Connectedness in Fuzzy bitopological Spaces M.K.Gupta Department of Mathematics. Ch. Charan Singh University Meerut-250005. (INDIA) Rupen Pratap Singh 1 Department of Mathematics. Ch. Charan Singh University Meerut-250005. (INDIA) r p rp@rediffmail.com #### ABSTRACT In this paper, we extend the four notions of connectedness introduced by $A_{\rm jn}$ and and Kohli [1] to pairwise connectedness for an arbitrary fuzzy set in fuzzy bitopological spaces (X_i, τ_1, τ_2) and discuss the implications that exist between them. These conditions are called c_k - pairwise connectedness (k=1,2,3,4). We establish that the union of an arbitrary family of c_k - pairwise connected (k=1,2) fuzzy set which are pairwise intersecting is c_k - pairwise connected (k=3,4) fuzzy set which are overlapping is c_k - pairwise connected (k=3,4). It is also shown that (τ_1,τ_2) - closure of a c_1 - pairwise connected fuzzy set need not be a c_1 - pairwise connected fuzzy set. We also discuss the preservation of c_k - pairwise connectedness (k=1,2,3,4)under fuzzy pairwise continuous mapping and fuzzy pairwise open mapping. #### RESUMEN En este artículo extendemos las cuatro nociones de conexidad introducidas por Ajmal y Kohli [1] a conexidad por parejas para un conjunto difuso arbitrario en espacios bitopológicos difusos (X, τ_1, τ_2) y discutimos las implicaciones que ¹The second author sincerely acknowledges to the Council of Scientific and Industrial Research (C.S.I.R.) New Delhi, for providing the financial support in the form of Senior Research Fellowship. existen entre ellos. Estas condiciones se llaman conexidad por parejas c_k (k=1,2,3,4). Establecemos que la unión de una familia arbitraria de conjuntos conexos por parejas c_k , (k=1,2) que se intersectan por parejas coexos por parejas c_k , (k=3,2) que se sobreponen es conexo por parejas c_k , (k=3,4) que se sobreponen es conexo por parejas c_k , (k=3,4) que se sobreponen es conexo por parejas c_k , (k=3,4). También se muestra que la cerradura (τ_i,τ_j) de un conjunto difuso por parejas c_1 no necesita ser un conjunto difuso por parejas c_1 . Además discutimos la preservación de la conexidad por pares c_k (k=1,2,3,4) bajo la aplicación continua difus por parejas c_1 va aplicación abierta difusa por parejas c_2 Key words and phrases: Fuzzy bitopological spaces, fuzzy pairwise connectedness, fuzzy pairwise continuity, overlapping. 54A40 AMS Subject Class.: ### 1 Introduction A fuzzy bitopological space [5] (in short, fbts) is a triple (X, τ_1, τ_2) where X is a set and τ_1, τ_2 are two fuzzy topologies on X. Let $f: X \longrightarrow Y$ be a mapping from X into Y. If λ is a fuzzy set in X and μ be a fuzzy set in Y then $f(\lambda)$ and $f^{-1}(\mu)$ are defined as follows: $$f(\lambda)(y) = \left\{ \begin{array}{cc} \sup\{\lambda(x)\} & \text{if} f^{-1}(y) \text{is non-empty} \\ 0 & \text{otherwise} \end{array} \right.$$ and $f^{-1}(\mu)(x) = \mu(f(x))$ for every $x \in X$. A fuzzy mapping $f:X\longrightarrow Y$ is said to be fuzzy continuous if the inverse image of every fuzzy open (closed) set in Y is fuzzy open (closed) in X. A fuzzy mapping $f: X \longrightarrow Y$ is said to be fuzzy open (resp. fuzzy closed) if the image of every fuzzy open (resp. closed) set in X is fuzzy open (closed) in Y. A mapping from fuzzy bitopological space (X,τ_1,τ_2) to (Y,σ_1,σ_2) is called fuzzy pairwise continuous (rsep. Fuzzy pairwise open) if the induced maps $f:(X,\tau_i) \longrightarrow (Y,\sigma_i) i = 1, 2$ are fuzzy continuous (rsep. fuzzy open). For a fuzzy set λ of X, the τ_i - closure and τ_i - interior are defined respectively, as $$\begin{split} \tau_i - cl(\lambda) &= \inf\{\nu : \nu \geq \lambda, 1 - \nu \in \tau_i\} \\ \tau_i - int(\lambda) &= \sup\{\nu : \nu \leq \lambda, \nu \in \tau_i\} \end{split}$$ ## 2 Fuzzy Pairwise Connectedness **Definition 2.1** Let (X, τ_1, τ_2) be a fuzzy bitopological space. A fuzzy set λ of X is said to have a τ_k -pairwise disconnection (k = 1, 2, 3, 4) if there exists τ_i -fuzzy open set μ and τ_i -fuzzy open set ν in X for $i \neq j$ i, j = 1, 2 such that, respectively, $$c_1: \lambda \leq \mu \vee \nu \quad \mu \wedge \nu \leq 1 - \lambda \quad \lambda \wedge \mu \neq 0 \quad and \quad \lambda \wedge \nu \neq 0$$ $c_2: \lambda \leq \mu \vee \nu \quad \mu \wedge \nu \wedge \lambda = 0 \quad \lambda \wedge \mu \neq 0 \quad and \quad \lambda \wedge \nu \neq 0$ $$c_3: \lambda \leq \mu \vee \nu \quad \mu \wedge \nu \leq 1 - \lambda \quad \mu \nleq 1 - \lambda \quad and \quad \nu \nleq 1 - \lambda$$ $$c_4: \lambda \leq \mu \vee \nu \quad \mu \wedge \nu \wedge \lambda = 0 \quad \mu \nleq 1 - \lambda \quad and \quad \nu \nleq 1 - \lambda$$ **Definition 2.2** A fuzzy set λ in a flots (X, τ_1, τ_2) is said to be c_k -pairwise connected (k = 1, 2, 3, 4) if there exists no c_k -pairwise disconnection (k = 1, 2, 3, 4) of λ in X. In a fbts (X, τ_1, τ_2) , c_k -pairwise connected (k = 1, 2, 3, 4) fuzzy sets can be described by the following diagram: $$c_1 \Rightarrow c_2$$, $c_1 \Rightarrow c_3$ $c_2 \Rightarrow c_4$, $c_3 \Rightarrow c_4$ We demonstrate through examples that the inclusions are proper, moreover the intersection of the classes of c_2 - pairwise connected and c_3 - pairwise connected fuzzy sets may not be empty. In that, there exist fuzzy sets in fits which are c_2 - pairwise connected as well as c_3 - pairwise connected but not c_1 - pairwise connected.So, c_2 pairwise connectedness and c_3 - pairwise connectedness even together do not imply c_1 - pairwise connectedness. Implications of the above diagram are immediate from the definitions. Here, we illustrate all the reverse implications by counter examples. Example 2.3 Fuzzy set which is c_4 but not c_3 . Let X = [0, 1] and define fuzzy sets μ and ν as follows: $$\mu(x) = \left\{ \begin{array}{ccc} 1 & \text{if} & 0 \leq x \leq \frac{1}{3} \\ \frac{1}{3} & \text{if} & \frac{1}{3} \leq x \leq 1 \end{array} \right. \quad \nu(x) = \left\{ \begin{array}{ccc} \frac{1}{3} & \text{if} & 0 \leq x \leq \frac{1}{3} \\ 1 & \text{if} & \frac{1}{3} \leq x \leq 1 \end{array} \right.$$ Then $\tau_1=\{0,\mu,1\}$ and $\tau_2=\{0,\nu,1\}$ are fuzzy topologies on X. Define fuzzy set λ by $\lambda(x)=\frac{2}{3}$ if $0\leq x\leq 1$. Then λ is c_4 -pairwise connected but not c_3 -pairwise connected. Example 2.4 Fuzzy set which is c_4 but not c_2 . Let X = [0, 1] and define fuzzy sets μ and ν as follows: $$\mu(x) = \left\{ \begin{array}{ccc} \frac{1}{3} & \text{if} & 0 \leq x \leq \frac{1}{3} \\ 0 & \text{if} & \frac{1}{3} \leq x \leq 1 \end{array} \right. \quad \nu(x) = \left\{ \begin{array}{ccc} 0 & \text{if} & 0 \leq x \leq \frac{1}{3} \\ \frac{1}{3} & \text{if} & \frac{1}{3} \leq x \leq 1 \end{array} \right.$$ Then $\tau_1=\{0,\mu,1\}$ and $\tau_2=\{0,\nu,1\}$ are fuzzy topologies on X. Define fuzzy set λ by $\lambda(x)=\frac{1}{3}$ if $0\leq x\leq 1$. Then λ is c_4 -pairwise connected but not c_2 -pairwise connected. Example 2.5 Fuzzy set which is c_3 and c_2 but not c_1 . Let X = [0, 1] and define fuzzy sets μ and ν as follows: $$\mu(x) = \left\{ \begin{array}{ll} \frac{2}{3} & \text{if} & 0 \leq x \leq \frac{1}{3} \\ \\ \frac{1}{3} & \text{if} & \frac{1}{3} \leq x \leq 1 \end{array} \right. \qquad \nu(x) = \left\{ \begin{array}{ll} \frac{1}{3} & \text{if} & 0 \leq x \leq \frac{1}{3} \\ \\ \frac{2}{3} & \text{if} & \frac{1}{3} \leq x \leq 1 \end{array} \right.