# Global Solutions of Yang-Mills Equation

## Qikeng Lu 1

Institute of Mathematics, Academy of Mathematics and System Science Chinese Academy of Sciences, Beijing 100080, China lugik@public.bta.net.cn

### ABSTRACT

schobal and explicit solutions of Yang-Mills equations are given in the Minkowski space, conformal space and the de-Sitter spaces of arbitrary cosmology constants. The method used is concluded into a general theorem.

#### RESUMEN

Soluciones explícitas y globales de la ecuaciones de Yang-Mills son dadas en el espacio de Minkowski, en espacios conformes y en los espacios de De-Sitter con constantes cosmológicas arbitrarias. El método usado concluye en un teorema general.

> Key words and phrases: YM equation, homogeneous time-space Math. Subj. Class.: 70S15

It is known<sup>[1]</sup> that one of the Dirac's<sup>[2]</sup> conformal space  $\mathcal{M}$  is equivalent to the unitary group  $\mathbf{U}(2)$ , which is equivalent to the compacted space  $\overline{\mathbf{M}}$  of all  $2 \times 2$  Hermitian matrices, and an explicit global solution of the Yang-Mills equation was construct in  $\overline{\mathbf{M}}$ . In this article we at first construct other solutions from different Lorentz metrics defined on  $\mathcal{M}$ .

<sup>&</sup>lt;sup>1</sup>Partially supported by National Natural Science Foundation of China, Project 10231050/A010109.

We arrange the coordinates  $x=(x^0,x^1,x^2,x^3)$  of a point in the Minkowski space  ${\bf M}$  into a  $2\times 2$  Hermitian matrix

$$H_x = x^j \sigma_j = \sum_{j=0}^3 x^j \sigma_j,$$

where

48

$$\sigma_0 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \sigma_1 = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \sigma_2 = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right), \sigma_3 = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

We are to prove that

$$\mathbf{A}(x)_{j} = \frac{i}{8} \text{tr}[(I + H_{x}^{2})^{-1}(H_{x}\sigma_{\mu} + \sigma_{\mu}H_{x})](\delta_{j}^{\alpha}\delta^{\beta\mu} - \delta_{j}^{\beta}\delta^{\alpha\mu})\delta_{\alpha\beta\gamma}^{123}$$
(1)

is a  $\mathfrak{su}(2)$  gauge potential(connection), where the Greek indices run from 1 to 3, and satisfies the Yang-Mills equation

$$\mathbf{F}_{jk;l} \equiv g^{kl} \left( \frac{\partial \mathbf{F}_{jk}}{\partial x^l} + [\mathbf{A}_l, \mathbf{\hat{F}}_{jk}] - \left\{ \begin{array}{c} r \\ jl \end{array} \right\} \mathbf{F}_{rk} - \left\{ \begin{array}{c} r \\ kl \end{array} \right\} \mathbf{F}_{jr} \right) = 0, \tag{2}$$

where

$$\mathbf{F}_{jk} = \frac{\partial}{\partial x^j} \mathbf{A}_k - \frac{\partial}{\partial x^k} \mathbf{A}_j + [\mathbf{A}_j, \mathbf{A}_k] \tag{3}$$

and  $\left\{ egin{align*} r\\ jl \end{array} \right\}$  is the Christoffel symbol of a metric  $ds^2=g_{jk}dx^jdx^k$  which in the present case we choose  $l^1$ 

$$g_{jk} = \det(I + H_x^2)^{-1} \eta_{jk}.$$
 (4)

We should prove that  $A_j$  is actually a  $\mathfrak{su}(2)$ -connection. As the first step we construct a  $\mathfrak{sl}(2,\mathbb{C})$ -connection(a 2-component spinor connection) from the tensor (4) and reduce it to a  $\mathfrak{su}(2)$ -connection. In fact,  $\overline{\mathbf{M}}$  and  $ds^2$  are invariant under the transformation

$$T: H_y = (A + H_x B)^{-1} (-B + H_x A),$$
 (5)

where A, B are  $2 \times 2$  complex matrices and satisfy the condition

$$A^{\dagger}A + B^{\dagger}B = I$$
,  $A^{\dagger}B - B^{\dagger}A = 0$  (6)

with  $A^{\dagger}, B^{\dagger}$  denoted the complex conjugate and transpose matrices of A, B respectively.

