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ABSTRACT
We investigate the notion of topological entropy of a semigroup of continuous
maps and provide several of its basic properties.

RESUMEN
Investigamos la nocién de entropfa topolégica de un semigrupo de aplica-
ciones continuas y damos varias de sus propiedades bésicas.
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1 Introduction

The concept of entropy of a transformation plays a central role in topological dynam-
ics. The notion of topological entropy was introduced by Adler, Konheim and McAn-
drew in [1] as an invariant of topological conjugacy. Later, Bowen [4] and Dinaburg
[6] presented an equivalent approach to the notion of entropy in the case when the
domain of the considered transformation is a metrizable space. The topological en-
tropy h(f), of an endomorphism f, measures the complexity of the transformation
acting on a compact topological space in the sense that it shows the rate at which
the action of the transformation disperses points.

Since the entropy appeared to be a very useful invariant in ergodic theory and
dynamical systems, there were several attemps to find its suitable generalizations for
other systems such as groups, pseudogroups, graphs, foliations. Among the others,
Ghys, Langevin and Walczak in (9] proposed a definition of a topological entropy
for finitely generated pseudogroups of continuous transformations. Bi§ and Walczak
in (3] applied the notion of entropy of a group to hyperbolic groups in the sense of
Gromov to study its geometry and dynamics.

Also, there have been attemps to introduce several entropy-like invariants for non-
invertable maps. Langevin and Walczak in [12], Hurley in [10], Langevin and Przyty-
cki [11], Nitecki and Przytycki ([15]) studied different entropy-like invariants. Nitecki
in [14] investigated topological entropy and preimage structure of maps. Mihailescu
and Urbanski in [13] focused on inverse topological pressure and the Hausdorff dimen-
sion of the intersection between the local stable manifold and the basic set. Hurley
([10]) established relations between topological entropy, preimage relation entropy,
preimage branch entropy and point entropy of a single transformation. The first
author has introduced in ([2]) the concept of topological entropy of semigroups and
generalised Hurley’s results on entropies of a single transformations to the case of a
finitely generated semigroup of transformations acting on a compact space.

In this paper we examine in detail the concept of this (introduced in [2]) topo-
logical entropy of semigroups. Our article is organized as follows. In Section 1, we
recall the notion of topological entropy for a finitely generated semigroup and, for the
convenience of the reader, provide some results. Inh the Sections 2 and 3 we formu-
late analogues of properties of topological entropy in the context of an action of any
finitely generated semigroup of continuous maps on a compact metric space. In the
last two sections we state some sufficient conditions for a finitely generated semigroup
to have zero, positive or finite entropy. Ending this introduction we would like to add
that the concept of entropy we consider in this paper is unrelated and incompatible
with the notions of topological entropy dealt with in (7], (8], and [5].

Acknowledgment. We wish to thank the refere of our paper for valuable remarks
which improved the final exposition of the article as well as for the quaestions concern-
ing connections between the entropy of a semigroup and the quasi-isometry invariant
in the language of combinatorial/geoemtric group theory, which may lead to a new
promising direction of research.
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2 Topological entropy of a semigroup

Many useful properties of the concept of entropy of a single transformation can be
found in [16]. Let X be a compact metric space with a distance function d. Consider
a semigroup G of continuous transformations of X into itself. The semigroup G is
assumed to be finitely generated, e.g. there exists a finite set G; = {fi, ..., fx} such

that
c=Jlen
neN
where
Gn={g10..ogn: X > X}5, _g.cGr-
We always assume that idx, the identity map on X is in Gy. This implies that G,, C
Gy, for all m < n. Following [9] we say that two points p, ¢ € X are (n,e)—separated by
G (with respect to the metric d?, ) if there exists g € Gy, such that d(g(p), g(q)) > €,
e.g.
oz (P, @) = max{d(g(p), 9(q)) : g € Gn} Z €.
We say that a subset A of X is (n,e)—separated if any two distinct points of A have
this property. All (n,e)—separated subsets of X are always finite, since X is compact.
Therefore, we can write

s(n, e, X) := max{card(A) : A is (n,e)—separated subset of X}.
The following definition has appeared in [2].
Definition 1 Let
h(G,Gy, X) = El_'.u& li:lrlsolip % log(s(n, e, X)).
I’I'hccquanlity h(G,G1, X) is called the topological entropy of a semigroup G generated
0y G.

