(U[U]m A Mathematical Journal
Vol. 9, N® 1, (47 - 55). April 2007

Pseudo Almost Periodic Solutions to
A Neutral Delay Integral Equation

Toka Diagana
Department of Mathematics, Howard University
2441 6th Street N.W. Washington D.C. 20059, USA
tdiagana@howard.edu

Crépin M. Mahop
Department of Mathematics, Howard University
2441 6th Street N.W. Washington D.C. 20059, USA
cmahop@howard.edu

ABSTRACT
We give some sufficient conditions which do ensure the existence and unique-
ness of pseudo almost periodic solutions to a neutral delay integral equation of
advanced type introduced by T. A. Burton in the literature. We next make use
of the previous result to characterize pseudo almost periodic solutions to the so-
called logistic equation.

RESUMEN
Entregamos condiciones suficientes que aseguran la existencia y unicidad de
una soluciones seudo casi periddicas al la ecuacién integral con retraso neutral del
tipo avanzadc roducida en la literatura por T.A. Burton. Luego, utilizamos
resultadas previos para caracterizar las soluciones seudo casi perisdicas de la lla-
mada ecuacién logistica.
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1 Introduction

This paper is concerned with the existence and uniqueness of pseudo almost periodic
solutions to the abstract integral equation of the form

ult) = SO + [ Qosuls),ulhalsN)C(E  s)ds + 500 )
t

for each t € R, where f, g,h1, ha, C : R — R are continuous functions with h;(R) = R
fori=1,2,and Q: R xR x R R is jointly continuous.

Setting, hy(t) = ha(t) =t — p where p > 0 is a constant, in Eq. (1), one obtains
the so-called neutral delay integral equation of advanced type

u(t) = f(u(t - p)) + /lm Q(s,u(s),u(s — p)C(t — s)ds + g(t), (2)

which was introduced in the literature by T. A. Burton [4] as an intermediate step
while studying the existence and uniqueness of (periodic) bounded solutions to the
logistic differential equation given by

u'(t) = au(t) + au'(t — p) — q(t, u(t), u(t — p)) (3)

where a > 0, 0 < |a| < 1, and p > 0 are respectively constants.

Under some suitable assumptions, the existence and uniqueness of a pseudo almost
periodic solution to Eq. (1) is obtained (Theorem 3.1). Next we make use of the
previous result to prove the existence and uniqueness of a pseudo almost periodic
solution to the logistic equation (Theorem 3.3).

Some contributions related to pseudo almost periodic solutions to abstract differ-
ential and partial differential equations have recently been made, among them are
(1.2, 3, 6, 7, 11]. However, the existence of pseudo almost periodic solutions to in-
tegral equations, especially those of the form Eq. (1) is an untreated topic and this
is the main motivation of the present paper. In particular, we will make use of our
result related to Eq. (1) to discuss the existence and uniqueness of pseudo almost
periodic solutions to the logistic differential equation, that is, Eq. (3).

The existence of almost periodic, asymptotically almost periodic, and pseudo al-
most periodic solutions is among the most attractive topics in the qualitative theory
of differential equations due to their applications, especially in biology, economics,
and physics.

The concept of pseudo almost periodicity, which is the central issue in this pa-
per, was introduced by C. Y. Zhang (14, 15, 16] in the early nineties. Since then,
such a notion became of great interest to several mathematicians. The pseudo almost
periodicity is a natural generalization of the classical almost periodicity in the sense
of Bochner. Thus such a concept is welcome to implement another existing general-
ization of almost periodicity, the so-called asymptotically almost periodicity due to
Fréchet, see, e.g., [12]. For more on the concepts of almost periodicity and pseudo
almost periodicity and related issues, we refer to [5, 10, 12, 13] for both the almost
periodicity and asymptotic almost periodicity, and to [1,2,3,6,7, 8,9, 11, 14, 15, 16)

for the pseudo almost periodicity.
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2 Pseudo Almost Periodic Functions

Let (X, || - ]l) be a Banach space and let (BC(X).|| - l) be the Banach space of
bounded continuous functions from R into X endowed with the sup norm

[l6lloc = sup [l6(t)]-
teR

Let (¥, || |ly) be another Banach space. If Q € X is an open subset, then BC(R x
2, Y) denotes the vector space of bounded continuous functions ® : R x Q +— Y.

Definition 2.1 [5] A function f € BC(X) is called almost periodic if for each e > 0,
there exists I, > 0 such that every interval of length I, contains a number T with the
Jollowing property:

Ift+7)=f@®) <& VEteR.

The number 7 above is then called an e-translation number of f, and the collection
of such functions will be denoted AP(X).
Similarly,

Definition 2.2 A function F € BC(R x Q,Y) is called almost periodic in t € R
uniformly in any K C Q a bounded subset if for each € > 0, there exists [, > 0 such
that every interval of length le > 0 contains a number v with the following property:

|F(t+7,2) - Ft,z)|ly < &, VteR, zeK.

Here again, the number 7 above is called an e-translation number of F, and the
class of such functions will be denoted AP(R x Q,¥).

