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ABSTRACT

The nonlinear Enskog equation with a discretized spatial variable is studied
in a Banach space of absolutely integrable functions of the velocity variables.
The Enskog equation is a kinetic equation of Boltzmann type which, unlike the
Bol! i is applicable to gases in the moderately dense regime. In
this lattice model the generator of free streaming is replaced by a finite difference
operator. Conservation laws and positivity are utilized to extend local solutions
of a cutoff model to global solutions. Then compactness arguments lead to the
existence of weak global solutions of the Enskog lattice equation. Molecular in-
teractions are introduced via a next: rest neighbor ial, thereby modeli
a square well potential.

RESUMEN
La ecuacién no lineal Enskog con la variable espacial discretizada se estudia
en un espacio de Banach de funciones absolutamente integrables de las variables
de velocidad. La ecuacién de Enskog es una ecuacién cinemitica del tipo Boltz-
mann, la cual, no como la ecuacién de Boltzmann, se aplica a gases en el régimen
moderadamente denso. En el modelo de enrejado, el generador de fuente libre
se reemplaza por un operador de diferencia finita. Las leyes de conservacién y
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positividad se utilizan para extender las soluciones locales de un modelo de corte
a soluciones globales. Luego, argumentos de de compacidad conducen a la ex-
istencia de soluciones globales débiles de la ecuacién de enrejado Enskog. Las
interacciones 1 se i 4 via el potencial del vecino mas cercano
siguiente, luego modelando un potencial de pozo cuadrado.

Key words and phrases:  Enskog equation, kinetic theory,
Boltzmann lattice
Math. Subj. Class.: 82040, 76P05

1 Introduction

Although there is an extensive literature on discrete velocity Boltzmann equations, [1]
and a smaller literature on discrete velocity Enskog equations,[2] the study of kinetic
equations on spatially discrete domains is extremely limited. Here we would like to
present a model of the Enskog equation on a three dimensional spatial lattice with
the full velocity dependent Enskog collision operator. We will discuss as well a next-
nearest neighbor interaction model which models the Enskog equation with square
well potential, and, more generally, with local piecewise constant potential.

The Boltzmann equation, first posed in 1876, is the best known equation in the
kinetic theory of gases.[3] However, this equation, which describes molecules as point
particles and yields transport equations only of an ideal gas, is an accurate portrayal
of a dilute gas. In order to have a more accurate description of moderately dense
gases, Enskog in 1921 proposed the equation subsequently bearing his name.[4] The
Enkog equation, revised in the 1960’s to represent exact hydrodynamics, takes into
account the nonzero diameter of real molecules, and has turned out to be an ac-
curate description of dense gases up to ten percent of close packing. Because the
Enskog equation models only hard sphere collisions without intermolecular potential,
Greenberg et al. have considered an Enkog type collision operator with square well,
and, more generally, local piecewise constant, potential.[5, 6] Although discrete ve-
lociy models of the Boltzmann equation have an extens! ive literature going back
more than 40 years, the spatially discrete Boltzmann equation was introduced more
recently by Greenberg and coworkers.(7, 8] In these models the spatial variable is
replaced by a finite periodic lattice.

In this article we will present a lattice version of the Enskog equation, studied in a
Banach space of absolutely integrable functions of the velocity variables, ie., only the
spatial variable will be discretized. We will discuss both the analog of a hard sphere
collision model and an Enskog model with local (next-nearest neighbor) interaction.
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2 Streaming Lattice Operator

For perspective, let us write the Enskog ion in a three di ional spatial do-
main:

(2 +5- V)57, = Cu(f, )(F 7.0 1)

for a function f : R%x R3x Ry — R, representing the differential density of particles
at position 7 at time ¢ with velocity 7. Here, C(f, f) is the Enskog collision operator

Culf, £)(F,0) // P+ ad .0+ a5 4,0

faaf( V0,0 f(F— a8, T, 1)) < &7 — Ty > dedmy,  (2.2)

Y (7 @
R e e e

=7—€<
for a gas of molecules of diameter a, with &integration over {€ € R®: ||&| = 1,&- (7
%) > 0}.
We shall consider the Enskog equation on a lattice:

Bft
ot @)+ (ANi(@1) = (£, s (2.3)

The index 7 is the spatial index denoting the ith lattice point in the periodic three-
dimensional cubic lattice A%, and ¥ is the (dimensionless) velocity vector. The op-
crators A and J will be defined below. We seek solutions in the Banach space
X = @;L'(R®) with norm ||f|| = X, [°2, | fi(¥)| d¥, where the sums are over N?
lattice sites. We denote with 7 the cone Cof positive functions in X, and by G(7,)
the cone of measurable functions f(-): Ry — T5.

