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ABSTRACT
By considering a general form of the Landau-Lifshitz equation under the influ-
once of & homogencous external magnetic field, we prove that for a ferromagnetic
body which occupies o bounded domain 2 in R? there exists a global wenk so-
Iution either for the Dirichlet problem or for the Neumann problem. Although
there is, in general, non-uniqueness result for the Landau-Lifshitz equation, the
i result for the dy ic equation with constant initial data, which con-
nects with the ground state of the magnetization in physical meanings, is pointed
out.

RESUMEN
Mediante la consideracion de una forma general de la ecuacion de Lnnduu-
Lifshitz, bajo Ia influencia de un campo ético externo b
que para un cuerpo ferromagnético que ocupa un dominio acotado €2 en R‘ existe
una solucidn débil global, ya sea para el problema de Dirichlet o bien para el
problema de Neumann. Atin cuando hay, en general, resultados de no unicidad
para la ecuacién de Landou-Lifshitz, se muestra el resultado de unicidad para

"This work is supported by NSFC 10271108,

R T



Daoyuan Fang and Tailong Li N Unlll;lp
la ecuacién di ica con licién inicial ¢ que conecta con el estado

fundamental de la magnetizacién en el sentido fisico.
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1 Introduction

The magnetization dynamics is an interesting field researched in mathematical physics.
The macroscopic theory of ferromagnetism says that the state of a magnetic material
can be described by the magnetization vector u; and thus, the dynamics and kinetics
of a ferromagnet is dictated by variations in its magnetization. The magnetization
in a continuum ferromagnet as a function of time and space, u = (u; (¢, ). u2(t. ),
us(t,z))” € R®, is a solution of the nonlinear Landau-Lifshitz equation [16]:

0,'u=—pu><f1e,/—/\ux(thHc!/), (1.1)

where p € R\{0} and x denotes the cross product in R*. The parameter A > 0, called
the Gilbert damping constant [11, 17], represents the relaxation constant determining
the motional damping of the vector u. The magnetic energy E is assumed to be a
functional of u and its spatial derivatives,

E= /h(u,Vu)(lz. (1.2)

where h(u, Vu) is the magnetic energy density and Vu the gradient of u. The effective
magnetic field H.ss is equal to the variational derivative of the magnetic energy £
with respect to the vector u,

Hepp = —0B/bu. (1.3)
In order to give (1.1) a definite meaning one has to specify the energy density. In
physics settings [14, 21), the density often takes the form of

h(u, Vu) = (—ZIVM Vu+hon —u-H, (1.4)

where the first term is the nonuniform exchange energy density with constant a > 0,
the third term is the contribution from the external field H and hqn is the anisotropy
energy density,
1 1
han = —5/31“? = §ﬂ3u§. (1.5)
where 3), 33 € R are the anisotropy constants. Since there is a special feature of (1.1)
that it preserves in the time-direction the modulus of u.d;|ul* = 20,u - u = 0, one

‘G Y




UWQ agas] Global Weak Solutions to the Landau-Lifshitz System in 3D

can assume |u| to be constant provided that |u(0, z)| is constant for all @ (physicists
say that this constant relies on the material and its temperature), so the term with
uj in han could be omitted. Moreover, one may set this constant to be the unit, i.c.
u(t,r) € 82 C R3. Let Hepp = Hepp/av, then we have

- - H
Heys =Au+&u1k1+&u3k3+—, (1.6)
« a a

where I;*,(i = 1,2,3) are the three standard orthogonal axes in R3.
When the anisotropy energy is of the form of (1.5),

if B # 0,03 # 0, it is a case of biaxial ferromagnet;

if 8y = 0,83 # 0, (1.5) is corresponding to a situation of uniaxial ferromagnet,
with the anisotropy axis coincident with the k3-axis;

if 4, = 0,83 > 0, the anisotropy is of the easy-axis type;

if 4, = 0,3 < 0, the anisotropy is of the easy-plane type;

if B) = 3 = 0, this is the case of isotropic ferromagnet.

The Landau-Lifshitz equation (1.1) bears a fundamental role in the understanding
of non-equilibrium magnetism [14, 20}, just as the Navier-Stokes equation does in that
of fluid dynamics. Many physicists and mathematicians do a lot of work on it. With
the effective field to be simplified by Hepy = Au, they found that the equation

Qu = —paw X Au — Aaou x (u x Au) (@)

could be thought of as a linear combination of two parts, one is the Heisenberg system
(18], also called the Schrodinger map [5):

Qu=u x Au; (1.8)
the other is the heat flow into spheres:
Oyu = Au — (Au - u)u. (1.9)

The former is a generalized nonlinear Schrédinger equation, which has complete in-
tegrability in the spherically symmetric case [6, 19]. Although some authors have
studied (1.7) or (1.8), many basic mathematical questions remain open. For exam-
ple, the global existence of smooth solutions is not known when the space dimension
is greater than one [5, 9]. The global existence of smooth solutions of (1.8), up to
now, has been established only for small initial data [2, 5]. In 1986, C. Bardos, C.
Sulem and P.L. Sulem [2] studied the Cauchy problem of (1.8) in general dimensions
and obtained both the global existence of weak solutions and that of smooth solu-
tions partly. Lately researchers in [8, 10] constructed some exact nontrivial global
solutions and some blow-up solutions for (1.8) in 2D cylindrical symmetric case. For
the Cauchy Problem of (1.7) in 3D, the global existence of weak solutions has been
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proved by F. Alouges and A. Soyeur [1]. In the same paper, the global existence and
non-uniqueness of weak solutions to the homogeneous Neumann problem of (1.7) have
also been proved provided that A is different from zero. On the other hand, the heat
flow (1.9) is a parabolic equation according to the static Landan-Lifshitz cquation:

