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ABSTRACT

In this article, we will use a previously obtained topological characteriza-
tion of the Beurling-Bjérck space, to prove a topological characterization via the
short-time Fourier transform. Our work builds on recent work by K. Grichenig
and G. Zimmermann.

RESUMEN

En este articulo usaremos una caracterizacion topolégica del espacio Beurling-
Bjorck, previamente obtenido, para probar una caracterizacién topoldgica via la
transformada rdpida de Fourier. Nuestros resultados se construyen a partir de
trabajo reciente de K. Grochenig y G. Zimmermann.
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1 Introduction

It is well known that the Fourier series are a good tool to represent periodic functions.
However, the Fourier series fail to represent nonperiodic functions accurately. To
solve this problem, the short-time Fourier transform (STFT) was introduced by D.
Gabor [8] in 1946, as one of the solutions. The short-time Fourier transform works
by first cutting off the signal by multiplying it by another function called window
(often compactly supported) then taking the Fourier transform. This technique maps
a signal into a function of time and frequency.

The theory of test functions & for tempered distributions & introduced by L.
Schwartz ([13].[14]) was to provide a satisfactory frame work for the Fourier transform.
In 1961, A. Beurling [2] presented his generalization of distributions published in
([3).[4)) which also provides a satisfactory frame work for the Fourier transform.

In [5], G. Bjorck studies the space &, of test functions for tempered ultradistri-
butions &, to extend work by L. Hormander, with most theorems recognizable as
counterparts in [12]. In [15], N. Teofanov shows the natural connection between the
theory of tempered ultradistributions and the time-frequency analysis through the
time-frequency representations and the modulation spaces.

The space &, as defined by Bjérck in [5], consists of C* functions such that the
functions and their Fourier transforms, jointly with all their derivatives decay ultra-
rapidly at infinity. In [10], Grichenig and Zimmermann obtained a characterization of
the space &, via the short-time Fourier transform. This characterization imposes one
condition on the growth of the short-time Fourier transform of the function without
conditions on its derivatives and its Fourier transform, using the characterizations of
the space &, proved by S.-Y. Chung, D. Kim and S. Lee in [6].

In this paper, we will obtain the results proved in [10] using the topological char-
acterization of the space &,, as stated in (1], without using the derivatives as in [10].
Moreover, a minor modification of the proof of the characterization of the space &,,
via the short-time Fourier transform shows that this topological equivalence can be
given in terms of explicit linear estimates, which appropriately reflect the linearity of
the problem.

This paper is organized in three sections. In Section 2. we include some preliminary
definitions and results. We also discuss the relation between the Schwartz & space and
the Beurling-Bjorck space &,, and their duals, by showing that the Beurling-Bjorck
space is continuously and strictly included in the Schwartz space, with reverse strict
inclusion between the duals. In Section 3, we will use the topological characterization
of the Beurling-Bjorck space obtained in (1] to prove a topological characterization of
the Beurling-Bjorck space via the short-time Fourier transform. This character
then makes use jointly of time and frequency, whereas the characterizat ion presented
in [1] imposes separate conditions on the time domain and the frequency domain,

The notation we use is standard. The symbols C, C3°, L?, etc., indicate the
usual spaces of functions defined on R™, with complex values. We denote || the
Euclidean norm on R", while |||, indicates the p-norm in the space L?, where 1 <
p < oo. In general, we work on the Euclidean space R™ unless we indicate other
than that as appropriate. Partial derivatives will be denoted 9, where o is a multi-

e A\

ation




% A Topological Characterization of the Beurling-Bjorck Space &, ... 35

index (nl, ay) in Nj. We will use the standard abbreviations |a| = a; + ... + an,
o = af*..zg". The Fouricr transform of a function f will be denoted F (f) or f
and it W|ll lu- defined as fn 4 "”'ff(l)d The involution of a function f will be
denoted f and it will be defined as f(. f(=x) The letter C will indicate a positive
constant, that may be different at different occurrences. If it is important to indicate
that a constant depends on certain parameters, we will do so by attaching indexes to
the constant.

