Tg)' OWORF)O} = lg* (I F ).

t=a

E e, )
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Define the symplectic form (or symplectic product) for f,g € D(7}) as follows:
[f:g]:= Z{R 9)" (OW () R(T1 f)(t) — R(Tag)* ()W () R(f)(1)} (2.2)
= (Tuf, v) (f,Tlﬂ)
for I = [a, b],

[f:9] Z(R W()R(Ti f)(t) = R(Tig)* ()W () R(f)(t)} @2
= (Tuf,9) - (fle!])

for I = [a, 00).
Note that the symplectic form is well defined for b = oo, since

Z(R H(OWORTL)(E) - R(T1g)" (OW (OR()(1)} < 00

for all f,g € D(T}) by the Cauchy-Schwarz inequality.

From now on, we denote b = b+ 1 for b < oo, b = +o0 for b = +00.

Clearly, [:] is a quasi-bilinear form on D(7}) x D(Ty) — C, and from Green's
formula, it’s easy to see that

[f:9)=g"TF()la
for any f,g € D(Ty).
Definition 2.2 Define the operator Ty as follows:

Ty : D(T) — Ly (1), y = Toy = Tay,

where
D(To) = {y € D(T1)|[y : D(T1)] = 0}, (2.3)
T is said to be the minimal Hamiltonian difference operator.
Yf,g € D(Th), define (f,g)1 = (f,9) + (T1 f.Trg), then D(T;) is a Hilbert space
with inner product (:,-)y, and moreover,

D(Ty) = D(Ty) ® D* @ D™,

where D* and D~ are deficiency spaces of Tp.

The theory of Von Neumann asserts that there exist self-adjoint extensions T" of
Ty if and only if d* = d~. In the context, we shall always assume that d* = d~ =d,
so that Tp has self-adjoint extension.

From the Theorem in [12], n < d < 2n.

Define the boundary space (or endpoint space) by

(T

§ = D(Th)/D(Ty).
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Further denote the natural projection of D(T}) onto S
Y:D(T) = 8, f = yf = {f + D(To)}- (2.4)
For convenience, we denote f = 1 f, for cach f € D(Ty).

Lemma 2.28 Let S = D(7})/D(Tp) be the boundary space for the system (2.1).
Then S together with the symplectic form [f : g] := [f : g.Vf.g € S, constitutes a
complex symplectic space of dimension 2d, 2n < 2d < 4n.

Lemma 2.3 Let S = D(T71)/D(Ip) with the symplectic form [f : g] be complex
symplectic space of dimension 2d = 2d*, then S is complex symplectic isomorphism
to €21, where the symplectic form of C?% is defined as [u : v]; = u* Kv, with

_ (i 0
K‘(o —u,,)'

Proof From the Corollary 2.1 in [2], we have know that all complex symplectic
spaces of dimension 2d are symplectically isomorphic to C2¢ with symplectic form 3]

defined by [u : v); = u*Qu, with
&
(e

Thus, note that if K is congruent to €, the result can be obtained immediately.

Definition 2.3 Let S = D(Ty)/D(Tp) together with [:], be the boundary complex
symplectic space. Set

D_(Ty) = {f € D(T})|3c € I*, s.t.f(t) = 0,0 < t < b+ 1}
D.(Ty) = {f € D(TV)|36 > a,s.t.f(t) = 0,a < t < B}

in case of I = [a, b];

D_(Th) ={f € D(Ty )\llmf =)
D4 (T1) = {f € D(T)[3B > o, 5:.(t) = 0,0 < t < f}

in case of I = [a,oc)
Define S_ /D_(Ty), Sy = D4 (Ty), and call them left-boundary space and
right bounda pectively.
Clearly, [S— : Si] = 0 by Green’s formula. We shall show that S_ and S, are
symplectic subspaces which provide a direct sum decomposition of S. For this pur-
pose, we first give the following Lemma.

Definition 2.4 Consider the linear control system

JAy(t) = P()R(y)(t) + W(t)R(p)(t) (2:5)

E \
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with controllers ¢ € {2, (I) on the interval I. For a prescribed to € I, we say that the
system (2.5) is fully controllable at o € I in case for each pair of yo,y1 € C*" and for
cach £) > to,t) € I'*, there exists a controller ¢ € 1§, ([to. t1]), so that the response

t=1

y(t) = D(t)yo — 2(t) D JR(D)" (s)W (s)R()(s)

s=to

is steered from y(to) = yo to y(t1) = y1, where ®(t) is the fundamental matrix for
JAy(t) = P(t)R(y)(t).t € I

satisfying ®(to) = Io,. Further, we say that the system (2.5) is fully controllable on

I in case (2.5) is fully controllable at each to € L.