For more on AP(X) (respectively, AP(R x Q,¥)) and related issues, we refer to
[5, 10, 12, 13] and the references therein.

From now on, we suppose 0 = X and set

L
ARK) 1= {f € BO): lim o [ 17(s)ids =0),
Similarly, APy(R x X,Y) denotes the collection of functions F' € BC(R x X, Y)
such that

lim l/ IF(t, u)llydt = 0
resta 31 J_,

uniformly in u € X.

Definition 2.3 A function [ € BC(X) is called pseudo almost periodic if it can be
expressed os f = g+ ¢, where g € AP(X) and ¢ € APy(X).
The collection of such functions will be denoted by PAP(X).

()
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The functions g and ¢ appearing in Definition 2.3 are respectively called the almost
periodic and the ergodic perturbation components of f. In addition, the decomposition
given in Definition s unique, sce, e.g., (14, 15, 16].

We now equip PAP(X) the collection of psendo almost periodic functions from R
into X with the sup norm. It is well-known that (PAP(X), ||.||~) is a Banach space,

see details in [11].

Definition 2.4 A function [ € BC(R x X,Y) is called pseudo almost periodic in
t € R uniformly in x € X if it can be expressed as f = g+ ¢, where g € AP(R x X, Y)

and ¢ € APo(R x X, Y).
The collection of such functions will be denoted by PAP(R x X).

3 The Main Result

Throughout the rest of the paper, we suppose that X = ¥ = R equipped the classical
absolute value. Note however that when dealing with the pseudo almost periodicity
of @ it would be more convenient to choose X = R x R, see (H.3).

Our setting requires the following assumptions:

(H.1) The function f,g : R - R are pseudo almost periodic and f satisfics,
/(@) = f()] < a.|x =], 0O<ac<l,

for all 7,y € R;

(H.2) The function h; : R = R is continuous, hi(R) = R, and u(h;) € PAP(R)
(i = 1,2) whenever u € PAP(R);

The function @ : Rx (RXR) - R, (t, 2,y) = Q(t, ,y) is pseudo almost periodic
in ¢ € R uniformly if (z,y) € RxR. Setting @ = Q1+Q> with Q; € AP(RxRx
R.R) and @2 € ARy(RxR xR, R), we suppose that Qa(-, v(-), v(ha(-))) € L' (R)
for each v € PAP(R) where hy is the function appearing in (H.2). Furthermore,
s 0 < k < 1 such that

(H.3

there exis
QU %) ~ @ty w,2)] < (k- = wl + (1 = k). [y — =)
for all z,y,2,w € R;
o
(H.4) 0< / |C(=s)lds = Cp < .
o
Our main result requires the following technical lemma:

Lemma 3.1 Under assumptions (H.2)-(H.8)-(H.4), the function defined by
Tu(t) := / Q(s,u(s), u(ha(s)))C(t — s)ds
Ju

maps PAP(R) into itself.
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Proof. Let u € PAP(R). First of all, note that ¢ ~ u(hy(t)) is pseudo almost
periodie, by (H.2). Using (H.3) it follows that s — Q(s, u(s), u(ha(s))) is pseudo
almost periodic, see, e.g., (3, 6].

Now write Q@ = Q, + Q2 where @, € AP(R x R* R) and Q, € APy(R x R* R).
Consequently, l'u = Ty (u) + Ia(u) where

Do) i= [ Qulovus), ulha()Cle ~ )ds
and i3
Pautt) = [ Qalo,ute) uha(9)Ce - ).
To complete the proof, it remains to prove that I'yu € AP(R) and Tou € APy(R).

Since Q; (-, u(:),u(ha(-))) € AP(R), for each £ > 0, there exists § > 0 such that
for all 4, there is 7 € [y, + 6] with

|Qu(s + 7, u(s +7), u(ha(s + 7)) — Qu(s, uls), u(ha(s)))| < Ci.n )

for each s € R. o
Note that T'yu(t+7)) = Qi(r+71,u(r+7), ulha(r+7)))C(t = r)dr, by setting
r = s — 7. Considering I‘|u(tl+ 7) — I'u(t) it easily follows that
ITyu(t +7) = Tqu(t) <e, VteR,
by Eq. (4) and (H.4), and hence I'y(u) € AP(R).

The next step consists of showing that Fau € APy (R). It is clear that s - I'y(u)(s)
is a bounded continuous function. Thus, it remains to show that

lim 2 / |Tau(t)| dt = 0.
D

Clearly, L
lim —l— / |Cau(t)|dt < I+ J,
r—oo 2r J_,

where
rim pim g [ ([ 1Qutn 9 b)) It - s, ana
J:=’lﬂ|;% /_,‘“./, Qa(s, u(s), ulha(s)))]. IC(t - 8)]ds.