The operator A with domain D(A) is the finite difference approximation to the
gradient term. To give A specifically, let 7 be an identification between the lattice A*
and Z%. Then A is an N* x N*® matrix:

Ay =) (5 @) A (@) (24)
W
where

AR(@) =8 — nuoiGyray T->0, A7) =A¥@x  (25)
and the sum is over the three orthogonal coordinate vectors #. We have, for con-
venience, taken the lattice spacing to be of unit length. The periodic boundary
conditions are imposed by viewing the lattice as a three-dimensional torus, and thus

7=1(j) + @ € A® for every j.
A representation of A may be written as follows. If vz, vy,v: > 0 and the n x n

matrix E is defined by
[ i=1
Bij=q " 2.6
4 {61'.]+1v i>1 @6)
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then
A=z +vy +v:)I®IQI —v(ERIRI) —v,(IRERI) —v.(i®I®E) (2.7)

Note E™ = I and that the representation of A if v; < 0 can be obtained from 2.5.
The discretized Enskog collision operator may be written

T :(5.0) = Golf, 1):(3,0) = £, LaF):(5,t) = (28)
X [ 0 (iiae S, 030 = Yisoe ) ool 0]
éer /R®

L< & T— >0 (T—1)),

where 0 is the Heaviside function and @, ¥} are given in 2.2. The geometric factor
Y is a functional of f, Y;; = Y (ni(t),n;(t)), where ni(t) = [5, dé fi(¥,t). The set
I' C S? is the set of unit vectors in R® pointing in the direction of nearest neighbors,
taken periodically, eg., the unit coordinate vectors in a rectangular lattice. Indices
such as Y; iy are written in shorthand for Y; r(z-1(i)4¢)-

Equation 2.3-2.8 is the discrete version of the (revised) Enskog equation 2.1, which
models hard sphere collisions. The square well Enskog equation, derived by Davis
et al.[9] and Greenberg et al.[5], models, in the conti case, an intermolecul
potential of the form

oo, 0<||fi=7|<a

SlIFi =72l = (=g, a<|lfi-Rl <R (2.9)
0, |m-7l=2R

for a single square well of depth ¢ and width R, and a sequence of such wells for a
piecewise constant local potential. The resultant kinetic equation has a collision term
containing precisely the Enskog collision operator, on account of the hard sphere
collision, and, in the case of a single square well, three very similar collision terms
representing the molecule at |7, — 72| = R (i) entering the well, (ii) exiting the well,
and (iii) reflecting off the well if energy is not sufficient for an escape (or a penetration
for a repulsive well). The last can not take place, of course, for an attractive well
unless an intermediate collision has occurred while the particle is in the well. In the
case that the well consists of 1 piecewise constant steps, m; attractive transitions and
my repulsive transitions, the collision operator will contain 3m; +2ms + 1 Enskog-like
collision terms.

As we are interested in lattice models, we will defer writing out the continuum
equation for square well potentials, reccommending the reader to the quoted literature,
and restrict ourselves to writing the lattice equation. In the case of a single well,
which translates into a strictly next-nearest neighbor interaction, the lattice collision

operator is:

JEDEH = 3 /n Aoy [Yire Si0 0 fire@0) = Yiaoe £i(5,8) o1, )]

€€lo




B0 | Enskog Lattice Equation with Square Well 17

€ (01— m)0(é- (= 01))+ (2.10)

5 / 51 [Yiwe 5@ fire 1) = Yiame @0 fi(70,8)]-

€ery

& (U= 30 (V- 1))+

+50 / A0 [Yiiee fi@",0) fie @, t) = Yiiye fi(B8) fine (@, 0)] -

éery
& (T- a0 (T ) - V/Ag)+

=5 / dth [Vaice fi0 0 fime(h,8) = Yosre £i(, ) fise (1,8)]-

€ery

O(VAg—é- (7~ 0))é- (T- )0 (7 - ) =

3
= Y O(Gk(f, 1) = FiLk( = G, )i — HL()
=

where Ty is the set of nearest neighbor vectors and I'y is the set of next-nearest
neighbor vectors. Here, the double and triple primed velocities are derived by con-
servation of momentum and energy, just as were the velocity transformations in 2.2.
For example,

1
T =7 JH<ET-0 > —[<ET-7 >2 44q]t}, (2.11)
o R e a8 Ry 1
B = ‘+§€(<e,v—u1>—[<e,v—v1> +4q]2}, (2.12)

with a similar transformation for o, . (cf. [3]).