Associated to the transformation (5) there is a  $SL(2, \mathbb{C})$  matrix

$$\mathfrak{A}_{T}(x) = \det(A + H_{x}B)^{\frac{1}{2}}(A + H_{x}B)^{-1}.$$
 (7)

Since  $\overline{\mathbf{M}}$  is transitive under the group  $\mathcal{G}$  formed from the transformations (5), the corresponding  $\{\mathbf{M}_T(x)\}_{T \in \mathcal{G}}$  are the transition functions of the natural principal bundle  $P(\overline{\mathbf{M}}, SL(2, \mathbb{C}))$ . We apply the following theorem(c.f. [3] Theorem 2.4.2) Theorem A. If M is a 4-dimensional Lorentz spin manifold, then

$$\Gamma_{j} = \frac{1}{4} \Gamma_{bj}^{a} \eta^{bc} \sigma_{a} \sigma_{c}^{*}$$

 $(\sigma_c^* = \sigma_2 \overline{\sigma}_c \sigma_2^{\dagger})$  is a  $\mathfrak{sl}(2, \mathbb{C})$ -connection on the principal bundle  $P(\mathfrak{M}, SL(2, \mathbb{C}))$ , where

$$\Gamma^{a}_{bj} = e^{(a)}_{k} \frac{\partial}{\partial x^{j}} e^{k}_{(b)} + \begin{Bmatrix} k \\ lj \end{Bmatrix} e^{(a)}_{k} e^{l}_{(b)}$$

and

$$ds^2 = a_{ik}dx^jdx^k = n_{ab}\omega^a\omega^b$$

is the Lorentz metric with  $\omega^a = e_j^{(a)} dx^j$  and  $e_{(a)}^j$  satisfying  $e_{(a)}^j e_j^{(b)} = \delta_0^a$ . Since  $\sigma_0^\star = \sigma_0$  and  $\sigma_\alpha^\star = -\sigma_\alpha (\alpha = 1, 2, 3)$ , The  $\mathfrak{sl}(2, \mathbb{C})$ -connection in Theorem A can be written into

$$\Gamma_{j} = \frac{1}{2} \Gamma_{0j}^{\alpha} \sigma_{\alpha} + \frac{i}{4} \Gamma_{\beta j}^{\alpha} \delta_{\alpha \beta \gamma}^{123} \sigma_{\gamma}, \qquad (8)$$

where the Greek indices run from 1 to 3 and  $\{\sigma_{\alpha}, i\sigma_{\alpha}\}_{\alpha=1,2,3}$  is a basis of the Lie algebra  $\mathfrak{sl}(2, \mathbb{C})$  of  $SL(2, \mathbb{C})$  and  $\{i\sigma_{\alpha}\}_{\alpha=1,2,3}$  is that of the Lie algebra  $\mathfrak{su}(2)$  of SU(2). Since  $\{U\sigma_{\alpha}U^{-1}\}_{\alpha=1,2,3}$  for any  $U \in SU(2)$  is still a basis of the vector space generated  $\{\sigma_{\alpha}\}_{\alpha=1,2,3}$ , according to the reduction theorem of connections,

$$A_{j} = \frac{i}{4} \Gamma^{\alpha}_{\beta j} \delta^{123}_{\alpha \beta \gamma} \sigma_{\gamma} \qquad (9)$$

is a  $\mathfrak{su}(2)$ -connection on the reduced principal bundle  $P_1(\mathfrak{M}, SU(2))$  of  $P(\mathfrak{M}, SL(2, \mathbb{C}))$ .