As it was shown in [2] the topological entropy of a semigroup G depends on the
generating set G,. It may however still serve as a natural generalisation of the notion
of the topological entropy of a continuous mapping f : X — X. Indeed, Let f: X — X
be a continuous transformation of a compact metric space X and G(f) a semigroup
generated by Gy (f) = {idx, f}. Then, we get that

h(f) = MG(f), Gi(£)s
where h(f) is the entropy of f. We can also describe the entropy of a semigroup G
generated by Gy in terms of (n,€)—spanning sets. Namely, a subset A of X is called
(n,&)—spanning if for every x € X there exists a € A such that
Ban (2, 0) = max{d(g(@). (@) : g € G} <.

The minimum of cardinalities of all (n, £)—spanning sets is denoted by 7(n, &, X). The
following characterization of the topological entropy of a semigroup G generated by
a finite set Gy has been established in [2].
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Lemma 1 For any semigroup G generated by a finite set Gy the following equality
holds

7

hG,Gy, X) = EE}&L lims;p ll log(r(n, &, X)).

The notion of topological entropy of a semigroup of transformations shares many
common features with the concept of the topological entropy of a single transforma-
tion. We examine them in detail in the following sections.

3 First results

A classical result concerning the entropy of a single transformation f: X — X states
that for any integer n > 1 we have h(f") =n-h(f). A corresponding result holds for
the entropy of a semigroup of transformations.

Theorem 3.1 If (G,G,) and (G*,G7) are finitely generated semigroups generated
respectively by Gy = {idx, g1, ...,gx} and G} = {idx,g7",....9"}, m € N, then

h(G*,G}) =m - h(G,G)).

Proof. Denote by (X, dx) the compact metric space the semigroup G acts on. Con-
sider two points z,y € X that are (n,e)—separated by G*. This means that there
exists p € G, such that dx (p(z), p(y)) > €. Since g is the composition gJ*o...og", with
some g1, .., gn € G1, we have that dx(gj"o, ..., 09" (), g\'0, ..., 091" (y)) = €. Thus,
the points x,y are (m-n, )—separated with respect to (G, G)). So, s(n, ¢, (G*,G})) <
s(m - n,e,(G,Gy)) and taking the appropriate limit, we obtain that

W(G*,G}) <m-h(G,G1).

Starting to prove the opposite inequality, let A C X be an (m - n, €)—spanning subset
of X, with respect to (G,Gy), with minimal cardinality. Then, for any z € X there
exists a € A such that for any g € G, we have dx (g(z), g(a)) < €. So, in particular,
for any @ € X there exists a € A such that for any n-tuple g7",..., g1, where all
elements g; are in G,, we have

dx (gito, ..., 090 (x), givo, ... 0gin(a)) < €
Therefore, A is (n,)—spanning subset of X with respect to (G*,G}) and
card(A) = r(m-n,e,(G,G1)) 2 r(n,e, (G, GY)).

Passing to the appropriate limit, we obtain

m-h(G,Gy) > h(G",G}),

which completes the proof. |

If semigroups (G,G1) and (H,H;) act respectively on compact metric spaces
(X,dy) and (Y.d2), then (G x H,Gy x Hy) is a finitely generated semigroup, act-
ing on the compact space X x Y. We shall prove in this context the following.

e A\
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Theorem 3.2 If (G, G,) and (H, Hy) are finitely generated semigroups, then
hG x H,Gy x H\) = h(G,G,) + h(H, Hy)

Proof. In the topological space X x Y we consider the metric dxxy = dx + dy
inducing the product topology. Thus, the finitely generated semigroup (G x H, G x
H,) acts on the compact metric space (X x Y, dxxy). Fix now an (n, €/2)—separated
set (with respect to (G,G1)) A = {ai, ...,ap} C X with maximal cardinality, and an
(n,e/2)—separated set B = {bi,...,b,} C Y (with respect to (H, H;)) with maximal
cardinality. Then, for any two distinct elements (a,, b, ), (@i,,bj,) € A X B we get
that dxxy ((ai,, b5 ) (@i, b5,)) = €. This means that the points (ai,,bj, ), (aiy, bj,)
ave (n, €)—separated with respect to (G x H, Gy x H). So, card(A x B) (A) -
card(B) = s(X,n,e/) - s(Y,n,e/) and s(X x Y,n,e) > card(A x B) = s(X,n,e) -
s(Y,n,¢€). Passing to the appropriate limit, we get that

MG x H,Gy x Hy) > h(G,Gy) + h(H, Hy).