In the case of next'-nearest nclghbor interactions for i = 1,--- ,m, there will be
additional collision terms as indicated for the continuum equation with corresponding
transformations of (primed) outgoing velocitiés, obtained by the conservation laws and
taking into account the energy levels ¢;. In this case, there will be summations over
next’-nearest neighbor vectors I'; and J(f, f) = Zi’:é“’"’ [Gk(f, f) — fLi(f)). As
the functional analysis to be considered in what follows carries over in a transparent
way to these additional collision terms, we will, for convenience, pose the lemmas for
the case of nearest neighbor interaction only, ie, the lattice collision operator 2.8,

commenting only on any issues for which the lattice model with interaction potential
might differ.
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3 Semigroup and Iterations

We assume that Y is positive, symmetric, bounded and jointly continuous in its
arguments, with the conservation (of mass) property

[ @D FEny =0, fe. @)

Throughout this and the following section, we will consider only the velocity cutoff
model, which includes in the collision kernel the additional factor 8(p — ||7 — ||) for
some fixed p > 0. Then G and L are bounded functionals: ||G(f, f)|| < k1|f]|*> and
IL(f)I| < k2||f]| for constants ky, k; depending on p.

Throughout, we will suppress the position variable (index) when the meaning
remains clear.

It is easy to see that A generates a co-semigroup Ux(t) and A + L(f) a two-
parameter evolution operator Ty, ie, T (t, s)o is a solution of the homogeneous equa-
tion

Y agtL(Ne=0,  gls)=bo. @2)

We consider the integral equation

t
f(t)=Ua(t)fo+ /0 dsUa(t = $){G(f(s), f(5)) = F(s)L(f(s)} (33)

as well as the equation

500 =Ty000+ [ ds Ty, 9G(7 5, 70): @4)

Note that for next-nearest neighbor interactions, the integral in 3.4 will be

t 3m
JRE ) SO ON (39)
k=0

Lemma 3.1
(a) Ua(t) and Ty (ta,ty) are invariant on the cone of positive functions Ty C X for
t and ty — ty positive, and f € G(T3.).
(b) U(t) is a contraction semigroup and continues analytically to a bounded holo-
morphic semigroup U(z).

¢) Ty(ta,t,) is a contraction mapping on X for ta — t, positive and f € G(T,.).
i

Proof. Let My denote the union of subspaces of functions of 7, with support
in the hypercube about the origin with sides of length 2N. Since the off-diagonal
terms of Uy are positive for any —A', if (—A™)ki = 0, m < I, then (—=A*!);; > 0.
Therefore, every element of e~!4 is a power series in t|- 4| with positive coefficient to




UW“” Enskog Lattice Equation with Square Well 19

lowest order. Hence, for |3 - a| sufficiently small, (e=*4 f); > 0 for f € T, N My. By
exponential addition, this extends to aritrary t. Therefore U4(t)T. "My C T, N My,
and Us(t)T C ;..

On My, A(t) = —A—L(f(t)) is a bounded operator, and T (s, t) is given explicitly
by

Ty (t,s) =s. llm exp/ A(t')dt' exp/

tm-2

A(t)dt' .. .exp /“ A(tdt'  (3.6)

with the limit taken over n-partitions ¢t = t,n > tju—1 > -++ > t; > tg = s. Using the
Lie product formula and the uniform boundedness of each of the exponentials, one
can represent T'r(t, s) as the double limit

t,
2 — [i™ L(f(s))ds1™
Ty(t, s) = s. lim nm{[u,,(t"‘ t'"_l)cxp s LUCE)) ] .
M—00 Nn—00 n

n

D LT SR

But L is diagonal and positive on 7, and therefore so are the exponentials in 3.7.
Thus Ty (t, s)Ty C T, completing the proof of (a).