Au— (Au-u)u=0, (1.10)

which is just an Euler-Lagrange equation with respect to the Landau-Lifshitz func-
tional. The equation (1.10) can be treated as a generalized harmonic map [4, 7). Due
to this, the interesting properties, like maximum principles, existence and uniqueness
results for the small solutions, and non-uniqueness (in 2D) for the large solutions
to the Dirichlet problem of (1.10), were studied by Q. Chen [3]. He also obtained
similar properties of (1.9) with Dirichlet condition by the standard heat-flow method.
Compared with (1.10), the static Landau-Lifshitz equation with the external field is

Au— (Au-u)u+ H — (H-u)u=0. (1.11)

In (12, 13], M.-C. Hong and L. Lemaire studied the properties of the smooth solutions
to (1.11) with constant boundary value. From this, they showed us the important
effect of H for the isotropic ferromagnet.

The main aim of this paper is to offer a global existence result of weak solutions to
(1.1) in 3D when the general form of (1.4) is considered. In Section 2, we describe the
magnetization models for a bounded ferromagnetic body either with the nonhomo-
geneous Dirichlet boundary condition or with the homogeneous Neumann boundary
condition. The main global existence results for these problems are stated with that.
‘We then proceed to prove these results in Section 3 and 4. We use the Gilbert damp-
ing term to realize the global weak solutions with finite energy by Galerkin’s method
and penalty function method. Finally, in Section 5 we point out that some constant
solutions for the dynamic Landau-Lifshitz equation are unique. From this, we show
partly the propertics of the ground states in the motion of the magnetization.

2 The Models and Main Theorems

We are interested in the magnetization phenomenon when one puts a ferromagnetic
body into a h-direction external uniform field, H = Hoh, where Hy € R is a constant
and h = (hy, ha, hy)T a unit vector in R%. In this case, the effective field reads

Hepp = Au+ Mfcl + @ka + B (2.1)

@ @ a

and the magnetization is supposed to be equal to H outside the ferromagnetic body.
In mathematics, we explain this physical model by the Landau-Lifshitz system with
the nont Dirichlet 1 lary condition,

Qu=—paux Hegy — Maw x (ux Heyy) on Q

u(0,2) = ug(x) on Q 22)
u(t,z) =g on 0Q

|lu|=1 on £,
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where the magnetic body © (C R?) is a bounded domain with smooth boundary 99,
and ug(2) = (uyo(x), u20(w), ugo(x))” is the initial data for the magnetization vector
u = (ug,uz,ug)’ : [0, +0) x Q — S? ¢ R3. The constraint Dirichlet boundary value,
G = (91,92,93)" a unit vector in R®, may come either from the case of the strong
external field considered or from the case of the ground states considered ( another
case is that when the non-topological magnetic soliton is considered in the whole
space, one may suppose that it has constant value on the boundary corresponding to
|z| = o0) [12, 13, 14]. See the examples for the ground states in section 5.

Another mathematical description can be given with the homogeneous Neumann
boundary condition (1],

Qu=—pau x Hepp — Aaw x (ux Hepy) on Q
u(0,z) = uo(x) on Q
%(l.x) =10) on I
lul =1 on €,
where 7i is the outward normal on the boundary of Q.

Make an important assumption in this paper that A > 0. For u smooth enough
the Gilbert damping term plays an important role for us to obtain

24 )2
u — %u X Qyu + Mu X Hepy =0, (2.4)
A 2+ A2
S0+ ux ut %((u-ﬁﬁ,)u—lﬂu):o. (2.5)
where H, ;s is defined in (2.1) and
3
Brw ; Baug S ity
Herr— Oy k ks + —uxh. 2.
ux Hepy lg;a.(u><,u)+ 5 X 1+ 5 U _,+0u>< (2.6)
Definition 2.1. We define the space
W = {w|lw € L®(R*; H'(Q)) and dw € L*(RT;L3(Q))}, (2.7)

where R* = [0,00), H(Q) = (H'(R))® and L(Q) = (L(R))?, and define

Wo = {ulw € L=(RY HY(®) and w € PR LAQ)} < W, 28)
where Hy(Q) = (H3(2))*.
Theorem 2.2. Suppose ug € H'(Q) satisfies ug — § € H}(Q) and |up(z)| = 1 a.e. on

Q. Then there exists a global weak solution u(t,x) to (2.2), such that (in the sense

of)
(i) ue W and |u(t,")| =1 a.e. on Q;
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(ii) for all T > 0 and ¢ € L*(0, T; H§(R)),