$$ Then $\tau_1 = \{0, \mu, 1\}$ and $\tau_2 = \{0, \nu, 1\}$ are fuzzy topologies on X. Define fuzzy set λ by $\lambda(x) = \frac{1}{3}$ for all $x \in X$. Here λ is c_3 -pairwise connected and c_2 -pairwise connected but not c_1 -pairwise connected. Remark 2.6 Example 2.5 also establishes the fact that the intersection of the classes of c₂-pairwise connected and c₃-pairwise connected fuzzy sets in a fbts may not be empty. Example 2.7 Fuzzy set which is c_3 but not c_2 . Let X = [0, 1] and define fuzzy sets μ and ν as follows: $$\mu(x) = \begin{cases} \frac{2}{3} & \text{if} \quad 0 \le x \le \frac{2}{3} \\ 0 & \text{if} \quad \frac{2}{3} \le x \le 1 \end{cases} \quad \nu(x) = \begin{cases} 0 & \text{if} \quad 0 \le x \le \frac{2}{3} \\ \frac{1}{3} & \text{if} \quad \frac{2}{3} \le x \le 1 \end{cases}$$ Then $\tau_1 = \{0, \mu, 1\}$ and $\tau_2 = \{0, \nu, 1\}$ are fuzzy topologies on X. Define fuzzy set λ by $\lambda(x) = \begin{cases} \frac{2}{3} & \text{if } \quad 0 \leq x \leq \frac{2}{3} \\ \frac{1}{3} & \text{if } \quad \frac{2}{3} \leq x \leq 1 \end{cases}$ Then λ is c_3 - pairwise connected but not c_2 - pairwise Example 2.8 Fuzzy set which is c_2 but not c_3 . Let X = [0, 1] and define fuzzy sets μ and ν as follows: $$\mu(x) = \left\{ \begin{array}{ll} \frac{2}{3} & \text{if} & 0 \leq x \leq \frac{1}{3} \\ \\ \frac{1}{3} & \text{if} & \frac{1}{3} \leq x \leq 1 \end{array} \right. \qquad \nu(x) = \left\{ \begin{array}{ll} \frac{1}{3} & \text{if} & 0 \leq x \leq \frac{1}{3} \\ \\ \frac{2}{3} & \text{if} & \frac{1}{3} \leq x \leq 1 \end{array} \right.$$ Then $\tau_1=\{0,\mu,1\}$ and $\tau_2=\{0,\nu,1\}$ are fuzzy topologies on X. Define fuzzy set λ by $\lambda(x)=\frac{\lambda}{3}$ for all $x\in X$. Here λ is c_2 -pairwise connected but not c_3 -pairwise connected. Remark 2.9 Example 2.7 and 2.8 establish the fact that the classes of c_2 -pairwise connected and c_3 -pairwise connected fuzzy sets in a fbts may not be comparable. By choosing fuzzy set λ to be fuzzy whole space (constant function 1_X) in all four forms of pairwise disconnections, it is easily verified that we get the same pairwise disconnection of fuzzy space 1_X which we refer as c-pairwise disconnection of fuzzy spaces 1_X i.e. there exits non-zero τ_i -fuzzy open set μ and τ_j -fuzzy open set ν such that $\mu \vee \nu = 1$ and $\mu \wedge \nu = 0$. Definition 2.10 A fuzzy bitopological space (X, τ_1, τ_2) is said to be c-pairwise connected if there exits no c-pairwise disconnection of 1_X . We observe that a fuzzy point x_α is c₂- as well as c₃ pairwise connected and hence c₄ pairwise connected but not necessarily c₁ pairwise connected. Example 2.11 Let $X = \{x,y\}$ define fuzzy sets μ and ν as $\mu(x) = \frac{1}{3}$, $\mu(y) = \frac{2}{3}$ and $\nu(x) = \frac{2}{3}$, $\nu(y) = \frac{1}{3}$. Then $\tau_1 = \{0, \mu, 1\}$ and $\tau_2 = \{0, \nu, 1\}$ are fuzzy topologies on X. Here the fuzzy point $x_{\frac{1}{3}}$ is not c_1 -pairwise connected. Moreover, we observe that the fuzzy set 0 is c-pairwise connected and hence c_k -pairwise connected (k = 1, 2, 3, 4). **Definition 2.12** Two fuzzy sets λ_1 and λ_2 in a fuzzy bitopological space (X, τ_1, τ_2) are said to be intersecting if $\lambda_1 \wedge \lambda_2 \neq 0$. **Definition 2.13** Two fuzzy sets λ_1 and λ_2 in a fuzzy bitopological space (X, τ_1, τ_2) are said to be non-overlapping if $\lambda_1 \leq 1 - \lambda_2, \lambda_1$ and λ_2 are overlapping if there exits a point $x \in X$ such that $\lambda_1(x) > 1 - \lambda_2(x)$. In this case λ_1 and λ_2 are said to overlap at x. **Theorem 2.14** If λ_1 and λ_2 are intersecting c_1 -pairwise connected fuzzy sets in (X, τ_1, τ_2) , then $\lambda_1 \vee \lambda_2$ is a c_1 -pairwise connected fuzzy set in X. **Proof.