To prove (b), note that Zf’:‘(A"’)” =0 for any m € Z,. By a simple computa-
tion, Ux(t) is seen to be isometric on 7. But a 7, -invariant contractive linear map
is contractive on X, so Ux(t) is contractive on X,

To prove U, (t) extends to a bounded holomorphic semigroup, consider first the
case v; > 0. Denote Eo = I, By = E and E, = E,1E. Then E i q = E,.
Therefore,

snpta

n-1
Z (Z o u),) o = ;ha(s)&, (3.8)

p=0

Let wq be the primitive nth roots of unity. Then es¥q = Z;;é hg(s)w,. Substituting
into 3.8, one has hq(s) = £ T w_qie™, so

1 n-1l n
s(-I+E) _ L s(wi—1)
. LYY e B, @9)

a=0i=1

Writing Ua(s) = Us(s) ® Uy(s) ® U:(s), to show Ux(s) is a bounded holomorphic
senigroup, it is sufficient to show that U.(s) and sAU,(s) are bounded uniformly in
a sector S C C,

Sp={zeC| |argz|<9<%). (3.10)

Then from the above, if s = u + iv and w; = cosf; + i6;, U.(s) will be uniformly
bounded for

SRR

(3.11)

/AT



)

20 William Greenberg and Michael Williams ,Q“”Mm,

an inequality which can always be satisfied for positive u. A similar computation
for v, < 0 shows the uniform boundedness of Ua(t). The uniform boundedness of
sAU(s) is an immediate consequence of the boundedness of g(§) = &e=¢, Re & > 0.
This proves (b).

Finally, since L is positive, exp{— [ ds L(f(s))} is contractive, and by the repre-
sentation 3.7, part (c) is proved, completing the proof of the theorem.

Lemma 3.2 For all f € X,

N3 N
D EERE= (3.12)
i=1 i=1
Let us solve 3.3 by iteration. Define
FO@,t) = fo(®) (3.13)

FO(@,t) = Ua(t) fo(®) / dsUx(t = ) (FCD, F=D)(s) (3.14)

Lemma 3.3 Fort sufficiently small, ||f™|| < M, independent of t and n, and
llg+2) = g0 < (e, £ = Fr=1, ey (315)
< M| = s
The lemma follows from the boundedness of the collision operator. Thus,

Lemma 3.4 The iterative scheme 3.14 converges to a solution f(t) of 3.8 for

i< min{m, ﬁl\/—[}’ (3.16)
and f(t) is a continuous function of the initial datum fo.
Next define the iterative scheme
9O (@,1) = fo(®) (3.17)
g () = Ty (¢, 0) fo(@ / ds Ty (t, 5)G(9™)(s), g™ (s)) (3.18)

As before, we have
Lemma 3.5 For t sufficiently small, ||g™(t)|| < My and {g™)(t)} is Cauchy.

Proof. To see the sequence is Cauchy, define

9T, 8) = Tyn-1(¢,0)fo(®) /ds Y1) (t: )G9 ™M (), g (s))  (3.19)

(T
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and write S{ for supg< <, Then we have easily from Lemma 3.1,
g+ D) = g™ @)1l < 2IG1IMi 19" (5) = 9D (s)I] (3.20)
for ¢ sufficiently small. Again from Lemma 3.1,
gD (®) = g™ DO < Ty (5,0) = Tymn Ol foll+ (3.21)

UGS Ty (£, 5) = Ty (&, 9)llllg™ (s)][>-
Define x(t) = (Tgom (t,8) = Tyn-1(t,8))éo for fixed s. Then y is the solution of the
coupled system d
T+ A+LEPON=0,  gls) =& (3.22)

% + A+ L VO = Lg" (1) - gM(@)g(®),  x(s)=0.  (323)

Then from :
x(t) = / ds Ty (t,8) L(g™ =1 () = g™)(5))g(s) (3.24)
(9
we have
g™+ (e) = g+ DI < ILIEoll + PUGIME)SHI9™ (s) = g V(s)l| - (3.25)

Collecting these results, it is sufficient to assume 0 < ¢t < Ty for Ty ' = 8||G||M; +
8M, + 5||L||[| fol| to obtain

1 n 1 n n—
lg (@) — g™ ()| < 552“9( )(s) = gV (s)l| (3.26)
lla™(6) = DO < 3529 (6) - 5"Vl @27
From the estimates it is evident that the sequence {g(™} is Cauchy. [ |

Lemma 3.6 Define ¢"")(9,t) by the iterative scheme 3.18. Then for t sufficiently
small, g™(t) converges in X to g(t), and g is a solution of 3.4.