A 2 4 A2) &
./‘;r Au-p— ;(u X Quut) - p — H(I’TH > (ux 0w) - Oip

i=1
@+, 2 5 ; i 6
+—ﬂ—[_dlul(u X k1) - @ + Baua(u x k) - ¢ + Ho(u x h) - gdudt =0,  (2.9)
where - denotes the inner product in R® and Vp = [0,T) x Q;
(iii) u(0,z) = uo(x) in the sense of traces;

(iv) u(t,x) = § on 9Q; and
(v) the energy inequality holds:

A 2
——— dxds < E(0 rallT >0 )
B(T) + RS /v:,- |0vul dzds < E(0) for al ) (2.10)
where E(T) is defined in (3.69).
Remark 2.3. It is an i diat q of the Definition 2.1 and Theorem 2.2

that the solution w is in H!(Vr) for all T > 0. We also note that u € C(R*;L2())
since we can get w € C(0,T;L*(Q)), for cach T > 0, from the facts that v €
L2(0,T; H!(Q)) and dyu € L*(0, T; L*(2))-

Theorem 2.4. Suppose ug € H'(Q) satisfies |ug(z)| = 1 a.e. on Q. Then there
exists a global weak solution u(t, ) to (2.3), such that (in the sense of)
(i) w € W with u(0,x) = ug(x) in the sense of traces and |u(t,")| =1 a.c. on Q;
(ii) for all T > 0 and @ € L*(0, T; HA(Q)), (2.9) and (2.10) hold.

3 Proof of Theorem 2.2

The idea of the proof is mainly based upon both the method in Alouges and Soyeur
(1] and a domination in (3.25—3.26). We replace the Landau-Lifshitz equation in
system (2.2) by (2.5),

29u+u x B+ 2 (- Heppyu— He) =0 on Q

u(0,2) = ug(x) on Q

u(t,®) =g on 9N

lul =1 on Q,

(3.1)

where H,gy is as in (2.1). Using penalty function method we remove the constraint
condition |u| =1 in (3.1). Consider a family of problems

:—t('),u +uxdu= ﬂ”‘ﬂ;'\)l (Au + ""%1:1 + 01::‘"&"3 + %’-h — k(Ju|? = 1)u)
u(0, x) = up(x) on (3.2)
u(t.z) =g on 0,

where k is a positive integer and u : [0, +00) x @ — R%.

Emws: A
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3.1 Solve (3.2) by Galerkin method

We hope u(t,-) is in H*(22) when u solves the problem (3.2). As well known, the
operator —A maps Hu‘(ﬂ) to its dual space H='(Q). Let {e:(x)}:2, be the cigenvec-
tors of operator —A in HJ (), and A; > 0 be the cigenvalue corresponding to ¢;(z).
Thus {e;(2)}:2, construct the orthogonal basis of Hj(Q), and they are supposed to
be standard under L? inner product. Indeed, one can treat (ﬁi—))m),»l as the
standard orthogonal basis of H} (). That is, for all i,j = 1,2,.

e;(x) € CF°(Q) C HE(Q), (elliptic property)
(—Aei,w) () = Aifei, w) 12 () for all w € H}(Q) e
(33)
(ei, €5) L2 () = 0ij
(eiyes)mqa) = (1+ M) 72(1+ Ay)V/26;.
Let
vp = (ufalt @) 08t @), vf (1 )T
_—— 2,k () €i(2)
= T (14 M)V20 (t)m =151 (3.4)
and ]
b = (o, ), 0 0, ), 05 (1, 2))T = 0 45, @5)

where ¥ (t) = (2§ (1), 05 (1), % ()" € R®. We search u; that verifies the following
inner product problem. For all | =1,2,...,n,

(%i),u,‘; +uk x Oul, e '))Lum) =
alg+\%) ((._\r 4 Qa g Patia B B0 (|uk]2 — 1)uﬁ.e,(¢))um,)

(36)
(uk(0,z) — ug(x), () 1) = 0 on
uk(t,z) = g on 0N

The identities (3.4—3.5) lead us to having v} |aa(t, 7) = 0 and u¥|an(t, 2) = § trivially.

Proposition 3.1. For all k and n, the problem (3.6) has a unique local smooth
solution.

Proof. Using (3.4—3.5), (3.6) becomes
AEigke (), e@))a ) + H(Efele () + §) x Biokei(@). (@) 2@
(:WA( (@), e1(@)) 22 + Bu((=pek iei(@) + g1)ky, e(@)) pa@)
+2(S} e1(2) + gy, e0(a)) 2 + 22 (h (@) 13wy )

—k{(|BPekei(@) + 3> — 1)(Zekei(a) + 8), ei()) L2 ()
(Erek(0)ei(x) = vo(), e1()) () = 0,

A )
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where \ = T—,—, = W,—v—‘ and vo(x) = up(w) — § € HY(2). The formula,