Acknowledgement 1 The author would like to thank the anonymous referees for
their careful reading and their suggestions that have improved the content and the
presentation of our paper.

2 Preliminary definitions and results

In this section we will introduce definitions and results that we will use. We start
with the definition of the space of admissible functions.

Definition 2 (/10]) With M, we indicate the space of functions w : R™ — R of the
form w (z) = Q (|z|), where

1. 02:[0,00) — [0,00) is increasing, continuous and concave,

2. Q(0) =

3. fo gyt < oo,

4. Q(t) = a+bln(1+t) for some a € R and some b > 0.
Standard classes of functions w in M, are given by
w(z) = |1|d for 0 < d < 1, and w(zx) = pIn(1 + |z|) for p > 0.

Remark 3 Let us observe for future use that if N > § is an integer, then

Cn =/ e~ Nv@) iy < 0o for all w € M.,
Rn

where b is the tant in Condition 4 of Definition 2.

We now recall the following topological characterization of the Beurling-Bjorck
space &, of test functions for tempered ultra-distributions, which we will take as the
definition of &, in what follows.

Theorem 4 (/1)) Given w € M., the space &,, can be described as a set as well as
topologically by
e @ :R" — C: ¢ is continuous and for all
k=0,1,2,..., g0 (p) <0, oo Flp) <o [’
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kw, kw,

where qi.0 (@) = [|e*" || and g0 0 F () = [[e* 3] . -

Since gx0 (¢) < oo for all k = 0,1,2,..., ¢ is integrable, so @ is well defined and
the condition g0 o F () makes sense for all k =0,1,2,....
The Beurling-Bjorck space &, of test functions for tempered ultradistributions equipped
with the family of semi-norms

S = {qk0,qr00 F : k € No}

is a Fréchet space. Let us observe that &,, becomes the Schwartz space & when
w(z) = In(1 + |]).

Remark 5 A Fréchet spa
is metrizable and comple:

is a Hausdorff locally convex topological vector space that

Example 6 As we sce from Condition 2 in Definition 2, w(x) < |z| for allw € M.
So, g(x) = e~ € &, for all w € M.

Lemma 7 Given a measurable function ¢ : R* — C, the following statements are
equivalent.
1. |z

|l < o0, for all @ € Nj.

2, ||(1 +Jz) ¢||v < 00, for all k € No.

The proof of this lemma is basod on the binomial theorem, it is quite straightfor-
ward and we will omit it.

Remark 8 As a consequence of Lemma 7, the space & can be de

ibed as a set as
well as topologically by

cis : IR”‘—~ C: p is continuous and for all
k=0,1,2,.., pko(p) <00, prooF(p) <o [°

where pio (9) = ”(1 + |J'[)"‘p”mmul Do © F (9) = ”“ +|z))* 3”

We now prove that &,, € & continuously, for all w e Aq

e = . using the topological
characterization for both &,, and &.

Lemma 9 (/5]) &,, C & continuously, for all w e M,

(T
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Proof. Fix w € M, and ¢ € &,,. Then ¢ is continuous and for all k = 0,1,2,...,
k0 (@) < 00,qk0 © F (p) < 0o. To show that p € & we need to show that for all
k=0,1,2,..., pro(p) < 00, pk0° F () < 00. To do so we start with

pole) = [+l
I S
8 b

el

IA

< Caw (9) < oc.
oo

where a and b are the constants of Condition 4 in Definition 1. Note that we made
use of Condition 4 in Definition 2.

Similarly, we can prove py 00 F (p) < 0. Hence, ¢ € S and the inclusion &, C & is
continuous. This completes the proof of Lemma 9. |

Remark 10 As a consequence of Lemma 9, we have the reverse inclusion 6'C &/,
where &', &), are the dual spaces of & and S,, respectively.