** Since λ_1 and λ_2 are c_1 -pairwise connected fuzzy sets therefore they have no c_1 -pairwise disconnection i.e. there exits μ and ν be τ_i -, τ_j - fuzzy open sets in X such that $$\lambda_1 \le \mu \lor \nu$$ $\mu \land \nu \le 1 - \lambda_1$ $\lambda_1 \land \mu = 0$ or $\lambda \land \nu = 0$ $\lambda_2 \le \mu \lor \nu$ $\mu \land \nu \le 1 - \lambda_2$ $\lambda_2 \land \mu = 0$ or $\lambda \land \nu = 0$ $\Rightarrow \lambda_1 \lor \lambda_2 \le \mu \lor \nu$ $\mu \land \nu \le 1 - (\lambda_1 \lor \lambda_2)$ —————————(1) $(\lambda_1 \wedge \mu = 0 \text{ or } \lambda_1 \wedge \nu = 0)$ and $(\lambda_2 \wedge \mu = 0 \text{ or } \lambda_2 \wedge \nu = 0)$ —(2) Suppose $\lambda_1 \wedge \mu = 0$. Since λ_1 and λ_2 are intersecting, there exits $x_1 \in X$ such that $\lambda_1(x_1) \neq 0 \neq \lambda_2(x_1)$. we claim that $\lambda_2 \wedge \nu \neq 0$. Let if possible $\lambda_2 \wedge \nu = 0$ then $(\lambda_2 \wedge \nu)(x_1) = 0$ but $\lambda_2(x_1) \neq 0$ implies that $\mu(x_1) = 0$. Hence $(\mu \vee \nu)(x_1) = 0$ this contradict (1) as $(\lambda_1 \vee \lambda_2)(x_1) = 0$. Therefore we have $\lambda_2 \wedge \nu \neq 0$ this gives from (2) $\lambda_2 \wedge \mu = 0$ and hence $(\lambda_1 \vee \lambda_2) \wedge \mu = 0$ ——(3) Again suppose $\lambda_1 \wedge \nu = 0$ we can show as above that $\lambda_2 \wedge \mu = 0$ is not possible, hence $\lambda_2 \wedge \nu = 0$. Therefore $(\lambda_1 \vee \lambda_2) \wedge \nu = 0$ ——(4) So $\lambda_1 \vee \lambda_2$ is c_1 -pairwise connected. The proof is similar for c_2 -pairwise connectedness. The following example shows that the above theorem is not valid for non-intersecting fuzzy sets. Example 2.15 Let X = [0, 1] and define fuzzy sets μ and ν as follows: $$\mu(x) = \left\{ \begin{array}{ccc} \frac{2}{3} & \text{if} & 0 \leq x \leq \frac{2}{3} \\ 0 & \text{if} & \frac{2}{3} \leq x \leq 1 \end{array} \right. \quad \nu(x) = \left\{ \begin{array}{ccc} 0 & \text{if} & 0 \leq x \leq \frac{2}{3} \\ \frac{2}{3} & \text{if} & \frac{2}{3} \leq x \leq 1 \end{array} \right.$$ Then $\tau_1=\{0,\mu,1\}$ and $\tau_2=\{0,\nu,1\}$ are fuzzy topologies on X. Let λ_1 and λ_2 be defined as $$\lambda_1(x) = \left\{ \begin{array}{ccc} 0 & \text{if} & 0 \leq x \leq \frac{2}{3} \\ \frac{1}{3} & \text{if} & \frac{2}{3} \leq x \leq 1 \end{array} \right. \quad \lambda_2(x) = \left\{ \begin{array}{ccc} \frac{1}{3} & \text{if} & 0 \leq x \leq \frac{2}{3} \\ 0 & \text{if} & \frac{2}{3} \leq x \leq 1 \end{array} \right.$$ Here $\lambda_1 \wedge \lambda_2 = 0$, also it can be easily verified that λ_1 and λ_2 are c_2 -pairwise connected fuzzy sets but $\lambda_1 \vee \lambda_2$ is not c_2 -pairwise connected. Theorem 2.16 Let $\{\lambda_i\}_{i\in I}$ be a family of c_1 - pairwise connected $(c_2$ -pairwise connected) fuzzy sets in flts (X, τ_1, τ_2) such that for $i \neq j$ i, j = 1, 2 the fuzzy sets λ_i and λ_j are intersecting then $\vee_{i\in I}\lambda_i$ is a c_1 - pairwise connected $(c_2$ -pairwise connected) fuzzy set in X. **Proof.