Jei (@) = vol), er(@)) ey = ef (0)(1 + N) = (vo(@), (@) ey, (3.8)

implics that the second equation in (3.7) is

(wo(w), () (e
(L+X\r) ¢

Let's now turn (o the terms of the first equation in (3.7). Since (3.3),

(Bhgkeia)e = ¢f, (3.10)
((Siekei +9) x Ziofen el = 24 o (eser, @) 20k x ¢f +3 % f, (3.11)
(B Aei ey = —(SiefNiei, e = —Nigf, (3.12)
(S5 e + g, ea) e + a1 (1,e) g2k, (3.13)
(Db i + gn)hs, ea) e = @h ks + ga(1, @) 2k, (3.14)
(iet) g =(lel)pah, (3.15)
and
((I=ipke + gI* = 1)(Zeke: + ), e 2
= ((BV=ah - whesen + 28010k - Ge,)(Zhekes + ), e 2
= Dpimi{eseien @) pa(ef - o )k + 282 i (eseis )2 ok - )b
55 o (eser ) 2 (9} - o} )!/+2(w1 *9)9- (3.16)
By (3.9--3.16), (3.7) can be written as an ODE system of
O = (o b oo ehn b o) (3.17)
which has 3n components of tpf_,(l), 1<i<3,1<j<n. Namely
(M + 1)k = F(0k)
(”n(*‘)-ﬁl(-‘"))u-(n)/(l + 1) (3.18)

25 (0) =
(vo(@), en(@)) iy /(1 +
where [ is the identity matrix, 7' = T(‘I‘ *) is a 3n x 3n matrix of L,a,’J( t) and £ (‘I’ )

has 3n components which are polynomial functions of ,,J(I) as linear combinations
of (3.12--3.16). In detail

Dol E Ty Ry --- HRin

Tay -+ Thn Ruy -+ Ran
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where

0 = —Zi1(eaeq ep) L2l (l‘al’q"'p)b“l’gkﬂ
Ty = s (eseq ep) L2l 0 i (eseq,p) a0ty |
—Bl_ (eseq ep) a5, By (eaeq ep)ragf 0

0 =03 @
Rpq = 93 0 -0 for p = q, and Ry, = 0 for p # q.
-2 @ 0

Because of the antisymmetry of I‘((I)") the eigenvalues of 7(®F) are either pure
imaginary or zero. Hence AT + T'(P) is always reversible, moreover

|det(A +T)| > A%,

Since F(®%) is Lipshitz continuous provided that [%| is bounded, there is a unique
local solution ®%(t) € C'[0,4%) to (3. 18), for all n and k by ODE Theory. We can
obtain ‘D"(I) € C’“[O o) bocmm‘ both )\I + T and F are <moolh for ®%. In other
words, uf = vk + g, where v = I ¥ (t)ei(@) € C=([0,6%); (CE°(R))%), is the
unique Ioml solunou to (3.6). n

If we multiply the first identity in (3.6) by ¢ and summate it for 1 <1 < n, then

i gt {4 B3O [k ¥iae

/\/nli).u,,l dz = 2(’)( / |Vl |2da + o5 0?/ |ky - ukPde + 2a i, 1|I\A; uy |*dw
Hu 9 by k12 _ 112 .

/1 AL wz/,,“""' —1Pdz (3.19)

is implied by the facts uf|on(t, ©)

3, 0k laa(t, ) = 0, and

/nAuﬁ - Quupdz = /an it Vb - dubdo — /nvu}; %vukd: L ,;)1 |V; g
Define 20)
EXt) = %IlV"ﬁﬂ?ﬂm)(t) - %His. b [[Fag (t) = %"LJ b gy ()

_% /n GRS %“hlﬁl’ = 1|Zaa)(®)- (3.21)
Integrating (3.19) over [0, ], it becomes the energy equality
B0+ '\/ |9up[*dads = ER(0),  Ve=[0,4] x Q (3.22)
where
Ex(0) = %ll\’u" iz - —Ilh 5 (0) 1720y = gl“a b (0)[2qy
_? /n it E“I“';(O)lz =12y (3.23)
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and . MM

e (@) + 9. (3.24)

uk(0) = vf(0) + § =

Since vy € HA(Q), we have ||vk(0) [],,,(m < ”"‘)"H'(ﬂ) and then, "V“};(O)"if(()) =
Co. ey uh (0)[350y < Co, Iks-ub(0) 1320 < Cos | foy ok (0)der| < Co and |||k (0)[*~
II]L,”,) < (% by the Sobolev embedding theorem, where Cp is used to denote the con-
stant depending only on [|lvg]| ;1) and [2] (maybe also on ||, |pl, |al, |31, [Bs], | Hol
and Ky in some cases below), but not on n and k. Hence E,’f(0) < kCy.

The second, third and fourth term in the definition of E¥ can be dominated by
the fifth term (for k large cnough), since

I dblsa® < [ hPaa= [ kP -1az+ i)
< IR = 102 (0 + 310, (3.26)
and
(©) < Ikl ®IRP < TR = aey(®) + 2101 (320

|/ h-ubda

Thus, there exists a fixed Ko > 0, only depending on o, 3y, 33 and Hp, such that

B 4 112
=l o) = G () = 22 [ - ubaate)
I(
TR = UEagoy () + Kol2l 2 0. (3.20)
When, k > Ky, the domination mentioned above being achieved, there hold

k - K . " .
02 51V oy + S5 NP - ey < EXO) + Kol (3.28)

and

0 < EX(0) + Kol < kCo. (3.29)

As a consequence of the energy equality (3.22), (3.28) and (3.29), for all k > Ko,n =
1.2,... and t € [0,4,), there hold

V25 70y (8) < KCo,  IIJub? = 11320y (8) < KCo, (3.30)

uu.‘.ui:m,m=/|u¢;|”—1dr+|ﬂ|s|||u.‘;|’—1n,.:m.|m’/’+|n|skco, (3:81)
o
and

t
[ ok Pasas = [} 10kl ) < ki (3.32)

T
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Proposition 3.2, There exists a Ko > 0 such that for all k > Ko and for all n, the
unique local solution of (3.6) obtained in Proposition 3.1 can be extended globally.