In case that  $\mathfrak{M} = \overline{M}$  and  $ds^2$  is defined by (4),  $A_i$  is exactly expressed by (1). It remains to prove that such A; satisfies the Yang-Mills equation (2). In fact, according to (1) the elements of the matrices  $A_j$  (j = 0, 1, 2, 3) are all odd functions of  $x^j$ . Obviously  $[A_j(x)]_{x=0} = 0$ . Hence all elements of  $F_{jk}$  are even functions of  $x^j$ . Therefore all elements of  $\mathbf{F}_{jk;l}$  are odd functions of  $x^j$  and consequently  $[\mathbf{F}(x)_{jk;l}]_{x=0} = 0$ . Since  $\overline{M}$  is transitive<sup>[1]</sup> under the group G, for any point  $x_0$  of  $\overline{M}$  there is at least a transformation (5) which carries the point  $x = x_0$  to the point y = 0. Since both  $q_{ik}$ and Fikit are covariant under the transformation (5),

$$0 = [\mathbf{F}(y)_{jk;l}]_{y=0} = \left[ \mathfrak{A}_T(x)\mathbf{F}(x)_{pq;r} \mathfrak{A}_T(x)^{-1} \frac{\partial x^p}{\partial y^q} \frac{\partial x^q}{\partial y^k} \frac{\partial x^r}{\partial y^l} \right]_{x=x_0},$$

which implies that  $[F(x)_{pq;r}]_{x=x_0} = 0$ . Since  $x_0$  can be an arbitrary point of  $\overline{M}$ , we have  $F(x)_{ik:l} = 0$  and obviously it satisfies the Yang-Mills equation  $g^{kl}F_{ik:l} = 0$ .

Since M is the compacted Minkowski space M and the Yang-Mills equation is conformal invariant, the  $\mathfrak{su}(2)$ -connection  $A_i$  defined by (1) also satisfies the Yang-Mills equation

$$\eta^{kl}\left(\frac{\partial}{\partial x^l}\mathbf{F}_{jk} + \mathbf{A}_l\mathbf{F}_{jk} - \mathbf{F}_{jk}\mathbf{A}_l\right) = 0$$

in the Minkowski space M.

Another solution of the Yang-Mills equation on  $\overline{\mathbf{M}}$  can be deduced from another Lorentz metric.  $\overline{\mathbf{M}}$  is diffeomorphic<sup>[4]</sup> to  $S^1 \times S^3$  and on the later space there is naturally a Lorentz metric

$$ds^{2} = (dx^{0})^{2} - (1 + x^{\alpha}x^{\alpha})^{-2}\delta_{\mu\nu}dx^{\mu}dx^{\nu}, \qquad (11)$$

OUBO

which can be regarded as the metric of M. By Theorem A and formula (8),

$$\mathbf{A}_{0} = \Gamma_{0} = 0$$
,  $\mathbf{A}_{\mu} = \Gamma_{\mu} = -\frac{i}{2}(1 + x^{\nu}x^{\nu})^{-1}(\delta^{\alpha}_{\mu}x^{\beta} - \delta^{\beta}_{\mu}x^{\alpha})\delta^{123}_{\alpha\beta\gamma}\sigma_{\gamma}$  (12)

is a  $\mathfrak{su}(2)$ -connection. Since  $S^1\times S^3$  and  $ds^2$  defined by (11) is invariant under  $SU(2)\times S(4)$  which acts on  $S^1\times S^3$  as the transformation group of  $S^1\times S^3$  and the elements of the matrices  $\mathbf{A}_j$  are odd functions of  $x^j$ , it can be proved that  $\mathbf{A}_j$  satisfies the Yang-Mills equation by the same argument as in case that  $ds^2$  is defined by (11). This is a static solution because  $\mathbf{A}_j$  are not depend on  $x^0$ .

Our method can also be applied to construct solutions of the Yang-Mills equation on the de-Sitter spaces defined by  $Dirac^{[5]}$ . The de-Sitter space of cosmology constant  $\Lambda$  is denoted by  $dS(\Lambda)$ . Some authors call it anti-de-Sitter space when  $\Lambda < 0$  and denote it by AdS. In fact,  $dS(\Lambda)$  is a domain(connected open set) of the real projective space  $\mathbf{RP^4}$ . In the local coordinate (non-homogeneous coordinate)  $x = (x^0, x^1, x^2, x^3)$  of  $\mathbf{RP^4}$  the domain  $dS(\Lambda)$  is defined by the inequality<sup>[6]</sup>

$$1 - \Lambda \eta_{jk} x^j x^k > 0 \qquad (13)$$

and there is a Lorentz metric

$$ds_{\Lambda}^2 = \left[ \frac{\eta_{jk}}{1 - \Lambda \eta_{pq} x^p x^q} + \Lambda \frac{\eta_{jr} x^r \eta_{ks} x^s}{(1 - \Lambda \eta_{pq} x^p x^q)^2} \right] dx^j dx^k. \tag{14}$$