Example 11 Let w € M, defined by w(z) = \/[z] and f(x) = e+ Tyen
we can see that f € & and f ¢ . So S, & &. Moreover, if h(z) = rz\/m, then
we can see that the distribution T), defined by integration against h, belongs to &,.
However Ty, ¢ &'. So, there are tempered ultra-distributions that are not necessarily
tempered distributions.

In general, the function h(x) = col#" defines a tempered ultra-distribution which is
not necessarily a tempered distribution, for alla >0 and 0 < b < 1.

Remark 12 As we see from the topological characterization of the Beurling-Bjorck

space &, given in Theorem 4, the Fourier transform is a topological isomorphism of

the Fréchet space S, onto itself. As a consequence, the Fourier transform is also a
/

topological isomorphism from &, onto itself defined as
T(p) =T(p), T €S, €S,

Note that the weak topology is given to &), .

Remark 13 ([11], [7]) A wavelet function is defined to be a function ¢ € L*(R) such
that
(Wi : Yik(@) = 2892z — k), j,k € Z}

is an orthonormal basis of L*(R). It is well known that there is no wavelet function
with compact support that belongs to C®(R)NL*(R). This is true as well for wavelet
functions with exponential decay. As a consequence of the work of Dziubariski and
Herndndez in [7], we can show that for each 0 < £ < 1, there exists a C*™° wavelet
function ¥, such that v.‘/;t has compact support and V. € & (R), where w(z) = |z|'_‘.
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Lemma 14 Consider the weight functions w : R* — R and w' : B*" — R such
that w (z) = Q (|z) and w' (x,€) = Q(|(z,€)|). Then, given F : R*™ — C continuous,
the following statements are equivalent.

y

e’""”F” < 00, ”e"""lFA‘” < oo for all m € Np.
o oo

2. [leme@+uO p|| < oo,
o

em(w)+u(E) ﬁ” < oo for all m € No.
-

The proof of this lemma is based on the subadditivity property of the weight
functions and we will omit it. Using Lemma 14, we will denote &, (R*") by &, (R*")
instead.

Definition 15 (/9), [10]) The short-time Fourier transform (STFT) of a function or
distribution f on R™ with respect to a non-zero window function g is formally defined
as

itk s = (FTog)(€) =< f, MeTog > .

wiwo) = [ feaE=me

where Tyg(t) = g(t — =
modulation operator.

is the translation operator and Meg(t) = e*™'Sg(t) is the

The composition of T, and Mg is the time-frequency shift
3 q 3.

(MeTug)(t) = &€yt — @),

and its Fourier transform is given by

MeThg = *™*€M_, Teg.

Remark 16 Given w € M., g € 6,\{0} and a function f with e=**f € L* for
some k € N, the STFT of [ with respect to g is well defined and continuous. In fact,

. roga=ze
2 /R e ()] |eku'(l)y(l - :t)| dt

< bl el .

This shows that v, f(x,€) is well drfm‘d on R* for each x,€ € R". Morcover, the
continuity of v, f follows by applying Dominated Convergence Theorem.

We now recall the main properties of the short-time Fourier transform.

Lemma 17 (/9], [10]) For f,g € &, the STFT has the following properties.
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1. (Inversion formula)
el o VT M) e = [l 5 W
2. (STFT of the Fourier transforms)
v3 (@, €) = e~ 8y, (=6, z).
3. (Fourier transform of the STFT)
vyl (@,€) = =4 f(=€)Ca): @

The proof of this lemma uses straight forward computations and it will be omit-
ted. We refer the reader to [10].
Now we will introduce two auxiliary results that we will use in the proof of the topo-
logical characterization of the Beurling-Bjorck space &, via the short-time Fourier
transform.

Lemma 18 (/10]) Given w € M., let [ and g be two nonnegative measurable func-
tions. If N > % is an integer, there exists C > 0 such that

ekw(f*y)“w < C[BQ(N-M)"V—”w Ilc2(4V+k)u<y B

Jor all k =0,1,2,.... The constant C' does not depend on k. and b is the constant in
Condition § of Definition 2.