Proof. Let k > Ky and n be fixed. Since (3.3 -3.5), we get from (3.31)
B (e (8)? = llvhlIFa)(t) < kCo,  for all £ € [0,65).

This implies that ®%(¢) is bounded on [0,6%), and that |F(®k(t))] < C; uniformly on
[0,0%) for some constant Cy > 0, due to the continuity of F. It follows standardly
from the known inequality (3.19) that ®%(t) can be extended to [0,00), that is, the
solution u¥(t,x) of (3.6) is global. n

From now on, we consider only the case of k large enough when the global solution
ub = vk + g, where v € C®(R*; (C5°(R))?), exists from Proposition 3.2. It is easy
to see that the energy equality (3.22) and the inequalities (3.30-3.32) preserve for
all t € [0,20). Hence from (3.30) and (3.31), one gets that

[|"x||2L=(R+;u'(m) and [|ub ]| o g+ (ay) < kCo- (3.33)
And from (3.32),
[18eok |1 Fa g w2y = IeubliFags wacay < kCo- (3.34)

Proposition 3.3. For the sequence {uk(t,2)}3%, obtained in Proposition 3.2, there
crists a weak limit u*(t,x) in W, which is a global weak solution to (3.2).

Proof. Since (3.33—3.34), there exists a v¥(t, ) € Wy written as v* = (vf, 0§, v§)T,
such that

(3.35)

vk (t, @) > vk (t, @) in L2(R; H(Q))
dk(t, @) = Ok (t,x) in L2(R+;L3(Q)),

up to subsequences, as n — oo (in the following proof we may take limit up to

subsequences, as n — 00). Let u* = (uf, uf, uf)” = v* + 5. We deduce easily from

(3.35), by the Sobolev embedding theorem and the Lions compact theorem, that for
arbitrary T > 0,
uf b in L®([0, T); L8 (), (3.36)

ufb = b in HY([0,7) x Q), (3.37)
and
uf —u* in C((0,7;L*(2)) N LI([0, T]; LP()) for g < +00,p < 6. (3.38)

(See for instance J.L. Lions [15] for very general compactness results of that sort.)
Hence (3.35—3.38) together with the well-known fact,

ei(x) € Hy(Q) — LP(Q) for p < 6, (3.39)
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give the following (3.40—3.44). First of all,

T fiy T
/ (B, e) oy dt =/ /om,*;(:.x)e.(:)dmr ~ / (@t ex) agaydt, (3.40)
(1 o Ja o
and o i
/ (u,A; X Dﬂlﬁ,l!,‘)lg(ﬂ)(“ —v/ (u* x O,u",c.),_z(mdt (3.41)
0 0
Using the divergence theorem,
T g T :
/u (Auk, ) 2oy (t)dt = -/U /nwf;(z,x)-w. - -/u (Vuk, Vei) 12y (t)dt.

(3.42)
For j =1,2,3,

T 7 T
/ ("i...ﬂ-)Lﬂ(n)(t)dfv=/n ("ﬁ'kj.ﬂu)l.?(n)(')d!—’/o (u* kj, e) L2y (t)dt. (3.43)
0

Finally,

T v i
/D (i * = 1)uk, e5) g2y ()t — /u (¥ = 1wk, e) 2oy (t)dt.  (3.44)

From (3.40—3.44) and (3.6), we obtain the global weak solution to (3.2) in the sense
that

. T
/n (0t + ut x Bk, ) gy ()t + /0 (Ve*, Ves) sagy ()t

Z S Gauk »  Hpys
< /0 ("‘aik, + l"%kg + 0k = (b — 1)Uk, e 2oy (D). (3.45)
Since T is taken arbitrary, we can say

(A0 + puk x ik, e3) pagay (1) + (Vuk, Vey) 12y (1)

Bruk - Bz 3 '
—(—%k. ik 5”(:&&3 + =2h = k(" ~ 1)ut, e) 1) () =0 ae. on RF. (3.46)

Since {e;(x)} is the orthogonal basis of H} (%), vE(0,z) — vo(x) in H(Q) from
(3.6); on the other hand, v&(0,2) — v*(0,z) in LP(9) since (3.38); thus

u*(0,2) = ug(x) in the sense of traces. (3.47)
Since v*(¢,-) € H}(Q), the boundary value condition also holds,
u*(t,z) =g  onon. (3.48)

T
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3.2 End of the Proof
Consider £%(0). Since
uk(0) = vE(0) + § — vo + § = ug as n — oo in H'(Q) — L¥(Q), (3.49)

one has

/n IO - 1Pds < /n |k (0) = o[ (0) + wo 2dz:

IA

(/n Juk(0) - uol"d.r)a(/" |uk(0) + r1g|"(11:)5
0

=

(3.50)

nd . N i
IV O aa) = 21k - ub ()13 2y — S2llks - ul (0)[Faqy — Lo fo - ubi(0)da
= §lIVuol|Za) — 2 llky ol 2y — B lks |32y — Lo [0 k- upda

= B(0) as n — oo. (3.51)
Since (3.35-3.38), we have

i N T o B S
§||Vu"ll?_;m,(l)+)\/‘l' Q| < 15{1@(5||v..,‘,|1-L,m,u)+A/‘" [Beuk]?)  (3.52)

by the lower semi-continuity, and

- e () = 1%i - w13 0): (3.53)
/ B ukda(t) —»/ h-ukda(t), (3.54)
2 o}
Il |? ~ 1"’7‘.9(“)(0 o |||“k[2 = 1||il(n)(’)- (3.55)

as n — oc, by the continuity. Thus, in view of (3.21--3.23), there holds

EX(t) + :\/V |0k Pdads < B(0) € Co for ae. t >0, (3.56)
where
EYe) = %Hvuklﬁﬂ(m(i) 7 %l;lli:\ Uy () - :_:”k’ ¥ Fagey (1)
=2 [ ubdatt) + JE = 1) (357)

Like the arguments in the subsection 3.1, one can deduce from the energy inequality
(3.56) that for k > Ko,

IV 6 2y (8) < Co, (114412 = UEaey(8) < Cov 1w I3an)(®) < Co,  (3:58)
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and .
/ |k Pdads = / || @eu® ||';",m)(s)ds < Co. (3.59)
Vi 0
Thus e
(0¥ 113 01 2y 80 [14¥ (17 = (501 23y < Cos (3.60)
and Lo
18ev* 172 R+ 252y = 10 (172 200y < Co- (3.61)
There exists some v(t, @) = (vy,v2,v3)" € Wy such that
vR(t, @) S ot @) in L°(RH; HY () (3.62)
Akt @) = uu(t,x) in LARY; L2(Q)),

up to subsequences, as k — oo, Let u = (uy,u2,u3)” = v+ §. Then for all T > 0,

uk By in ([0, T); LS(2)),
w = u  in HY([0,T] x ),
and
u¥ —u in C([0,7); L3(R)) N L9([0, T); LP(Q)) for q < +00,p < 6.
And thus up to subsequences,
ub(t, ) — u(t, ) a.e. on § for all ¢ > 0.

Let k — o0 in (3.56), we have the energy inequality
E(t) + 5\/ [Opu)*dads < E(0) < Cy for all t > 0,
Vi
by the lower semi-continuity and the continuity as in (3.52-3.56), and have
|uk|2 -1=0 in L*(Q) and a.c. on Q for all ¢,
where
1 Bz, : Bs 2 H, =
E(t) = 5Vullfaq) - Sl - ullaay — ﬁuk_1 “ull}aq) — 7" “h “udz.
As a consequence of (3.66) and (3.68), there holds

lul=1 a.e.

(3.63)
(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

End of the Proof. Take /¥ = u* x > where ¢ € C=(R*;(C§°(R))%). Since u* € W,

one gets v*(t,) € H}(S2). Noticing (3.46) we obtain by density that

(ABu* + puk x duk, uk x P (t) + (Vu*,u* x Vo) L2y (t)

T
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k o ’
—ﬂkl i l-j':‘ﬁka + %h.uk X @)aa)(t) =0 ae. onRF. (3.71)

Integrating the above identity over (0, 7], and letting k — ~c. we have

T
j (Adeu x u, ) 120 + (A(u - w)Ou, 9) 2y — (Alu - Feu)u, ) Laa)
0

+(Vu x u, V) paq) — (2'[—:2121 u+ m]\ u+ %in X u. ) p2(qydt = 0, (3.72)

by (3.62-3.65). Now we have gotten fmm (3.70) that

3 2) 3
/ 0,!['\5—5(”)(0(")'(;)-MZ(HXG,II)‘@,W
vr 4 /i i=1

LAY 4 A .
+(”—:—) (B x k) -+ Bugu x ) -+ Holu x ) - ) dadt = 0, (3.73)

for all p € C%(R*;(C5°(R))%), that is, the weak solution to system (2.2) in the
divergence-form. By an argument of density, we deduce that (3.73) holds for all
@ € L*0,T;H)(Q)). It is trivial to check the initial condition and the boundary
condition, like that in the proof of Proposition 3.3. Together with (3.67) and (3.70),we
end the proof of Theorem 2.2, n

4 Proof of Theorem 2.4

We can use the same methods as in the proof of Theorem 2.2 to prove Theorem 2.4.
In this section, the sketch of the proof is given as follows.