Lemma 2.4 The linear control system (2.5) is fully controllable at I.

Proof For any to € I, we shall show that the system (2.5) is fully controllable at to.
Suppose to the contrary that (2.5) is not fully controllable at to, so there exists
ty > to,t; € I" with the corresponding attainable set
K(t) = {y(t1)}
=1
= {®(t1)y(to) — D(t1) ‘Z JR(®)* (s)W (s)R(g)(s)| all controllers @ € 13,(I)} # C*".
s=lo

and consequently
ti=1
Ko(ty) = {=®(tx) > JR(D)* ()W (s)R(¢)(s)| all controllers ¢ & 13, (1)} # C*".
s=to
In this case, there exists a constant vector 7y # 0 with (1, Ko(t,))2 = 0. Here
the inner product is defined in term of that in C?". So
ty=1

mR(h) Y TR ()W () R(p)(s) =

s=lo
for all controllers ¢(s) on [ty, t1].
Now we define ng = 7 ®(t;)J. Then
-1
Y R(®) ()W (s)R(¢)(s) = 0
s=to
for all controllers ¢(s) on [to,f;). This implies that ®(s)no = 0,5 € [to,t1] and
consequently 79 = 0 by the hypothesis, which is a contradiction.
Therefore we conclude that (2.5) is fully controllable at o € I, and so the system
is fully controllable on I. [ |

e
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Corollary 2.1 Let 7} be maximal Hamiltonian difference operator generated by
I. Then for any 7, < 72 € I*, V€, € C*", there exists y(t),t € [y1,72], such that
yn) =& y(r2) =n.

Furthermore, y € D(T).

Proof From Lemma 2.4, we have that for any v, < 72,7 € I,y € I*,V€&,n € C?",
there exists f € I3, (I) such that the solution y(t) satisfying the equation

JAy(t) = P()R(y)() + WOR() (1)t € 11,72 = 1]

with y(1) = & y(r2) = 7.
Further, from Lemma 2.4, we can extend y(t) to the whole interval I with y(t) =0
for ¢ outside [y1,72) satisfying

JAy(t) = P()R(y)(2) + W (£)R(9)(t)
for some g € I, (I). Clearly, y € I3,(I) and y € D(T}). The proof is complete. [ |

Lemma 2.5 For each f € D(T}), there exists a decomposition f = f_ + fy + 2.
Here f- € D_(T}), f+ € D+(T1) and z € D(Ty).

Proof Take f € D(T1) and construct functions f_ and f; as follows:

W he= W P2e
f+('):={ ), t2ariier 0= {f(t), CEh@a=il 7

for some ¢ € I*.
Then from Lemma 2.4, we have that fix € D(T}).
Furthermore, we have that f_ € D_(T1), f+ € D+(Ty) and f—(f-+ f+) € D(Tp).
Set z = f— f_ — f4, then f = f_ + fi + 2, as required. [ |

Theorem 2.1 Let S = D(T})/D(Ty) be the boundary space. Then both Sy are
symplectic subspaces of S, where the symplectic forms defined in Si are the same as
that defined in S. Moreover, S = S_ @ S, with [S_:S,]=0.

Proof For any given f € S. Let f = {f + D(To}, then f = f_ + fy + 2, with
f- € D_(TY), f+ € D4(T}) and z € D(Tp). So f=f_+fy with fx € D5(T}). Thus
§S=8_+8;. iy N

On the other hand, if f € S— N Sy, then [f : S] =0, since [S— : S4] = 0. Hence
f=0. Thus S=S_®Sy.

It is easy to see that both Sy are linear subspaces of S. Now we show that both
Sy are symplectic subspaces of S. Define the symplectic forms in Sy the same as
that defined in S. Thus we need only to prove that the symplectic forms in Sy are
non-degenerate.

In fact, if [f : S4] = 0, then [f : S] = 0, since S = S_ & S,. So f = 0, since S is
non-degenerate. The proof is complete. (]

/A
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Definition 2.5 Let S = D(T})/D(Ty) with the symplectic form [f : §] be complex
symplectic space of dimension 2d = 2d*. Define the following symplectic invariants
of S:

max { complex dimension of linear subspaces whereon Im [v : v] > 0 for all v # 0}
max { complex dimension of linear subspaces whereon Im [v : v] < 0 for all v # 0}
A := max { complex dimension of Lagrangian subspaces of S},

p.q are called positivity index and negativity index of S, respectively, A is called the
Lagrangian index. Further define the excess of S : Ez(S) :=p —q.

