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ABSTRACT
We characterize the classical covering properties of Menger, Rothberger, Hurewicz
and Gerlits-Nagy in terms of continuous images in IR*.

RESUMEN
Caracterizamos las propiedades de recubrimiento clasicas de Menger, Roth-
berger, Hurewicz y Gerlits-Nagy en términos de imdgenes continuas en IR,

Key words and phrases:  Selection principles, Menger, Hurewicz, Rothberger,
property (+), function spaces, w-cover, y-cover,

Math. Subj. Class.: 54D20, 54C35, 54A25

1 Introduction

It is often the case that the presence of some topological property in a topological
space can be detected by the properties of the images of the space under certain
maps into "nice” spaces. We are interested here in this schema in connection with
covering properties described by classical selection principles. This idea (for selection
principles) was initiated by Hurewicz in [10], and then used by many authors (for
example, Sierpiriski [23], (24], Rothberger [20]). Typical results of that sort assert
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that a set of real mumbers has some property if and only if each its continuous image,
usually into some special spaces with nice combinatorial properties, has the same or
another property.

To describe some of those results we need some definitions.

Endow the set w of nonnegative integers with the discrete topology. Let “w be
the Tychonoff product of countably many copies of this space. There is also a natural
pre-order <* defined on “w: f <* g means that f(n) < g(n) for all but finitely many
n. A subset D of “w is said to be dominating if for each g € “w there is a function
f € D such that g <* f. A subset B of “w is called bounded if there is an g € “w
such that f <* g for each f € B.

Hurewicz proved [10]:

e A space X has the Menger property if and only if for each continuous function
f:X — “w the set f(X) is not a dominating family in “w.

e A space X has the Hurewicz property if and only if each continuous image of
X in “w is a bounded family in “w.

A characterization of the Hurewicz property in all finite powers has been found in
[26] (in terms of continuous images into “w), and v-sets have been characterized in
a similar spirit in [18] (in terms of continuous images into another interesting space

the space [IN]*® of all infinite subsets of IN). Some classes of spaces related to
selection principles have been described by properties of Borel images of spaces into
“w or [IN]* (see, for example, (4], [5], [18], [17], [22], [26]).

In this article we give pure topological characterizations of the classical covering
properties of Menger, Hurewicz, Rothberger and Gerlits-Nagy (see [12] for more in-
formation about selection principles) in terms of continuous images into the space

w

Our notation and terminology are standard as in [7]. All spaces are assumed to be
Tychonoff. In particular, for a space X, C,(X) denotes the space of all continuous
real-valued functions on X with the topology of pointwise convergence. 0 denotes the
constantly zero function from C,(X). Recall that a space is said to be an e-space (8]
if all its finite powers are Lindelof.

2 The properties of Menger and Rothberger

A space X is said to have the Menger property if [15], [9] if for each sequence (U, :
n € IN) of open covers of X there is a sequence (V, : n € IN) such that for each
n € IN, V, is a finite subset of U, and the set UnEN V,, is an open cover of X. Recall
also that a space X has countable fan tightness (1], [2] if for each € X and each
countable collection {A,, : n € IN} of sub: of X such that z € A, for cach n, there
is a sequence (B, : n € IN) such that for each n € IN, B, is a finite subset of A, and
x belongs to the closure of the set U, ey Bn-
In [3] it was shown the following:
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Theorem 2.1 Let X be a space such that each its continuous separable metrizable
image is a-compact. Then:

(a) If X is Lindeldf, then it has the Menger property;

(b) If X is Lindelof in all finite powers, then it has the Menger property in all finite
powers.

Let us mention first that by an appropriate modification in the proof of Theorem
2.1 and using the Arhangel'skii theorem which states that all finite powers of a space
X have the Menger property if and only if the space C,(X) has countable fan tightness
[1], 2], one can prove the following two theorems (see the similar proofs of theorems
below concerning the Rothberger and Hurewicz properties).

Theorem 2.2 For a Lindelof space X the following are equivalent:
(1) X has the Menger property;

(2) For each continuous function f : X — IR¥, the space f(X) has the Menger
property.

Theorem 2.3 For an e-space X the following are equivalent:
(1) Each finite power of X has the Menger property;

(2) For each continuous function f : X — R, all finite powers of the space f(X)
have the Menger property.

Arhangel'skii [3] observed that from the well known Katetov's characterization of
paracompactness (a T space X is paracompact if and only if for each open cover Y
of X there are a metric space M of weight |{|, a continuous mapping f from X onto
M and an open cover V of M such that f—(V) refines U. see [7]), it can be obtained
the following proposition, which we shall use in what follows.

Proposition 2.4 If (Uy, : n € IN) is a sequence of open covers of a Lindelof space X,
then there exist a continuous mapping f : X — IR” and a sequence (V,, : n € IN) of
open covers of f(X) such that for eachn € N, f=(V,) refines Un.