** Let $\lambda = \vee_{i \in I} \lambda_i$. Let μ and ν be τ_i -, τ_j - fuzzy open sets in X such that $\lambda \leq \mu \vee \nu$ and $\mu \wedge \nu \leq 1 - \lambda$. Now let λ_{i_0} be any fuzzy set of given family then $\lambda_{i_0} \leq \mu \vee \nu$ and $\mu \wedge \nu \leq 1 - \lambda \Rightarrow \mu \wedge \nu \leq 1 - \lambda_{i_0} + \lambda_{i_0} \leq \mu \wedge \nu \leq 1 - \lambda_{i_0} + \lambda_{i_0} \leq \mu \wedge \nu \leq 1 - \lambda_{i_0} + \lambda_{i_0} \leq \lambda_{i_0}$. But λ_{i_0} is c_1 - pairwise connected therefore $\lambda_{i_0} \wedge \mu = 0$ or $\lambda_{i_0} \wedge \nu = 0$. Now if $\lambda_{i_0} \wedge \mu = 0$ then as in theorem 2.14, we can prove $\lambda_i \wedge \nu = 0$ for each $i \in I - \{i_0\}$ Therefore $\forall_{i \in I}(\lambda_i \wedge \mu) = 0$ this implies $\lambda \wedge \mu = 0$. Therefore λ is considered. Corollary 2.17 Let $\{\lambda_i\}_{i\in I}$ be a family of c_1 - pairwise connected (c_2 -pairwise connected) fuzzy sets in fbts (X, τ_1, τ_2) and $\wedge_{i\in I}\lambda_i \neq 0$ then $\vee_{i\in I}\lambda_i$ is a c_1 - pairwise connected (c_2 -pairwise connected) fuzzy set in X. Proof. - Follows by using theorem 2.16. Corollary 2.18 If $< \lambda_n > be$ a sequence of c_1 - pairwise connected (c_2 -pairwise connected) fuzzy sets in flust (X, T, c_2) such that for each n, λ_n and λ_{n+1} are intersecting. Then $\bigvee_{n=1}^{\infty} \lambda_n$ is a c_1 - pairwise connected (c_2 -pairwise connected) fuzzy set in X. **Proof.** Follows by induction and using theorem 2.14. The following example shows that the theorem 2.14 fails for c_3 - pairwise connectedness (c_4 - pairwise connectedness). Example 2.19 Let X = [0, 1] and define fuzzy sets μ and ν as follows: $$\mu(x) = \left\{ \begin{array}{ll} \frac{2}{5} & \text{if} & 0 \leq x \leq \frac{4}{5} \\ \\ \frac{4}{5} & \text{if} & \frac{4}{5} \leq x \leq 1 \end{array} \right. \qquad \nu(x) = \left\{ \begin{array}{ll} \frac{4}{5} & \text{if} & 0 \leq x \leq \frac{4}{5} \\ \\ \frac{2}{5} & \text{if} & \frac{4}{5} \leq x \leq 1 \end{array} \right.$$ Then $\tau_1 = \{0, \mu, 1\}$ and $\tau_2 = \{0, \nu, 1\}$ are fuzzy topologies on X. Let λ_1 and λ_2 be defined as $$\lambda_1(x) = \left\{ \begin{array}{ll} \frac{2}{5} & if & 0 \leq x \leq \frac{4}{5} \\ \\ \frac{1}{5} & if & \frac{4}{5} \leq x \leq 1 \end{array} \right. \qquad \lambda_2(x) = \left\{ \begin{array}{ll} \frac{1}{5} & if & 0 \leq x \leq \frac{4}{5} \\ \\ \frac{2}{5} & if & \frac{4}{5} \leq x \leq 1 \end{array} \right.$$ Here $\lambda_1 \wedge \lambda_2 \neq 0$, and we can be easily verified that λ_1 and λ_2 are c_3 -pairwise connected fuzzy sets but $\lambda_1 \vee \lambda_2$ is not c_3 -pairwise connected fuzzy set in X. For c_3 - pairwise connectedness (c_4 - pairwise connectedness) we have the following theorem. **Theorem 2.20** If λ_1 and λ_2 are overlapping c_3 -pairwise connected (c_4 -pairwise connected) fuzzy sets in (X, τ_1, τ_2) , then $\lambda_1 \vee \lambda_2$ is a c_3 -pairwise connected (c_4 -pairwise connected) fuzzy set in X. **Proof.** Since λ_1 and λ_2 are c_3 -pairwise connected fuzzy sets therefore they have no c_3 -pairwise disconnection i.e. there exits μ and ν be τ_i -, τ_j - fuzzy open sets in X such that Suppose $\mu \leq 1 - \lambda_1 \Rightarrow \mu(x_1) \leq 1 - \lambda_1(x_1)$ this implies in view of (3) We claim $\nu \not\leq 1 - \lambda_2$. For if $\nu \leq 1 - \lambda_2$ $$\Rightarrow \nu(x_1) \leq 1 - \lambda_2(x_1)$$ $$\Rightarrow \nu(x_1) \le \lambda_1(x_1)$$ $[Using(3)] - - - - - (5)$ By (4) and (5) $(\mu \vee \nu)(x_1) < (\lambda_1 \vee \lambda_2)(x_1) \Rightarrow \lambda_1 \vee \lambda_2 \not\leq \mu \vee \nu$ this contradicts (1). Hence $\nu \not\leq 1 - \lambda_2$ Therefore $\mu < 1 - \lambda_2$. We have $\mu \leq 1 - \lambda_1$ and $\mu \leq 1 - \lambda_2$ implies $\mu \leq (1 - \lambda_1) \wedge (1 - \lambda_2)$. Again suppose $\nu \leq 1 - \lambda_1$. We can show as above $\mu \leq 1 - \lambda_2$ is not possible, hence $\nu \leq 1 - \lambda_2$ and therefore $\nu \leq 1 - (\lambda_1 \vee \lambda_2)$. Thus $\lambda_1 \vee \lambda_2$ is c_3 - pairwise connected. Theorem 2.21 Let $\{\lambda_i\}_{i\in I}$ be a family of c_3 - pairwise connected $(c_4$ -pairwise connected) fuzzy sets in $fits (X, \tau_1, \tau_2)$ such that for $i \neq j$ i, j = 1, 2 the fuzzy sets λ_i and λ_j are overlapping then $\vee_{i\in I}\lambda_i$ is a c_3 - pairwise connected $(c_4$ -pairwise connected) fuzzy set in X. **Proof.** Let $\lambda = \vee_{i \in I} \lambda_i$. Let μ and ν be τ_i -, τ_j - fuzzy open sets in X such that $\lambda \leq \mu \vee \nu$ and $\mu \wedge \nu \leq 1 - \lambda$. Now let λ_{i_0} be any fuzzy set of given family then $\lambda_{i_0} \leq \mu \vee \nu$ and $\mu \wedge \nu \leq 1 - \lambda \Rightarrow \mu \wedge \nu \leq 1 - \lambda_{i_0} \lambda_i \Rightarrow \mu \wedge \nu \leq \lambda_{i_0}$. But λ_{i_0} is c_3 - pairwise connected therefore $\mu \leq \lambda_{i_0}$ or $\nu \leq \lambda_{i_0}$. Now if $\mu \leq \lambda_{i_0}$ then as in theorem 2.20, we can prove $\mu \leq \lambda_i$ for each $i \in I - \{i_0\}$. Since λ_{i_0} and λ_i are overlapping, c_3 - pairwise connected fuzzy sets we have $$\mu \le \wedge_{i \in I} (1 - \lambda_i) = 1 - \vee_{i \in I} \lambda_i = 1 - \lambda$$ Similarly if $\nu \le \lambda_{i_0}$ we can easily show that $\nu \le \lambda$. Hence λ is c_3 - pairwise connected. Corollary 2.22 If $< \lambda_n > be$ a sequence of c_3 -pairwise connected (c_4 -pairwise connected) fuzzy sets in fbts (X, τ_1, τ_2) such that for each n, λ_n and λ_{n+1} are overlapping. Then $\bigvee_{n=1}^{\infty} \lambda_n$ is a c_3 -pairwise connected (c_4 -pairwise connected) fuzzy set in X. **Theorem 2.23** If λ is a c_3 -pairwise connected[c_4 -pairwise connected]fuzzy set in (X, τ_1, τ_2) and $\lambda \leq \delta \leq (\tau_i, \tau_j)cl - \lambda$. Then δ is also a c_3 - pairwise connected (c_4 -pairwise connected) fuzzy set in X. Proof. Let μ and ν be τ_i -, τ_j -fuzzy open sets in X such that $\delta \le \mu \lor \nu$ and $\mu \land \nu \le 1-\delta$. Since λ is a c_3 - pairwise connected then $\lambda \le 1 - \mu$ or $\lambda \le 1 - \nu$ If $\lambda \le 1 - \mu \Rightarrow (\tau_i, \tau_j) - cl\lambda \le (\tau_i, \tau_j) - cl(1 - \mu)$ $$= 1 - (\tau_i, \tau_j) - int\mu = 1 - \mu.$$ Therefore $\delta \le (\tau_i, \tau_j) - cl\lambda \le 1 - \mu$. If $\lambda \le 1 - \nu \Rightarrow (\tau_i, \tau_j) - cl\lambda \le (\tau_i, \tau_j) - cl(1 - \nu)$ $$= 1 - (\tau_i, \tau_j) - int\nu = 1 - \nu.$$ Therefore $\delta \le (\tau_i, \tau_j) - cl\lambda \le 1 - \nu$. Hence δ is c_3 - pairwise connected. \blacksquare However the above theorem fails in the case of c_1 - pairwise connectedness (c_2 -pairwise connectedness). This example shows that the (τ_i, τ_j) - closure of a c_1 - pairwise connected fuzzy set need not be a c_1 - pairwise connected fuzzy set. Example 2.24 Let X = [0, 1] and define fuzzy sets μ_1, μ_2, μ_3 and μ_4 as follows: $$\mu_1(x) = \left\{ \begin{array}{lll} 0 & \text{if} & 0 \leq x \leq \frac{2}{3} \\ 1 & \text{if} & \frac{2}{3} \leq x \leq 1 \end{array} \right. \quad \mu_2(x) = \left\{ \begin{array}{lll} \frac{1}{3} & \text{if} & 0 \leq x \leq \frac{2}{3} \\ 0 & \text{if} & \frac{2}{3} \leq x \leq 1 \end{array} \right.