Lemma 2.6 Let S = D(T1)/D(Tp) with the symplectic form [f : 4 be complex
symplectic space of dimension 2d = 2d*, then

p=q=d, so Ex=0.

Proof From Lemma 2.3, S is symplectic isomorphic to €% with symplectic form
[:]1. Again we know that

p = number of (+i) terms on the diagonal of matrix K,
q = number of (—i) terms on the diagonal of matrix K '

by Theorem 1 in [10]. This complete the proof. n

Definition 2.6 Let S = D(Ty)/D(Ty) be the boundary symplectic space for | as
above.

A vector v € S is separated at a in case v € S_. Similarly, a vector v € S is
separated at b in case v € Sy. If v € S is neither separated at a, nor separated at b,
then v is called coupled.

Theorem 2.2 Let S = D(T)/D(Ty) = S- & S, be the boundary symplectic 2d-
space for | as above, then

(1) The vector v € S is separated at the left endpoint a of I, that is v € S—
if and only if v = {f- + D(To)} has a representative function f_ € D_(Ty), so
f-(t)=0,a <t < b+1 for some « € I* in case of I = [a,b]; :lL",'( f-(t) = 0 in case
of I = [a, 00). r

The vector v € S is separated at the right endpoint b of I, that is v € S if and
only if v = {f4 + D(To)} has a representative function fi € Dy (T}), so fy(t) =
0.a <t <3 forsome el

v is coupled in case for each of representative functions f,Va < a, 4 < b+1, 3tg,a <
to < aor 8 < tg < b+1, such that f(to) # 0in case of I = [a,b]; Ya < a < o0, 3t,a <
to < oo such that f(to) # 0 or ‘h_",’g f-(t) =0 in case of I = [a, ).

(2) Each function f € D(Ty) if and only if f(a) = f(b)=0. Here f(b) = 0 means
the limit ‘lim f(t) =0 in case of I = [a,).
oo

e A
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(3) If # € S have one representative function 2 with h(b) = 0, then every repre-
sentative function u of ¢ satisfies u(b) = 0, and moreover, v € S_. Here the meaning
of u(b) = 0 is the same as (2) above.

Similar results hold for the endpoint a.

Proof (1) The vector v € S_ just in case v = f- = {f- + D(Tp} for some function
f- € D_(T}). This means that there exists € I*, such that f(t) =0,a <t <b+1
in case of I = [a,b], ’li_{lgcf_(t) =0 in case of I = [a, 00).

The conclusions for v € Sy and v€S_ U S, are similar.

(2) If f € D(Tp), then [g : f] = 0, for all g € D(T}). From Lemma 2.4, choose
gi € D(Th), s.t. gii(a) = 1,gij(a) = 0,1 < j < 2n,j # i.gi(t) = 0,t > c for some
ceI*yi =12 ,2n Then from [f : g;] = g;Jf|5 = 0, we obtain f(a) = 0.
Similarly, we can conclude that f(b+ 1) = 0 in case of I = [a,b]; ‘121010 f-(t) =0in
case of I = [a,00). Thus f(b) =0.

The converse is evident from Green’s formula and the definition of D(Tp).

(3) If & € S have one representative function h with h(b) = 0, then each function
in 9 = h = {h+ D(Ty)} satisfies v(b) = 0 from (2). In this case, it is clear that
heD_(Ty),sov=heS_.

The case at a is similar, and the proof is complete. |

From the second result of Theorem 2.2, we can conclude that {f + D(Tp)} =
{h+ D(Ty)} € S if and only if f(a) = h(a) and f(b) = h(b).

Corollary 2.2 Sy can be rewritten as

S_={f € S|f(b) =0} (2:6)
and
Sy ={f € S|f(a) = 0} (2.7)
Proof Set
51 = {f € 51(5) = 0} and $» = {f € S|f(a) = 0}.
¢ From Theorem 2.2, we know that the descriptions of S;. S, are meaningful. Now we
3 prove that S_ = S,,S; = 5.

_Note that S_ = WD_(T}), it is evident that each function in D_(T}) must satisfies
f(b) = 0. so each function in S_ must belong to Sy, that is S_ C Sy. Thus we need
verify only the converse. Take any function f € Sy. So f € D(Ty) with f(b) = 0.
Then from Corollary 2.1, there exists some f_ € D_(Ty) with f_(t) = f(t),a<t < a

for some a € I Thus f — f_ € D(Ty), so f- = f and f € WD_(T}), this implies that
S; € S_ and hence S_ = S as required.