In order to prove the opposite inequality, we consider a set C C X with minimal
cardinality which is (n,e/2)—spanning with respect to (G,G;) and a set D C Y
with minimal cardinality which is (n,e/2)—spanning with respect to (H, Hy). Then,
card(C x D) = r(X,n,e/2) - r(Y,n,e/2) and C x D is (n,e)—spanning with respect
to (G x H,Gy x Hy). Thus, »(X x Y,n,e) < r(X,n,e/2) - 7(Y,n,e/2). Taking now
the appropriate limit, we get that

WG x H,G1 x Hy) < h(G,G1) + h(H, Hy).
The proof is complete. u
Theorem 3.3 If (G, G)) is a finitely generated semigroup acting on a compact metric

space (X, d), generated by Gy = {idx, g1, ..., gx}, and there exists a compact subset M
of X such that for every g; € Gy

gi: M — M
then,
(G, G1), X) > h((G™,G}"). M),

where (GM,GY1) is a semigroup acting on M, generated by
G = {idar, 1t - 9r}-

Proof. Denote by A an (n,e)— separated subset of M (with maximal cardinality)
with respect to (G, G2). This means that for two distinct points 2,y € A there
exists g € G such that das(glar (@), glar(y)) > €. But this eans that dx (g(z), 9(y)) >
€. Therefore, the set A is (n,e)— separated with respect to (G, G1), and consequently
s(n,e, (GM,G{)) < s(n,e,(G,G1)). We are thus done by passing the appropriate
limit when n — oo. |
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Theorem 3.4 Let (G, Gy) be a finitely generated semigroup acting on a compact met-
ric space (X, d), generated by Gy = {idx, g, ..., gx }. Assume that there exist compact
subsets My and My of X such that X = My U My and that for every j € {1,2,...,k}
9;(My) = M, and g;(My) = My Then

h((G, Gr), X) = max{h((GM, G}™), My), h((GM2,G112), My)}.

Proof. Let A; € M;, i = 1,2, be (n,&)—spanning sets with minimal cardinality, in
the respective spaces M;,i = 1,2. Since

card(Ay U Ay) < card(Ay) + card(Az) < 2 - max{card(A,), card(A,)}
and since A, U A, forms an (n, €)—spanning subset of X. We sce that
r(n,e, (G, Gy),X) < 2 -max{card(A,), card(A;)}
< 2max{r(n,e, (G“‘,G{”‘ ), My),r(n, e, (G““,GQ’Z), Ma)}.

Hence, passing to the appropriate limit, we obtain

R(G,G1, X) < max{h((GM',GM"), My), h((GM2, GY*) My)}.
Since, by Theorem 3, we have

R((G,G1), X) > max{h((G™, GI™) M), h((GM2, G Ma)},

we are done. n

4 Positive entropy

As before, let (X,dx) be a compact metric space. We consider continuous transfor-
mations of the space X into itself.

Theorem 4.1 If fi, fo : X — X are two surjective continuous maps of a compact
metric space X and Y s a closed subset of X such that f{*(Y) N f3 ' (Y) = 0 and
f,"(Y)uf{'(Y] CY, then h(G,Gy) 2 log2 > 0, where G, = {idx, f1, f2} and G is
the semigroup generated by G, .