The space  $dS(\Lambda)$  is invariant under the transformation

$$y^{j} = \sigma(a)^{\frac{1}{2}} \frac{x^{k} - a^{k}}{1 - \Lambda n_{rr} a^{p} a^{q}} D_{k}^{j},$$
 (15)

where  $a = (a^0, a^1, a^2, a^3)$  and  $D_k^j$  satisfy

$$\sigma(a) = 1 - \Lambda \eta_{pq} a^p a^q > 0$$
,  $\eta_{pq} D_j^p D_k^q = \eta_{jk} + \Lambda \sigma(a)^{-1} \eta_{jp} a^p a^q$ .

Obviously, when a=0, (15) is a Lorentz transformation. The metric  $ds_{\Lambda}^2$  is invariant under the transformation (15) and  $dS(\Lambda)$  is transitive under the group of all such transformations. In fact this is the group SO(2,3)(in case  $\Lambda<0$ ) or the group SO(1,4)(in case  $\Lambda>0$ ) that acts on  $dS(\Lambda)$ . Moreover the metric  $ds_{\Lambda}^2$  under the coordinate transformation

$$x^{j} = \left(1 + \frac{1}{4}\Lambda \eta_{pq} u^{p} u^{q}\right)^{-1} u^{j}, \quad (j = 0, 1, 2, 3)$$
 (16)

is changed to be

$$ds_{\Lambda}^2 = (1 - \frac{1}{4}\Lambda \eta_{pq}u^p u^q)^{-2} \eta_{jk} du^j du^k$$
 (17)

which is a conformal flat metric.

That the de-Sitter spaces are spin manifolds is implied in the Dirac's construction of the  $Spin\frac{1}{2}$  wave equation<sup>[5]</sup>. Applying Theorem A and the theorem of reduction of connections, we obtain the  $\mathfrak{su}(2)$ -connection

$$\mathbf{A}_{j} = -\frac{i}{8}\Lambda(1 - \Lambda \frac{1}{4}\eta_{pq}u^{p}u^{q})^{-1}(\delta_{j}^{\alpha}u^{\beta} - \delta_{j}^{\beta}u^{\alpha})\delta_{\alpha\beta\gamma}^{123}\sigma_{\gamma}, \tag{18}$$

which satisfies the Yang-Mills equation because the elements of  $\mathbf{A}_j$  are odd functions of  $u^j$ .

We conclude in general that

**Theorem B.** If  $\mathfrak{M}$  is a 4-dimensional spin manifold and possesses a Lorentz metric which is invariant under a Lie group  $\mathfrak{G}$  that acts on  $\mathfrak{M}$  transitively, and there is an admissible local coordinate  $x^j(j=0,1,2,3)$  such that the  $\mathfrak{su}(u)$ -connection  $A_j$  deduced from Theorem A are odd functions of  $x^j$ , then  $A_j$  satisfies the Yang-Mills equation.

Received: March 2005. Revised: April 2005.

### References

- QIKENG LU, A global solution of the Einstein-Yang-Mills equation on the conformal space, Science in China(Series A), 45(2002), 342-355.
- [2] P. A. M. DIRAC, Wave equation in the conformal space, Ann. Math., 37(1936), 171-201.
- [3] QIKENG LU, Differential Geometry and its Application to Physics (in Chinese), Science Press, Beijing, 1983.
- [4] QIKENG LU, SHIKUN WANG, KE WU, Global solutions of Einstein-Dirac equation, Asian J. Math., 8 (2004), 1-26.
- [5] P. A. M. Dirac, The electron wave equation in the de-Sitter space, Ann. Math., 36 (1935), 657-609.
- [6] H. K. LOOK(=QIKENG LU), G. L. TSOU(=ZHENLONG ZHOU), H. Y. KAO(=HANYING GAO), The kinematic effect in the classical domains and the red-shift phenomena of extra-galatic objects(in Chinese), Acta Physica Sinicas, 23 (1974), 225-238.