An analogous argument holds for Si. |
1S
Definition 2.7 Let S = D(7})/D(Ty) be the boundary symplectic space for [ as
" above. Define the coupling grade of Lagrangian space L:

grade L=A_ - dim LNS_=A; — dim LN S4.

o/
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Define the necessary coupling of L:
Nec-coupling L=A — dim LNS_ — dim LN S,.

A Lagrangian d—space L C S is called strictly separated if Nec-coupling L = 0;
L C S is called totally coupled if Nec-coupling L = A.

A basis of L is called minimally coupled if it contains exactly (Nec-coupling L)
vectors, each of which is coupled.

The next Theorem describe all possible bases for a given Lagrangian and the range
of coupled grade for all Lagrangian spaces. It is a special case of Corollary 3 and The-
orem 4 in [10].

Theorem 2.3 Consider the Hamiltonian system (2.1). By the GKN-Theorem in
[13]. there is a one to one correspondence between the self-adjoint operators 7' gener-
ated by ! with domain D(T') and the Lagrangian n—spaces L in S. Namely, for each
L C S, take any basis of 2n-vectors fl, fg, selag f,‘ and any representative functions
firfaree+  Ja € D(T1), then D(T) = c1fy + cofa + -+ + cafa + D(Ty) for arbitrary
complex constants ¢y, - -+ ,¢q4 € C. Thus from Theorem 2.2, we have that all f € D(T")
can be determined (modulo D(7p)) by the homogeneous linear boundary conditions

f(a) = erfi(a) + cafo(a) + -+ + cafa(a),

F®) = et fid) + 2 fo(b) + - + cafa(b),

for choices of ¢;,- -+, cq. Furthermore,

(i) each base of Lagrangian d-space contains at most dimL N S_ vectors in S_, at
most dimL N S vectors in Sy, and at least (Nec-couplingL) vectors neither in S_
nor in Sy.

(ii) For each integer k = 0,1, -+, min{A_, A}, there exists a Lagrangian d-space
Ly with gradeLy = k.

(iiii) For each Lagrangian d-space L C S, and each triple {a, 3,7} of non-negative
integers satisfying a + 4 +v = d, and

a< dimLNS.,f< dim LNSy,y > Nec-coupling L,

there exists a basis for L consisting of a vectors in S_,3 vectors in Sy, 5 vectors
neither in S— nor in S,

(iv) For each Lagrangian d-space L of S, there exists a minimally coupled basis for
L with exactly (Nec-coupling L) basis vectors each coupled on I, and consequentially
exactly (dim LN S-) vectors each separated at the left, and (dim L N Sy) vectors
each separated at the right of I*.

Proof Note that the boundary space S is a complex symplex space and has a di-

rect sum decomposition, and furthermore dimS = 2d = 2dimL, the result can be
concluded immediately from the Corollary 3 and Theorem 4 in [10]. "

T
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3 Classification of all boundary conditions for self-
adjoint extension in the limit circle case
In this section, we shall describe explicitly the kinds of boundary conditions for

self-adjoint operators 7" generated by ! when [ is in limit circle case that is the defi-
ciency indices d* = 2n.

Definition 3.1 Consider the Hamiltonian system (2.1). Assume that { is in limit
cirele case. Let Th and Ty be the maximal and minimal operators generated by ! in
the complex Hilbert space 12, (). Define the evaluation map

v: D(Ty) — '™ wr g ;
£=(fuo foreo o fo) T o wf = (fi(a), fala), -, Fon(a), Fr(B), F2(B) -+ . fan (D))

and also the evaluation map ( which is still denote by ») on the boundary space
§ = D(Ty)/D(To),

v:§—Cin
F={f + D)} = vf = (fila), fala), - , fon(@), L®), F2B), - Fan )T,

which is well-defined since vD(Tp) = 0.

Lemma 3.1 Consider the complex vector space C*, and define the quasi-bilinear

Ty, (O Q)
form [:] on G by [u: v] = w* Fv for u,v € CI™ with F = (;I" g g O—I,,
0 0 I, O

Then C** with the form () is a complex symplectic space of dimension 4n and excess
=0.

Further, the linear subspaces of C",

C? = {u € C™ugpyy =+ = wgn = 0}
and
C¥ ={ueC™ = =uy, = 0}
determine a direct sum decomposition of C1":
c'" = ¢ @ G}, with [C2": G2 = 0.