Recall that a space X has the Rothberger property [19] if for each sequence (U, :
n € IN) of open covers of X there is a sequence (U, : n € IN) such that the family
{Un : n € N} covers X and for each n € IN, U,, € U,. X has countable strong fan
tightness if for each z € X and each countable collection {A, : n € IN} of subsets of
X such that = € A,, for each n, there are a,, € A,, n € IN, such that & belongs to the
closure of the set {a, : n € IN} [21]. Sakai [21] proved the following theorem.

Theorem 2.5 All finite powers of a Tychonoff space X have the Rothberger property
if and only if the space C,,(X) has countable strong fan tightness.
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The next two theorems characterize the Rothberger property and the Rothberger
property in all finite powers.

Theorem 2.6 For a Lindeléf space X the following are equivalent:
(1) X has the Rothberger property;

(2) For each continuous function f : X — IR, the space f(X) has the Rothberger
property.

Proof. Let us prove that (2) implies (1) because the opposite implication follows
from the fact that the Rothberger property is preserved by continuous mappings. Let
(U, : n € IN) be a sequence of open covers of X. By Proposition 2.4 there are a
continuous mapping f from X into IR“ and a sequence (V, : n € IN) of open covers of
Y = f(X) such that for each n € IN, f~(V,) refines U,. Since Y has the Rothberger
property there are sets V,, € V,,, n € IN, such that the set {V,, : n € IN} is an open
cover of Y. For each n, pick an element U, in U, such that f~(V;) C U,. Then
{Un : n € IN} is an open cover of X witnessing that X has the Rothberger property.
| ]

Theorem 2.7 For an e-space X the following are equivalent:
(1) Each finite power of X has the Rothberger property;

(2) For each continuous function f: X — IR¥, all finite powers of the space f(X)
have the Rothberger property.

Proof. We prove only non-trivial part (2) = (1). To prove that (2) implies that for
each n € IN, X" has the Rothberger property it is enough, according to Theorem 2.5,
to prove that the function space C,(X) has countable strong fan tightness.

Let (A, : n € IN) be a sequence of subsets of C,(X) such that 0 € A, for each
n € IN. As X is an e-space, by the well-known Arhangel’skii-Pytkeev theorem [2], the
tightness of C,(X) is countable, so that one can suppose that all A,,’s are countable.
Let B = U{A, : n € N}U{0} and let g be the diagonal product of mappings from B.
Then g is a continuous mapping from X onto the set ¥ = g(X) C IR¥. Since by (2)
all finite powers of Y have the Rothberger property, the space C,,(Y') has countable
strong fan tightness. On the other hand, the set Z = {fog: f € C,(Y)} is a subset
of C,(X) which is homeomorphic to C,(Y) [2] and, as it is easi en, contains B.
So, Z has countable strong fan tightness. Thus there exists a sequence (f, : n € IN)
such that for each n € IN, f,, € A, and 0 belongs to the Z-closure, and thus to the
Cp(X)-closure, of the set {f, : n € IN}. This means that C,(X) has countable strong
fan tightness and completes the proof of the theorem. n

3 The Hurewicz and Gerlits-Nagy properties

In [9] (see also [10]), W. Hurewicz introduced the following covering property of a
space X, nowadays known as the Hurewicz property: For each sequence (U, : n « IN)
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of open covers of X there is a sequence (V,, : n € IN) such that for each n € N, V,
is a finite subset of I/, and each element of X belongs to all but finitely many of the
sets UV,. In [14] the Hurewicz property was characterized by a Syin-type selection
principle and shown (see also [13]):

Theorem 3.1 For an e-space X the following are equivalent:
(1) Each finite power of X has the Hurewicz property;

(2) The space C,,(X) has c ble fan tight as well as the Reznichenko property.

Recall that a space X has the Reznichenko property if for cach A C X and cach
@ € A there is a sequence (B, : n € IN) of finite, pairwise disjoint subsets of A such
that each neighborhood of # meets B, for all but finitely many n.

We give now characterizations of the Hurewicz property and the Hurewicz property
in all finite powers in terms of images into IR“.

The first of these theorems is proved in a similar way as Theorem 2.6 was proved.

Theorem 3.2 For a Lindelof space X the following are equivalent:
(1) X has the Hurewicz property;

(2) For each continuous function f : X — IR¥, the space f(X) has the Hurcewicz
property.

Theorem 3.3 For an e-space X the following are equivalent:
(1) All finite powers of X have the Hurewicz property;

(2) For each continuous function f : X — IR¥, the space f(X) has the Hurewicz
property in all finite powers.

Proof. (1) = (2): It follows from the fact that the Hurewicz property in all finite
powers is preserved by continuous mappings.