Step 1. We introduce the standard orthogonal basis of L*(€), {w;}32,, whose
clements are the eigenvectors of the Laplace operator with the Iluxnogmom Ncummm
boundary condition. The sequence {w;} is also an orthogonal basis of H'(€). It
satisfies for all 1,5 = 1,2,...

wy(z) € H(), (wi(x) € C=(Q), elliptic property)
(=Awy,w)2(0) = Ni{w;,w) () for all w € H'(2)
G5 =0 ondQ (4.1)
(wy, wy) L2y = 6ij
(wy, wy) gy = (1 +M)V2(1 + )\,)‘/76.,,
where \;'s denote the eigenvalues.
Step 2. Consider the inner problem

(AByut + puk x B,u“,wl(:r))pm,
= (Auk 4+ Zuhafy g Pt oy By k(jub ]2 — 1)uk, w(z)) o (4.2)
(ug(0,2) = ug(z), wi(z)) iy =0 on Q,
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for all I < n, where
ut = (uf.,,(l.:y uf (L. 2), u;,,(l.r))r
= I, ek(twi(z) =2 ol (4.3)

where ¢¥(2) = (¢} (1), 05, (t), #5 :(1))T € R®. Problem (4.2) is also globally solved:

Proposition 4.1. There exists a Ky > 0 such that for all k. > Ky and for alln, thcr;:
exists a unique global solution uk(t,x) € C®(R*; (C®(R))*) of (4.2). Morcover, uy
satisfies the same energy equality (3.22) and the estimates (3.83—3.34).

Proof. Noticing that

/ it - Vubk (z) f(x)do = / oL@k ()i - Vwi(z) f(2)do
o0

f= 1O 3% @) (x)do = 0,

and R, = 0, what is showed for the basis {e;} in the proofs of Proposition 3.1 and
Proposition 3.2 is also hold for {w;}. Then the similar arguments end this proof. W
Step 3. Let & be large enough. Passing to the limit (n — 00), we find a weak
solution u*(t, ) € W of equation
A0 —Auk = —puk xduk +”‘“‘L +l}""3k S0 1) = S(a), (44)
«
in the sense of (3.45) or (3.46) where ¢; is replaced by w;, as shown in Proposition
3.3. Moreover, (3.47) and (3.56) also hold.
As shown in subsection 3.2, passing to the limit (k — o), we find a weak solution
u(t,z) € W to the system (2.3) such that (i) and (ii) hold in Theorem 2.4.

In the following proposition, it is showed that there is an improvement for the
regularity of ux ([1]).

Propomnon 4.2. Assume that the parameters 3y <0, 33 <0 and Hy = 0 in (4.4),
then ||u*(t, )|~ < 1.

Proof. By a density argument, we deduce that for all ¢ € H'(R2) there holds

e o
/ (Aduk + puk x H,uk.e‘)),,zlm(t)dl+/ (Vu*, Vo) 120 (1)dt
0

Jo
T k
Pruff » .
= A (%k, + 3 = k(lu** = 1)u*, 6) 2(q) (1) dt (4.5)
Let G(x) be the following
G(z) =0 if r <0;

G(x)=2*/2 if0<z<];
Glx)=x-1/2 otherwise.
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Then
c;(|u"|’ = 1)(t, x) = 2g(Ju*|* = 1)u* - —u*,
where g(z) = G’(;r). Tnke ¢ under the form
bty @) = 29(|u*[* = 1)ut. (4.6)
Obviously, ¢ € L?(Vy) and V¢ € L®(R*; L*(Q2)). Carrying (4.6) in (4.5) leads to
/ A2g(|u*? = 1)u* - gu* + Z 49’ (Juk [ = 1) (u* - 3u*)? + 2g(Ju*[? = 1)|0 [*)dadt
i=1
13 - ok -
=/ 29(|u** = 1) (Mkl B [’ﬂh = k(lu*? - l)u") —ufdadt. (4.7)
Ve a «
But,
o () = k- 0ty 200 g(lu = DIBH[ 2 0;
(A = (et = D 2 0;
9((ut[* = Dluf[* and g(ju*[* = D}us* 2 0;

and they all belong to L' (V). Since the assumptions that 3, <0, 3 < 0 and k > 0,
we get that

/ —G(|u |2 = 1)(t, 1)duu—/ 2g([u** = 1)u* - dpu*dzdt < 0;
vr
furthermore, by (3.47),
J 60 - 0@)n < [ Gt - 00210z = [ Gluol? - 1@z =0.
We conclude that [u*(t,2)| < 1 ae.

By the properties of parabolic equations, the formula (4.4) then gives u* belongs
to W N L2(0, T; H*(R2)) since S(t, ) € L*(0, T;L3(9)).

5 Constant Solutions
According to the sense of weak solutions in Theorems 2.2 and 2.4, any classical solution

to the Landan-Lifshitz equation is also a weak solution. For the classical solutions to
(2.2) or (2.3), one may deduce the energy equality.

Proposition 5.1. For any classical solution u to (2.2) or (2.3), the energy equality
holds,

A 2 = 5
E(t) + m /“ |Ou|* drds = E(0), (5.1)

where E(t) is the same as in (3.69).
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Proof. Since u-dyu = 0, and u satisfies (2.2) (g constant) or (2.3), one gets

/ (7 - Vu) - Qudo = / Q‘; »E),udﬂ-/ 0do=0. (5.2)
00 o0 O a0

Hence taking inner product of (2.5) with d,u and integrating over V;, we get (5.1). B

We consider the constant solutions in the following. If u(t,z) = g is a constant
solution to the Landau-Lifshitz equation, it can be treated as the global classical
solution both to system (2.2) and to system (2.3) with the initial data ug = §. We
could ask whether the uniqueness holds for the solution with this initial data.