To show that I = J = 0, we make use of the following arguments:

. rha
o [ cte-sdt= [ 1C(-v)ldo < Coforall 452 0;
- 0

()
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(A1) Qal-ul). ulha()) € APy (R);
(A2) Qs(ul),u(ha())) € L (R).
Indeed, by changing the order of integration we obtain:
r= lme /_ |Qa(s, u(s), u(ha(s)))] ds (/_qu—s)lzu)
< ,‘H&% / |Qa(s,u(s), u(ha(s))] ds
= 0,

by (A0)-(A1).
Similarly,

J = rl_lp;o%‘ /’.m |Qa(s, u(s), uha(s)))| ds /_rr |C(t - s)|dt
00 4T
= r‘_‘j’;% [ |Qa(s, u(s), u(ha(s)))|ds .[.., |C(=v)|dv

= rlﬂ); /"" 1Qa(s, u(s), u(ha(s)))|. dr(s) ds,

1
where ¢(s) = o /_‘ |C(=v)|dv.

|C(=v)|dv < Cj for all s > r. And hence ¢,.(s) = 0

r) by
Clearly, ¢-(s) < ‘2—7‘?3 by ./,,_,
as 11— 00, Since Qa(-,u(*) u(ha(+))) € L'(R) it follows that

0o

lin;o / 1Qa(s, u(s), u(ha(s)))|. é.(s) ds =0,

r—00 Jn
by (A.2) and the Lebesgue dominated convergence theorem. And therefore Tyu €
APRy(R).

Theorem 3.1 Under assumplions (H.1)-(H.2)-(H.8)-(H.4), Eq. (1) has a unique
pseudo almost periodic solution whenever a + Cy < 1.

Proof. Let u € PAP(R). Define the nonlinear operator
Adw)(t) = fu(ha () + / Qs w(s)ulha()C(t — s)ds + g(t), teR.
v
First of all, let us mention that f(u(hy(+))) € PAP(R), which follows immediately
from the composition theorem of pseudo almost periodic functions in [:1v 6]. Thus,

in view of the previous facts and Lemma 3.1, it easily follows that A maps PAP(R)
into itself and that I'yu and Iau are respectively the almost periodic and ergodic

perturbation components of A(u).
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To complete the proof, we must show that A : PAP(R) »— PAP(IR) has a unique
fixed-point.

For u,v € PAP(X),

[Au)(8) = Av)(®)]

< allu - v|lo + /l.& |(@(s, u(s), u(ha(s))) = Q(s, v(s), v(ha(s))))| . |C(t — s)|ds
<= vl + [ IKu(6) = (0] (1 = Buia(s) ~ (ha(o)] 11t = s

< allu — vl + || = vl - /w |C(t - s)|ds,
and hence ;
[IA(w) = A@®)llco < (a+ Co).- [lu = v]|o-
Therefore, by the Banach fixed-point principle, the operator A has a unique fixed
point whenever a 4+ Cp < 1, which obviously is the only pseudo almost periodic

solution to Eq. (1).
L}
Setting hy(t) = ha(t) = t — p, one can easily see that (H.2) holds, and hence the
next corollary is a straightforward consequence of Theorem 3.1. (In assumption (H.3),
we suppose that the ergodic component Qs of Q is given such that Qa(-, v(:),v(-—p)) €
L'(R) for each v € PAP(R).)

Corollary 3.2 Under assumptions (H.1)-(H.3)-(H.4), Eq. (2) has a unique pseudo
almost periodic solution whenever o+ Cy < 1.

The rest of this paper is devoted to the existence and uniqueness of pseudo almost
periodic solutions to Bq. (3). In what follows we define the function

a(ty @, y) = q(t,=,y) — aay
for all ¢ € R and x,y € R, where a,a and g are respectively the constants and the
function appearing in Eq. (3).

We require the following assumption:

(F,5) The function §: Rx (R xR) = R, (t,z,y) = q(t, z,y) is pseudo almost periodic
in t € R uniformly if (z,y) € R x R. Setting ¢ = q; + ¢ where q; € AP(R xR x
R,R) and g; € AP (R x R x R, R), we suppose that ga(-, v(-), v(- —p))) € L’(IR)
for each v € PAP(R). Furthermore, suppose that a,a > 0, and
la(t,,u) = q(t,w, 2)| £ (1 - aa)|z - w|
for all t,x,y,z,w € R.

Theorem 3.3 Under assumption (H.5), the logistic equation, Eq. (3), has a unique

pseudo almost periodic solution whenever a4 = < 1.
a

——
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Proof. One follows along the same lines as in [4). We are interested in bounded
solutions only. Thus if u is a bounded solution to Eq. (3), then

%[(u(i) — au(t - p)) e™] = [aau(t — p) — q(t, u(t), u(t — p))le™"".

Clearly,
u(t) = au(t — p) + /w[q(s, u(s), u(s — p)) — aau(s — p))e**~*ds, (5)
t

for each t € R, by ’lim ((u(t) = au(t — p)) e~*] = 0 (u is bounded).
To complete the proof, in Eq. (1), take f(t) = at, hy(t) = ha(t) = t—p, C(t) = ™,
g(t) =0, and
Q(t,u(t), u(t = p)) = 4(t,u(t),u(t — p)), VtER,

and follow along the same lines as in the proof of Theorem 3.1. | |
rev.

Received: Oct 2005. Revised: Dec 2005.
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