Lemma 3.7 g(t) € 7.

4 Global Solutions

We will extend the mild local solutions of Section 3 to global-in-time solutions, and
then prove they are classical solutions (for the velocity cutoff model).

Lemma 4.1 Let g1, g2 be solutions of 3.3,3.4, respectively, satisfying g1(0) = g2(0) =
Jo. Then gy = go.

—
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Proof. One can compute from 3.4
g2(t +8) = (4.1)

t t4s
T (¢4 5,1) [Ty 8, 0) fo + /0 A Ty (1, )G g2(E))] + / & Ty (t+ 5, )Glga () =

Tyo (t + 5,t)[92(t) + sG(g2(t)) + O(s))-
Define n(s) = [Ty, (t + s,t) — U(s)]€. From

T = {4+ Llgae+ $)(s) — Eoat + )Ua(5)eo )
and 7(0) = 0, we have
n(s) = — /, dt' Ty, (t+ s,t + ') L(g2(t + 1)) Ua(t')éo- (4.3)
0

Combining this with 4.1, we may write
92(t + 5) = Ua(s)[g2(t) + sG(g2)) — sL(g2(t))g2(t)] + O(s). (44)

On the other hand,
t
g1(t+s) = Ua(s)Ua(t) fo +/0 dt' Ua(s)U(t = t') I (g1 ('), 91 () + (4.5)

t+s
o / Ua(t+5— ) I(g1(¢), g1(¢))
= Ua(s)[g1(t) + 5T (g1(t), 91 (t))] + O(s)

Writing a(t) = ||g2(t) — g1()||, we have

a(t +s) = a(t) < sl|J[[(Ilg2@OIl + Nl @IDIlg2(2) — g1 (B)]] (4.6)

or
Dta(t) < 2/|J|la(t) e IIgx - (4.7)
The Gronwall Lemma completes the proof. ]

We wish to show that the solution of 3.3 is differentiable in ¢, and thus a solution
of 2.3. Since U4(t) is a holomorphic semigroup, it is sufficient, by Kato’s theorem, to
show that J(f(t), f(t)) is Hélder continuous. [10, pp. 487-491] This will follow from
the Hélder continuity of f(t).

Lemma 4.2 For fy € T, N D(A), {f(™(t)} given by the iterative scheme 3.14 are
differentiable on some interval (0,Tp], and the derivatives {f™'(t)} are uniformly

bounded in t and n.
. AW
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Proof. Estimate

FO e+ R) = FO(t) = (Ua(h) - I){UA<t>fn+ (48)
i / " Ua(t— IFCDE), FO0E) = IEED ), £ D @)+
0

t
+/ dt' Ua(t —t')J(f"D (), f""‘)(t))} +hUA(R)I (=D (), F=0 (1)) + O(h)
0
Therefore, the right derivative is

Dtg™(t) = AUA(t) fo+ (4.9)

+A[/0! Ua(t = )I (D), FOD @) + Ua@I (), £ (1))

Then a bound on D* f(")(t) is obtained by the estimate ||AU4(t)|| < K/t for some
constant K (by analyticity). In particular, for n > 2,

(n=1) () — fln=1)(¢

D+l < 1Al + Km0 e 10)
and a uniform bound is obtained inductively by estimating Lipschitz constants K,
for each f™. Indeed, for n = 1, D* fO)(t) = Ua(t)Afo + Ua(t)J(fo, fo) and fO) is
Lipschitz with constant Ky = ||Afol| + ||J||||fol|*>. and for n > 2 from the estimate
above we have

152 (t) = F ()1 < (ASoll + 1171 + 2tKml [ T|| Kn-)]t = s, (4.11)

so that
K, =a+tBfKn_1 (4.12)

with a = ||Afo|| + |[J]|m? and B = 2Km||J||, which is uniformly bounded for ¢ <
1/(2Km||J||). This completes the proof

Lemma 4.3 The {f")(t)}, as specified by the iterative scheme 3.14, are Lipschitz
with a uniform Lipschitz constant K = a(1 — ToB)™" for t < Tp.