2n

Hence both C3 are complex symplective 2n—subspaces, and their symplectic in-
variants are Ex_ = Exy =0and A_ = Ay =n,

Proof Note that I is
[1] is & complex symplect

kew-Hermitian and nonsingular, then we have that C* with
space of dimension 4n,

g . i
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) 0 0
Again F is congruent with G = 3 (;'l" (l”" g . This implies that
0 0 ily,
Ez=0.
It is obvious that C2" and C3" are symplectic 2n—sul of C", corr ding
to the 2n x 2n skew-Hermitian matrices o In and e =i , respec-
-I, 0 I, O

tively. Furthermore, it is easy to see that
= oive et swith{|G SesN =igl
Now we compute the symplectic invariants for C2* and Cﬁ_".
Since F' is a real skew-symmetric matix with eigenvalues of (+i)2n—fold and

(=i)2n— fold. Hence, the symplectic invariants of C3" are dimC3" = 2n, Bxy =
0,A+ = n, respectively. |

Theorem 3.1 Consider the Hamiltonian system (2.1). Assume that / is in the limit
circle case. Let S = D(T)/D(Ty) = S- & Sy be the boundary symplectic 2n-space
for I as above, then the evaluation

v:S§—Cin
is a symplectic isomorphism of S with the form [:] onto C*™ with the form [u : v] =

u*Fv.
Moreover, vS— = C?", and vS; = C2". So the symplectic invariants for S are

dim S =4n, Ex = 0,A = 2n,
and further the symplectic invariants for Sy are
Bry =0,A: =n.

Proof Clearly v is a linear map on domain D(7}) and hence on S, and is surjective
onto C'™. Furthermore, from Lemma 2.4, we obtain that v is injective on S, and
hence v define a lincar isomorphism of the complex vector space S onto C,

By a simple calculation, we can find that

[ 9) = g"Jflk = () F(vf) = [vf : vi).

form is preserved under the map v of S onto ¢,
% ¢ isomorphism of S onto C*", and it follows that the sym-
same as those of C*™ and C3". Thus the results can be

nian system (2.1). Assume that | is in the
rem in [13), there is a one to one corre-
ors T generated by | with donaiy, D(T)
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and the Lagrangian 2n—spaces L in S. Namely, for each L C S, take any basis of
on-vectors fi, fa, -+ .fg,. and any representative functions fy. fa,-+-, fon € D(T}),
then D(T) = ¢ fy + cafs + +++ + canfon + D(Tp) for arbitrary complex constants
¢1,++ 1 Can € C. Thus from Theorem 2.2, we have that all f € D(T) can be deter-
mined (modulo D(7y)) by the homogeneous linear boundary conditions

fla) = e1fi(a) + c2fa(a) + - + c2n fan(a),
F(b) = c1fi(0) + c2f2(b) + -+ + can fon(b),

for choices of ¢1, -+« . c2n. Furthermore

(i) each base of Lagrangian 2n-space contains at most (n—gradeL) vectors in S_,
at most (n—gradeL) vectors in Sy, and at least (Nec-couplingL) vectors neither in
S_ nor in S;. Here the coupling grade of L is defined by

grade L=n— dim LNS_- =n— dim LNS,,

S0
0< grade L < n.
(ii) For each integer k = 0,1,:-- ,n, there exists a Lagrangian 2n-space Ly with
gradeLy = k.
(iii) For each Lagrangian d-space L C S, and cach triple {c, 3,7} of non-negative
integers satisfying a + 8 + v = 2n, and

a<n- grade L,3 < n— grade L,y > Nec-coupling L,

there exists a basis for L consisting of o vectors in S_,3 vectors in S, 7 vectors
neither in S_ nor in S,

(iii) The necessary coupling of L is given by Nec-coupling=2gradeL.

(iv) For each Lagrangian 2n-space L of S, there exists a minimally coupled basis
for L with exactly (Nec-coupling L) basis vectors each coupled on I*, and consequen-
tially exactly (n-grade L) vectors each separated at the left, and (n-grade L) vectors
cach separated at the right of I*.

Proof According the Definition 2.7, the results (i),(ii) and (iv) can be obtained
immediately by applying Theorem 2.3 and Theorem 3.1. (iii) can be concluded if we
note that A = A_ + Ay + |Exy|, so A= A_ + A} in this case.

From Theorem 3.2, we can tabulate the structure of minimally coupled bases for
Lagrangian 2n—spaces L of every possible grade, with special attention to the cases of
separated boundary conditions at the left and right endpoints, and coupled boundary
conditions.

Received: March 2005. Revised: April 2006.
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