(2) = (1): According to Theorem 3.1 we have to prove that C,(X) has (a) the
Reznichenko property and (b) countable fan tightness.

(a) Let A be a subset of C,,(X) and 0 € A. Because X is an e-space, again by the
Arhangel'skii-Pytkeev theorem, the tightness of C,(X) is countable, so that one can
suppose that A is countable. Put B = AU {0} and let g : X — IR be the diagonal
product of mappings from B. By the assumption all finite powers of the set Y = g(X)
have the Hurewicz property, so that the function space C,(Y) has the Reznichenko
property. The set Z = {fog: f € C,(Y)} € Cp(X) is homeomorphic to C,(Y) and
therefore has the Reznichenko property. Since B C Z there is a family (A4, : n € IN)
of finite, pairwise disjoint subsets of A such that each Z-neighborhood of 0 meets
all but finitely many sets A,,. Then each Cy,(X)-neighborhood of 0 intersects all but
finitely many A,,, i.c. C,(X) has the Reznichenko property.
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(b) Let (A, : n € IN) be a sequence of subsets of C,(X) such that 0 € A, for each
n € IN. As in the first part of the proof we may assume that all A,,’s are countable.
Letting B = U{4,, : n € N} U {0} and g = A{f : f € B} we get again a continuous
mapping from X onto the set Y = g(X) C R¥. Since Y™ has the Hurewicz property
for each n € IN, the space C,(Y) has countable fan tightness. Let Z be as in the first
part of the proof. Then Z has countable fan tightness and contains B, so that there
exists a sequence (F, : n € IN) such that for each n € IN, F,, is a finite subset of A,
and 0 belongs to the Z-closure, hence to the C,(X)-closure, of the set U{F, : n € IN}.
This means that C,(X) has countable fan tightness and the theorem is shown. |

Theorem 3.2 allows us to give one more ZFC counterexample to the famous
Hurewicz conjecture [10] that a space has the Hurewicz property if and only if it
is o-compact. (Let us say that the first ZFC counterexamples to this conjecture were
found only recently; see [11], [6]. See also [16] for the Menger conjecture.) In [25]
it was constructed a Lindelof E-space which is not o-compact but all its continuous
images into IR“ are Hurewicz. So, by Theorem 3.2, that space is Hurewicz, too.

In 1982, Gerlits and Nagy (8] introduced a covering property denoted (): a space
X has that property if and only if it has the Hurewicz property as well as the Roth-
berger property. In [14] this property has been characterized by an S;-type selection
principle.

Combining the proofs of Theorems 2.6 and 3.2 it is easy to prove:

Theorem 3.4 For a Lindeldf space X the following are equivalent:
(1) X has the Gerlits-Nagy property (¥);
(2) For each continuous function f : X — IR¥, the space f(X) has the property (¥).

In [14] (see and [13]), it was proved that all finite powers of an e-space X have
the property (*) if and only if C,(X) has countable strong fan tightness as well as the
Reznichenko property.

Using this result and combining the proofs of Theorems 2.7 and 3.3, one can prove
the following theorem.

Theorem 3.5 For an e-space X the following are equivalent:
(1) For each n € N, the space X™ has the Gerlits-Nagy property (x);

(2) For each continuous function f : X — IR¥, all finite powers of the space f(X)
have the property ().

Recall that a space X is said to be w-simple [2] if each continuous separable
metrizable image Y of X is countable. (For example, all Lindelof P-spaces and all
Lindelf scattered spaces are w-simple.) By the previous theorem each w-simple e-
space has the Gerlits-Nagy property (*) in all finite powers. (For each n € IN, Yy
is both Rothberger and Hurewicz being countable.) But, we have something more:
cach such space is a y-set, which is stronger than the property (x). In (8], Gerlits
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and Nagy introduced the notion of y-set: a space X is a y-set if each w-cover of X
(an open cover which does not contain X, but each finite subset of X is contained
in a member of the cover) contains a countable subset V which is a y-cover (i.e. V
is infinite and each point of X belongs to all but finitely many elements of V). To
conclude that w-simple e-spaces are y-sets we should combine the result 11.7.10 in [2]
(which states that for an w-simple e-space X the space C,(X) ‘chet-Urysohn)
and the Gerlits-Nagy theorem stating that C,(X) is Fréchet-Urysohn if and only if
X is a y-set.

Similarly to the proof of Theorem 2.6 (or to the proof of Theorem 2.7, having
in mind the fact that each finite power of a 4-set is also a 4-set), we prove also the
following result.

Theorem 3.6 For an e-space X the following are equivalent:
(1) X is a y-set;

(2) For each continuous function f: X — R* the space f(X) is a y-set.

Received: Jan 2005. Revised: Feb 2005.
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