Proof. First let us show

/ L,—Z(N-i-k)w(l)e—?()\’i—k)m(l—:){“ < C(,'—ku'[r). (3)

where €' does not depend on k. If |t — 2| < L‘;‘ then || > %l This implies that

w(t) 2 w(3) > 5%2 since w(a) = Q(|w|) with Q concave, increasing and Q(0) = 0.
Irom here we obtain
—2(N + k)w(t) < —kw(x). (4)
Now for |t — z| > ]%l we have
—2(N + k)w(t — z) < —kw(x). (5)

Using (4) and (5), we can write

/ 0-2(n\'+k)m(l)e—2(N+k)m(l-:)dt

IA

e-kw(:)[ a—2(N+k)ur(l—1)dl_+E—-knr(x)/ o= 2NFRY() 4y
lt—z|< 5l 1

t—=]> 151

< 20_1;..'(:)/ e ANHRWO) gy — 90y k)|

(T
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where Cy is the constant in Remark 3.
Now, using (3)

G ra@] < [ areslsge -

< e2(1\'+k)wf|| !|c2(N-]»)¢)wg|| / o= 2NHR () o= 2N +HR)w(t=z) gy
) o Jrn
< c eQ(N—Q-k)ﬂJf ”cz(NM)mg” e~ kw(@)
oo £
This completes the proof of Lemma 18. n

Corollary 19 Given f,g € G, for some w € M., we have fxg € &,,.

The proof of this corollary is immediate using Lemma 18.
The following lemma is stated in [10]. We include a proof using the topological
characterization of &,, given in Theorem 4.

Lemma 20 Let g € G, be fived and suppose that F : R*™ — C is a measurable
Sfunction that has an ulira-rapid decay, for each k = 0,1,2. ... there is a constant

C = Cy. > 0 satisfying |F(x,€)| < Ce= @@+w©)  Define

)= / /R P, )(MeTag) (1.

Then [ is continuous and for each k= 0,1,2,... and N > } integer

”rkmf”m <@ emng“oc ||e(,\'+k)(1::(1:)+u'({))F” (©)
-5
and 5
H(,kwf”x <c ”“lmmlDo ||(,(N+k)(xu(t)+w($))F” : @)
S

In particular, [ € G,,.

Proof. First we show that [ is continuous. To do so, fix #, € R™ and let {t;} be
any sequence in R™ converging to ty as j — oo. Since F(z,€)(M¢T:g)(t;) converges
to F(x, &) (McT.g)(to) pointwise as j — oo and

|7 (2, €)(M¢Tag)(t5)] < Ce™NWEHw®) ¢ p1(g2n),

where C' = Cy |lgll, N > § integer, and b is the constant in Condition 4 of Definition
2, we can apply Lebesgue Dominated Convergence Theorem to obtain f(t;) — f(to)

(T
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as j — 00.This implies the continuity of f.
Now to prove that f € &, we start with

ek rye))| |/ (F(@, &)k O (M T, g)(t))dxds|
Ran

< / / (z,€ ]|A\15T (X)) ()| dwde

= // |F(a ||T (ekwtto) )[)|(er£

< Jel. [ /k M) | (2, ) dadg

< uekmg”“,"e(N+k)(m(z)+w(EHFHN//"" e Nul2) =N () g
< C|lekvgl ||E(N'I-k)("'(f)-H"(f))Ir"

< 9/l o

which shows (6).
Now let us show (7). From the definition of f we can write

it /R //R, E)(MeTzg)(t))dxd€ e dt
/ / &) (M Trg) (7)dvd

/ / E)(M_,Teg)(r))e2™ S dudg,
ko

where we used that

)7) = (M_zTeg) (r)e*™ <.

