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ABSTRACT
Global and explicit solutions of Yang-Mills equations are given in the Minkowski
space, conformal space and the de-Sitter spaces of arbitrary cosmology constants.
The method used is concluded into a general theorem.

RESUMEN
Soluciones explicitas y globales de la ecuaciones de Yang-Mills son dadas en
el espacio de Minkowski, en espacios conformes y en los espacios de De-Sitter con
constantes cosmoldgicas arbitrarias. [l método usado concluye en un teorema
general,
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It is known!! that one of the Dirac's!?) conformal space M is equivalent to the uni-
tary group U(2), which is equivalent to the compacted space M of all 2 x 2 Hermitian
matrices, and an explicit global solution of the Yang-Mills equation was construct in

M. In this article we at first construct other solutions from different Lorentz metrics
defined on M.
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We arrange the coordinate:

x?,2%) of a point in the Minkowski space
M into a 2 x 2 Hermitian matrix

3
H =l ayi= Zr’a,.
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We are to prove that

where

A@); = gul(l + H) ™ (Hoo + o, Ho)|(076% ~ 6759608, ()

is a su(2) gauge potential(connection), where the Greek indices run from 1 to 3, and
satisfies the Yang-Mills equation

o [ OF r r
Fjig = y“(on,k + A Fj] - { it }Frk - { i }Fjr) =0, 2)
where
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and { ;l } is the Christoffel symbol of a metric ds* = y,..d.r’d.t" which in the present
case we choosell]
gik = det(I + H?) 'y ()
We should prove that A; is actually a su(2)-connection. As the first step we
construct a sl(2, C)-connection(a 2-component spinor connection) from the tensor (4)

and reduce it to a su(2)-connection. In fact, M and ds® are invariant under the
transformation

T:  Hy=(A+H:B)"'(-B+ H:A), (5)
where A, B are 2 x 2 complex matrices and satisfy the condition

A'A+B'B=1, A'B-B'A=0 (6)
with A", B! denoted the compl and transpose matrices of A, B respec-

tively.
Associated to the transformation (5) there is a SL(2. C) matrix

Ar(x) = det(A + H.B)} (A + H.B)™". (7)
Since M is transitive under the group G formed from the transformations (5),

the corresponding {27 (x)}reg are the transition functions of the natural principal
bundle P(M.SL(2,C)). We apply the following theorem(c.f. [3] Theorem 2.4.2)
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Theorem A. If M is a 4-d ional Lorentz spin fold, then

1 T e
= EF;“jn S0a03

(08 = ﬂgﬁ,,ﬂ;) is a sl(2, C)-connection on the principal bundle P(9M, SL(2, C)), where

o = (@0l k A
g, = ey F’(l’) + { 0h },1 )’,l(b)

and

= Duwe®

is the Lorentz metric with w® and z:{") satisfying r{ul(-y’) = 8.
Since a§ = g and a5, = —0q(a = 1,2,3), The s/(2, C)-connection in Theorem A
can be written into

(8)

whore the Greek indices run from 1 to 3 and {04,i04}a=1243 is a basis of the Lie
algebra sl(2, C) of SL(2, C) and {iog }a=1,2,3 is that of the Lie algebra su(2) of SU(2).
Since {UaqU~"}am1.2,3 for any U € SU(2) is still a basis of the vector space generated
by  {0a}a=1.24. according to the reduction theorem of connections,

i

Aj = Thi0aino ()

is & ou(2)-connection on the reduced principal bundle Py (9, SU(2)) of P(M, SL(2, C)).