Lemma 4.4 For fy € Ty ND(A), the solution of 3.3 is differentiable, and therefore
a solution of 2.3, for t < Ty

Theorem 4.1 Suppose fo € T, N'D(A). Then there exists a unique positive solution
f(t) of the integral equation 3.3, or equivalently 3.4, for all t > 0, and f(t) is a
continuously differentiable solution of the Enskog lattice equation 2.3 for the velocity
cutoff model. Further, f(t) € T. and f depends continuously upon the initial datum
Jfo.

AT
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Proof. It remains only to note that |[f(t)|| = [|fol| for ¢ sufficiently small. For,

integrating 3.3 over ¥ and summing over i, recalling U4(t) is an isometry on 7., we
have (for ¢ sufficiently small)

W=+ 3 / d / ds VAT, HENl (4.13)

Using Lemma 3.2, this becomes

IIfH~Ilqu+/dsZZ/ IS, F)) (4.14)

i=1 éel’

But 1 is a collision invariant. Hence the integral term vanishes, and |[f|| = || fol|.
Now, the procedure can be repeated, and the theorem follows.

Note that the theorem is valid both for the lattice system with (cutoff) Enskog
collision operator and with next™-nearest neighbor interaction for any m < N.

5 Removal Of The Cutoff

Finally, let us consider the lattice model 2.3 with next'-nearest neighbor interaction
(without cutoff). We continue to suppress the spatial index i when possible. We
assume given an initial distribution on the lattice fo(¥); € 7 with finite mass, energy
and entropy:

Z/ A e e e s (5.1)
By the results of section 4, for each positive integer p, the cutoff lattice equation

2.3 has a classical solution f()(,1); satisfying f®)(%,0); = fo(7);. Fix a time interval
[0, 7). Then, for these solutions, the equality

Z/ dir [ (3, Z /(lvf(”) 7,0); (5.2)
and estimate
Z / div? fP) (@, 1) < ky Z/ di® fP)(#,0); + ko (5.3)
for t € [0, 7] and constants ki, ky depending on 7" are a result of the symmetry of the
collision kernel (cf. [6]).
Lemma 5.1 H(f®)(3,1)) < H(f@)(7,0)) + ka, where

= /, 47 log (0. 4)

and kg is a function of T and fo(¥).

w r
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Proof. Since Ux(t)i; = 0 and Y7, Ux(t)i;; = 1 by the proof of Lemma 3.1, then for
fixed velocity @, Ua(t) is the transition matrix for a discrete Markov system. Since
any space-independent distribution is a fixed point of Ux(t), standard arguments [11]
prove that H(Ua(t)fo(¥):) is nonincreasing. Now the lemma follows from estimates
in [6]. [ ]
Theorem 5.1 Suppose 3, [pa d0 fo(¥)i{1 +v? + |log fo(#):|} < oo and f®)(3,t); is
a solution of the lattice equation with cutoff p and f)(%,0); = fo(7);. Then {f®)y

contains a subsequence which converges weakly in x. The limit function f(¥,t); is
continuous in t and satisfies the integral equation 3.3 with unb ded collisi

kernel.
Proof. The Dunford-Pettis property of L' and the mass, energy, entropy bounds
previously demonstrated prove the existence of a subsequence (as p — 00) converging
weakly in x to a function f(t) for a denumerable dense set of t. Extension to all
t follows from the equicontinuity of the family {f®}. Indeed, let x, = {f € x :
(1+02)4 £((@) € x}. Since £ is asolution of 23, || FP" (]| < [|AFP) (1) |+K]| P2,
with K independent of p. Further, [|Af®)|| < 6|| f®||,. Then using || f®||, < ||follu,
cquicontinuity of the sequence follows.

Since y, also satisfies the Dunford-Pettis property, and J : x,, x x, — x is weakly
continuous, J(f®)(t)) converges weakly to J(f(t)) pointwise in ¢. Then, using the
integral equation for (| the dominated convergence theorem, and the continuity of
J, one can see that the limit function f(t) satisfies equation 3.3.

Again, the result is equally valid for the Enskog lattice equation and for the lattice
equation with next*-nearest neighbor interaction. The cost of treating the equation

without velocity cutoff is the weakness of the solution and the loss of a uniqueness
proof.

Received: Sep 2005. Revised: Oct 2005.
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