Now

g / / 1k 0 Teg)(7)| g

and the proof of (7) follows the same argument as the one leading to the proof of (6).
This completes the proof of Lemma 20. "

3 The characterization of &, via the short-time
Fourier transform.

We use the topological characterization of the space &,, as stated in Theorem 4, so,
we will not use the derivatives as in the original proofs in [9] and [10].
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Theorem 21 Given w € M, and g € &,,\{0}, the space &, can be described as a
set as well as topologically by

Guw={f:R"—C:e™"f €L for somem € N and m(f) < coVk =0,1,2,...},

where m.(f) =

(:k"'l/_,lf”m and w(z, €) = w(x) + w(€). (8)

Proof. Let us indicate B,, the space defined in (7?). Observe that Remark 16 implies
that [|e*<v, f|| _ makes sense because v, f is continuous. We define in B, a structure
of Fréchet space by means of the countable family of semi-norms

B ={m :k=0,1,2,..}.

We will show that B,, = &,,. To do so, let us first prove that B,, C &,, continuously.

If we fix f € B, we need to show that "e""‘f" and "ek"’f”m are finite, and [ is
B

continuous. Since f € B, then m (f) < oo for all k € No, which implies that v, f

has an ultra-rapid decay. Then, by the inversion formula given in Lemma 17, we can

write

10 =15 [ [ st 0T 0) ).

By (6) of Lemma 20 we deduce ||(:“"’f||w < Can4k(f); by (7) of the same lemma

"r"“’f" < Canyi(f) since § € G,,. The continuity of f also follows from Lemma
~

20. Hence f € &,, and the last two inequalities show that the inclusion B,, C &, is

continuous.

Conversely, let f € &,,. It is clear that e=™" f € L for some m € N. We need to show

that 7 (f) < oo for all k =0, 1,2,.... To show this let k € Ny and write §(t) = g(=1)
Then

|y (€)= e

/ F()g(x — t)e=>7 € gy
Rn

< @) [ 1)t - o ar

= O(f] 5 g)) ()
< e+ 1) o -

Using Lemma 18 we get the following estimate

Ny f@,)) <N e (1] * (1) llse
< (‘||.r'~’"\'”"“"j||

2N +2k)w

il

oo

< (l||,,'_’(.\'§'.'k\wj“x

< Caanparo(f)- (g)
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Moreover, by Lemma 17 we can write v, f(x,§) = e‘z""'ﬂry}'({. —x) so that
), (@, )] < O |y e, —)|
An argument similar to the one leading to (9) produces
2RO |y, f(,€)| < Chanparo (f) : (10)
Combining (9) and (10) we have that
etku(=:€) |”qf(?'-'v5)|2 < Caanparo()aan+aro (f)
This implies that

m(f) € Claanano () + G2n4ax,0 (f)) (11)

So, f € B,. Hence &,, C B,, and the inclusion is continuous. This completes
proof of Theorem 21. n

Remark 22 As we see in the proof of Theorem 21 th
of semi-norms A = {qr0°F,qx0: k € Ng} and B =
means of explicit linear estimates.

cquivalence between the family
ot k€ No} is formulated by

Corollary 23 ([9]) Given g € G\{0}, the space & can be described as a set as well
as topologically by

Sy = {f:R" = C: (14+|x])"™f € L' for some m € N and 74(f) < 00,Yk = 0,1,...},
where mi(f) =|| (1 + |=)* (1 + [ED*¥, f ll -

Corollary 24 ([9]) Let g € &,\{0} be fived. Then for f € S, (R"), we have
vl € 6.u(R2").

Proof. By Lemma 14 it is enough to prove
sl <o o7 <o
o

for k = 0,1,2. ..., where w(, €) = w(z) +w(€). By Theorem 21 74(f) = ||e”“’u,,f||w <

00. Then it is enough to show that l c*“'uyf” < o0. Using Lemma 17, we can write
o

unl (@.6)| = 1£(-9) |7 -

(T



o

44 Hamed M. Obiedat . CuB0
Then
0T )] = [e 0 =g [
< ek sl lle 8]l -

This completes the proof of Corollary 24. [ ]
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