In case that M = AT and ds* is defined by (4), A; is exactly expressed by (1). It
remains (o prove that such A; satisfies the Yang-Mills equation (2). In fact, accord-
ing to (1) the elements of thn matrices A;(j = 0,1,2,3) are all odd functions of 2.
Obviously [A;(x)]z=p = 0. Hence all elements of Fji. are even functions of a7, There-
fore all elements of F ;. are odd functions of &/ and ¢ ly [F(x)jk)z=0 = 0.
Since M is transitivelll under the group @, for any point xg of M there is al least a
transformation (3) which carries the point @ = g to the point y = 0. Since both g;
and Fjxy are covariant under the the transformation (5),

, daP 0t 9"
()l/'l

0= [FW)jklymo = [2r(s)F(@)ysr ()™

which implies that [F(z),q)z=z, = 0. Since a2 can be an arbitrary point of M, we
have F(:v))_k_;, = 0 and obviously it satisfies the Yang-Mills equation y"'F,k;l =0.

Since M is the compacted Minkowski space M and the Yang-Mills equation is
conformal invariant, the su(2)-connection A; defined by (1) also satisfies the Yang-
Mills equation

)
o (a TFji -+ AFy = FjiAy) =0

in the Minkowski space M.
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Another solution of the Yang-Mills equation on M can be deduced from another
Lorentz metric. M is llil‘l'(-,omm'phi(:[‘” to S' x S* and on the later space there is
naturally a Lorentz metric

ds® = (da®)? - (1 + 2°2%) =26, da"dz*, (11)
which can be regarded as the metric of M. By Theorem A and formula (8),

g

Ag=To=0, A,=T,=-;

1+ :r"r")"(:f,‘:z" - 6"7:“)6,‘3;;0, (12)
is a su(2)-connection. Since S x $% and ds?® defined by (11) is invariant under
SU(2) x S(4) which acts on 8" x S as the transformation group of S* x S% and the
elements of the matrices A are odd functions of 27, it can be proved that A; satisfies
the Yang-Mills equation by the same argument as in case that ds? is defined by (11).
This is & static solution because A; are not depend on z9.

Our method can also be applied to construct solutions of the Yang-Mills equa-
tion on the de-Sitter spaces defined by Diract®. The de-Sitter space of cosmology
constant A is denoted by dS(A). Some authors call it anti-de-Sitter space when
A < 0 and denote it by AdS. In fact, dS(A) is a domain(connected open set) of the
real projective space RP?. In the local coordinate ( non-homogencous coordinate)
x = (292" 2%, 2%) of RP* the domain dS(A) is defined by the inequality!©!

1 - Anjratak > 0 (13)
and there is a Lorentz metric
spirade
i = jk e iat ]m irk. 14
A 1 = Anpgarat i (1 = Anpgaraa)? e (1)

The space dS(A) is invariant under the transformation

—a*

¥ = a(a)} 12,45 (15)

1 — Anpqarat
where a = (a0, 0% a%) and D] satisfy

o(a) =1~ Anyga’a >0, 1y DfDY = nyk + Aa(a)~ n;pa”al.
Obviously, when a = 0, (15) is a Lorentz transformation. The metric ds} is invariant
under the transformation (15) and dS(A) is transitive under the group of all such
transformations. In fact this is the group SO(2,3)(in case A < 0) or the group

SO(1.4)(in case A > 0) that acts'on dS(A). Moreover the metric ds} under the
coordinate transformation

= (1+ lll\lh,,,ll"llq)_‘ll}. (=0,1,23) (16)

Ty
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is changed to be
il
dsd = (1- aAy],,,,u"u")'qukdu’du" (17)
which is a conformal flat metric.
That the de-Sitter spaces are spin manifolds is implied in the Dirac’s construction
of the Spin% wave eq\mliun'sl‘ Applying Theorem A and the theorem of reduction
of connections, we obtain the su(2)-connection

agy

A= —é/\(l - l\%u,,,,u"u")'l(tfj'u‘j - :5;’11")6'23 o (18)

which satisfies the Yang-Mills equation because the elements of A ; are odd functions
of ul,

We conclude in general that

Theorem B. If M is a 4-di ional spin ifold and p a Lorentz
metric which is invariant under a Lic group & that acts on M transitively, and there
is an admissible local coordinate @ (j = 0,1,2,3) such that the su(u)-connection A
deduced from Theorem A are odd functions of a7, then A, satisfies the Yang-Mills
equation,
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