Problem: If v(x) = § is a constant solution to the static Landau-Lifshitz equation:
Hepp(v) = (Hegg(v) - v)v. (5.3)

Let ug(z) = g in system (2.2) or (2.3). Is the solution to (2.2) or (2.3), u(t,z)
unique?

We give a positive answer to the above problem in some special cases. Suppose
u*(t,x) = (uj,us,u3)” is a classical solution to (2.2) or (2.3) with u*(0,2) = §.
Employing the energy identity (5.1), one can deduce that:

0 < a/ Wu'|2dm+21v5\/ |0’ | dzdt
Q Ve

= [h/ u}z(t)—gfda:-#ﬂ;,/ui’(t)—g?,dx-%—?Ho/ heut(t) = h-gde
Q Q Q
= SE(t). (5.4)

Obviously, if there holds §E(t) < 0, then du* = 0 and Vu* = 0 on V;; Uniqueness is
obtained.

(a) If Hy = 0,1 = 0 and B3 = 0, then for an arbitrary § € S?, v(z) = g is a
solution satisfying (5.3) and u(t, z) = § is a constant solution to the dynamic equation.
Moreover one can deduce that §E(t) = 0 and then uniqueness is obtained. This tells
us that the isotropic ferromagnet could be oriented randomly.

(b) If Hy = 0,81 # 0 and B3 = 0, either v(z) = £k or v(z) = (0,g2,93)" € S?
satisfies (5.3). By checking 6E(t) < 0, we can obtain that with ug = (0, g2,93)7, the
solution to (2.2) or (2.3) is unique if 4, < 0; and with ug = +ky, the solution for
A1 > 0 is unique. These assert that in the ground state of an easy-plane ferromagnet
the vector u lies in the easy plane in the absence of an external magnetic field and
can be directed arbitrarily in this plane; and in the ground state of an easy-axis
ferromagnet the magnetization vector is directed only along this axis. ([14])

(c) If Hp = 0,81 # 0 and B3 # 0, the constant solutions to (5.3) are either
v(x) = hy, ko, +hg for arbitrary 8; and 83, or v(z) = (1,0, g3)" € §? for B = 3.
With ug = %k, the solution to (2.2) or (2.3) is unique for 8; > 0 and fi3 < 3, since

e / ui(t) — lda + :’i;q/ u3?(t)dz
Q Q

SE(t)

I

a,/nu;2(t)+u;2(c)— 1dz+(33—31)[)1:;2(:)(1;;50; (5.5)

([
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with ug = :i:fcz. the solution is unique for 3, < 0 and 3 < 0; with uy = j:i;?g, the
solution is unique for B3 > 0 and 3, < f3; and when 3, = 33 > 0, the solution with
g = (91,0, 93)" is uniquely obtained since

JE(t) = B /nu’;z(t) — gida +ﬁ3/r;u§2(t) — gada

= B / ui?(t) + us?(t) — 1dz < 0. (5.6)
Ja

From these uniqueness conditions we see that the size of 3; will decide the leading
axis for a biaxial ferromagnet. il

(d) If Hy # 0,41 = 0 and f3 = 0, then v(2) = +h are solutions to (5.3). When
up equals to h and Hy > 0, the constant solution u = h whose direction agrees with
that of the external field H is uniquely solved to (2.2) or (2.3). With ug = —h and
Hy < 0, then u = —h whose direction also agrees with that of H = Hoh is uniquely
solved. In other words, the external field will be forcible for an isotropy ferromagnet.
Indeed, the properties of the static Landau-Lifshitz equation with constant boundary
value are studied in (12, 13].

(e) Let Hy # 0,h = ki, 8 # 0 and B3 = 0. In (5.3), v(x) can take the constant
either § = +k; or § = (—Ho/B, 92, 93)7 € S? provided |Hy/B| < 1. If ug = ko,

0E(t) = ﬁl/nu;?(t) —ldz QHg/nu;(l) — ldz

[0 - 00+ 1) + 210)a 1)

Thus when 3y > —Hy, §E(t;) < 0 since uj(t) can be chosen near 1. Hence the
dynamical solution u = k; to (2.2) or (2.3) has uniqueness for 8; > —Hp. Similarly,
with ug = —k; one gets that the dynamical solution u(t,z) = —k; is unique for
B1 > Ho. PO i

(f) If Hy # 0,h = ko, 1 # 0 and B3 = 0, v(2) may take either § = kg or § =
(91, Ho/B1,0)T € S? provided |Ho/f1| < 1 in (5.3). For ug = ks, and Hy > B; > 0,
there is uniqueness result for u(t, ) = ky to (2.2) or (2.3), since

JE(t) = ﬂ./ﬂu;z(z)deHqLu;(t)—mz

= /ﬂ(/il(l+u§(t)) —2110)(1%;(1))(11—/3‘/ugﬁ(ndmso. (5.8)

Q

Similarly, for up = —frq, the condition —Hy > f; > 0 gives the uniqueness for
dynamical solution u(t,x) = —k,.

Received: Jan 2005. Revised: March 2005.
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