Proof. Since f{'(Y) and f;'(Y) are two disjoint compact sets, the distance &
between them is positive. Fix € € (0,d). Since every map g : X — X, g € G is
ive, one can sc for every g € G exactly one point z, € g='(Y). Now, for
every n > 0 consider the set

An = {21 9 € Gn}, where G = {9 0gn-10...992001 : 91,---,9n € {fu, fa}}.
We shall show that A, is an (n,€)-separated set consisting of exactly 2" elements.
So. consider two arbitrary elements g # h from G,. Write g = g, 0g,-10...0¢g
and h = hy, o hy—10...0 hy, where gj, h; € {f1, fo} for all j = {1,2,..., n}. Since

A
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g # h, there exist k € {1,2,...,n} such that g; = hy, g2 = ha
gk # hx. Hence

..... gk—1 = hg—1, and

gk-10...091(29) € gk-10-..091((gn0--.091) 7 (Y)) C (gno-..00:) " (¥) C g5 '(¥)

and similarly

gk-10..-0g1(2n) € gr-10...0g1((Ano...0 hy) ' (Y))
=hg—10...0hi((hno...0 k)71 (Y)) C k' (Y).

Hence, d(gk—10 ... 0 g1(2g); gk-10...0g1(21)) > 6 > . Thus, the points z, and
2, are (n,e)-separated and, in particular z, # zj,. This latter statement implies that
the map g — 24, g € G, is bijective, and therefore s(n,e, X) > card(G'“) = ML,y
consequence h(G,Gy) > log2 > 0. We are done. | |

As an immediate consequence of this theorem and Theorem 3.3, we get the fol-
lowing.

Corollary 1 If for fi, f» € Homeo(S") there evists a closed interval I C S* such

that

@ el
and

N D=0

then, the semigroup generated by idx, f1, fo has positive entropy.

Theorem 4.2 If (G, G,) is a semigroup generating by the set Gy of Lipschitz trans-
formations with a common Lipshitz constant L, acting on a compact Riemannian
manifold M of dimension m > 1, then the entropy

h(G,Gy) <mlogL < +0.

Proof. Denote by d the metric on the Riemannian compact manifold M. It follows
from our assumptions that for any g € Gy,

d(g(x),9(y)) < Ld(z,y)-

Denote by A a maximal (n,€)— separated subset of M. Then, for any distinct a;,a; €
A we obtain
€ < dy**(ay,a2) < L"d(a1,a2).

Thus d(ay,as) > eL~™ which means that A is a (0,eL~")—separated subset of M.

Hence
vol M

< SRt e ol S
Hai P = M) = e )

For an m-dimensional manifold M we have that a ball B(z,7) centered at a point
2 € M and a radius r, satisfies the inequality

volB(z,r) > er™

L —
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with some positive constant ¢ independent of z and r. Thus,

vol M = vol M
minge mvol B(z, 2= teL=") = ¢(2-1eL-m)™’

and consequently
vol M

QO Oy
Passing to the suitable limits we thus get that h(G, G1) < mlog L, which finishes the
proof. |

s(n.e) <

5 Zero entropy and final remarks

Theorem 5.1 Let (G,G,) be a finitely generated semigroup acting on a compact
metric space X. Assume that the family {g : X — X}qgeq is equicontinuous. Then
h(G,Gp) = 0.

Proof. Denote by d the metric on the compact metric space X. Fix € > 0. Since
the semigroup G acts equicontinuously on X, there exists § > 0 such that if z,y € X
and d(z,y) < 6, then d(g(z),g(y)) < € for all g € G. Conequently, if A C X is
d-spanning (with respect to the metric d) subset of X, then A is (n,e)—spanning.
Hence 7(n,€) < cardA < oo, (the latter inequality is true since X is compact) and
therefore

1
hG,Gy) < lim lim = log(r(n,€)) = 0.
e—0n—oc 1
We are done. (]
As an immediate consequence of this theorem, we get the following.

Corollary 2 If (G,G)) is a finitely generated semigroup of isometries acting on a
compact metric space X, then h(G,G,) = 0.

Problem 5.2 It is well known that for a homeomorphism f : X — X of a compact
metric space X the equality h(f) = h(f~") holds. Is this also true in the case of semi-
groups generated respectively by h phisms idx. fy, ..., fx and i(lx.fl”,“.,f;‘
of the space X ?

Received: Dec 2004. Revised: Feb 2005.
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