$$ $$\mu_3(x) = \left\{ \begin{array}{ll} \frac{1}{3} & if & 0 \leq x \leq \frac{2}{3} \\ 1 & if & \frac{2}{3} \leq x \leq 1 \end{array} \right. \quad \mu_4(x) = \left\{ \begin{array}{ll} \frac{2}{3} & if & 0 \leq x \leq \frac{2}{3} \\ 0 & if & \frac{2}{3} \leq x \leq 1 \end{array} \right.$$ Then $\tau_1 = \{0, \mu_1, \mu_2, \mu_3, 1\}$ and $\tau_2 = \{0, \mu_4, 1\}$ are fuzzy topologies on X. Define fuzzy set λ by $\lambda(x) = \begin{cases} 0 & \text{if } 0 \le x \le \frac{2}{3} \\ 1 & \text{if } \frac{2}{3} \le x \le 1 \end{cases}$ Here λ is a c_1 - pairwise connected fuzzy set but (τ_i, τ_i) — $c(\lambda)$ is not c_1 - pairwise connected. ## 3 Fuzzy Pairwise Connectedness And Fuzzy Pairwise Mappings In the following theorems, we discuss the preservation of c_k -pairwise connectedness (k = 1, 2, 3, 4) under fuzzy pairwise continuity, pairwise open mappings. **Theorem 3.1** If $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is a fuzzy pairwise continuous bijection and λ is a c_1 -pairwise connected fuzzy set in X, then $f(\lambda)$ is a c_1 -pairwise connected fuzzy set in X. **Proof.** Suppose $f(\lambda)$ is not c_1 - pairwise connected then $f(\lambda)$ has a c_1 - pairwise disconnection i.e. there exists σ_i - fuzzy open set μ and σ_j - fuzzy open set ν in Y, for $i \neq j, i, j = 1$, 2 such that, $$\begin{array}{ll} f(\lambda) \leq \mu \vee \nu & \mu \wedge \nu \leq 1 - f(\lambda) & f(\lambda) \wedge \mu \neq 0 \text{ or } f(\lambda) \wedge \nu \neq 0 \\ \text{Therefore } \lambda \leq f^{-1}(\mu) \vee f^{-1}(\nu) \text{ and } f^{-1}(\mu) \wedge f^{-1}(\nu) \leq 1 - f^{-1}f(\lambda) \leq 1 - \lambda \end{array}$$ where $f^{-1}(\mu)$ and $f^{-1}(\nu)$ are τ_i, τ_j -fuzzy open sets in X. since f is fuzzy pairwise continuous mapping . We claim that $\lambda \wedge f^{-1}(\mu) \neq 0$ and $\lambda \wedge f^{-1}(\nu) \neq 0$. suppose $\lambda \wedge f^{-1}(\mu) = 0 \Rightarrow f(\lambda) \wedge ff^{-1}(\mu) = 0 \Rightarrow f(\lambda) \wedge \mu = 0$. Which contradict $f(\lambda) \wedge \mu \neq 0$. Thus λ is not a c_1 - pairwise connected fuzzy set. \blacksquare The proof is similar for c_2 -pairwise connectedness. **Theorem 3.2** If $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ is a fuzzy pairwise continuous surjection and λ is a a_{3} -pairwise connected fuzzy set in X, then $f(\lambda)$ is a c_{3} -pairwise connected fuzzy set in Y. **Proof.** Suppose $f(\lambda)$ is not c_3 - pairwise connected then $f(\lambda)$ has a c_3 - pairwise disconnection i.e. there exists σ_i - fuzzy open set μ and σ_j - fuzzy open set ν in Y, for $i \neq j, i, j = 1$, 2 such that, $$f(\lambda) \le \mu \lor \nu$$ $\mu \land \nu \le 1 - f(\lambda)$ $\mu \not\le 1 - f(\lambda)$ and $\nu \not\le 1 - f(\lambda)$ Therefore $\lambda \le f^{-1}(\mu) \lor f^{-1}(\nu)$ and $f^{-1}(\mu) \land f^{-1}(\nu) \le 1 - f^{-1}f(\lambda) \le 1 - \lambda$ where $f^{-1}(\mu)$ and $f^{-1}(\nu)$ are τ_i, τ_j -fuzzy open sets in X. since f is fuzzy pairwise continuous mapping. Now since $\mu \not \leq 1 - f(\lambda)$ and $\nu \not \leq 1 - f(\lambda)$ therefore there exits $y_1, y_2 \in Y$ such that $$\mu(y_1) > 1 - f(\lambda)(y_1)$$ $\nu(y_2) > 1 - f(\lambda)(y_2)$ Also since f is onto, $f^{-1}(\mu)$ and $f^{-1}(\nu)$ are non-empty subsets of X. By definition $$f^{-1}(\mu)(x_i) = \mu(y_1)$$ for every $x_i \in f^{-1}(y_1)$ and $f(\lambda)(y_1) = Sup\{\lambda(x_i)\}$ We claim $f^{-1}(\mu) \nleq 1 - \lambda$ and $f^{-1}(\nu) \nleq 1 - \lambda$. Suppose if possible $f^{-1}(\mu) \leq 1 - \lambda$ $\Rightarrow f^{-1}(\mu)(x_i) \leq 1 - \lambda(x_i) \qquad \text{for every } x_i \in f^{-1}(y_1)$ $\Rightarrow \lambda(x_i) \leq 1 - f^{-1}(\mu)(x_i) \qquad \text{for every } x_i \in f^{-1}(y_1)$ $\Rightarrow \lambda(x_i) \leq 1 - (\mu)(y_1)$ for every $x_i \in f^{-1}(y_1)$ $\Rightarrow Sup\{\lambda(x_i)\} \le 1 - \mu(y_1) \Rightarrow f(\lambda)(y_1) \le 1 - \mu(y_1)$ this contradicts(1). Similarly $f^{-1}(\nu) \le 1 - \lambda$ contradicts (2). Hence λ is not a c_3 - pairwise connected. \blacksquare The proof is similar for c_4 - pairwise connectedness. Theorem 3.3 If $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ be a fuzzy pairwise open bijection and λ be a fuzzy set in Y then λ is c_1 - pairwise connected implies that $f^{-1}(\lambda)$ is c_1 pairwise connected. **Proof.** Suppose $f^{-1}(\lambda)$ is not c_1 - pairwise connected then $f^{-1}(\lambda)$ has a c_1 -pairwise disconnection i.e. there exists τ_i - fuzzy open set μ and τ_j - fuzzy open set ν in X, for $i \neq j, i, j = 1$. 2 such that. $$f^{-1}(\lambda) \le \mu \lor \nu$$ $\mu \land \nu \le 1 - f^{-1}(\lambda)$ $f^{-1}(\lambda) \land \mu \ne 0$ or $f^{-1}(\lambda) \land \nu \ne 0$ $\Rightarrow ff^{-1}(\lambda) \le f(\mu) \lor f(\nu)$, $f(\mu) \land f(\nu) \le 1 - ff^{-1}(\lambda)$ $\Rightarrow \lambda < f(\mu) \lor f(\nu), f(\mu) \land f(\nu) \le 1 - \lambda$ Where $f(\mu)$ is σ_i -fuzzy open set and $f(\nu)$ is σ_j -fuzzy open set in Y, since f is fuzzy pairwise open mapping. Now we claim that $\lambda \wedge f(\mu) \neq 0$ and $\lambda \wedge f(\nu) \neq 0$. Suppose $\lambda \wedge f(\mu) = 0 \Rightarrow f^{-1}\lambda \wedge f^{-1}f(\mu) = 0 \Rightarrow f^{-1}(\lambda) \wedge \mu = 0$ Which contradicts the $f^{-1}(\lambda) \wedge \mu \neq 0$. \blacksquare The proof is similar for c_2 -pairwise connectedness. **Theorem 3.4** If $f:(X, \tau_1, \tau_2) \longrightarrow (Y, \sigma_1, \sigma_2)$ be a fuzzy pairwise open bijection and λ be a fuzzy set in Y then λ is c_1 -pairwise connected implies that $f^{-1}(\lambda)$ is c_1 -pairwise connected. **Proof.** Suppose $f^{-1}(\lambda)$ is not c_2 - pairwise connected then $f^{-1}(\lambda)$ has a c_3 -pairwise disconnection i.e. there exists τ_i - fuzzy open set μ and τ_j - fuzzy open set ν in X, for $i \neq j, i, j = 1$, 2 such that, $$f^{-1}(\lambda) \le \mu \lor \nu$$ $\mu \land \nu \le 1 - f^{-1}(\lambda)$ $\mu \le 1 - f^{-1}(\lambda)$ and $\nu \le 1 - f^{-1}(\lambda)$ $\Rightarrow ff^{-1}(\lambda) \le f(\mu) \lor f(\nu)$, $f(\mu) \land f(\nu) \le 1 - ff^{-1}(\lambda)$ $\Rightarrow \lambda \le f(\mu) \lor f(\nu) , f(\mu) \land f(\nu) \le 1 - \lambda$ Where $f(\mu)$ is σ_i -fuzzy open set and $f(\nu)$ is σ_j - fuzzy open set in Y, since f is fuzzy pairwise open mapping. Now since $\mu \not \leq 1 - f^{-1}(\lambda)$ and $\nu \not \leq 1 - f^{-1}(\lambda)$ therefore there exits $x_1, x_2 \in X$ such that $$\mu(x_1) > 1 - f^{-1}(\lambda)(x_1)$$ $\nu(x_2) > 1 - f^{-1}(\lambda)(x_2)$ Also $f(x_1) = y_1$ and $f(x_2) = y_2$ are non-empty subsets of Y. ``` By definition f(\mu)(y_1) = Sup \lceil \mu(x_i) \rceil and f^{-1}(\lambda)(x_i) = \lambda(y_1) for every x_i \in f^{-1}(y_1). We claim that f(\mu) \not \le 1 - \lambda and f(\nu) \not \le 1 - \lambda Suppose f(\mu) \le 1 - \lambda \Rightarrow f(\mu)(y_1) \le 1 - \lambda(y_1) for x_i \in f^{-1}(y_1) \Rightarrow f(\mu)(y_1) \le 1 - \lambda(y_1) for x_i \in f^{-1}(y_1) \Rightarrow Sup \lceil \mu(x_i) \rceil \le 1 - f^{-1}(\lambda)(x_1) \Rightarrow \mu(x_i) \le 1 - f^{-1}(\lambda)(x_1) this contradicts (1). Similarly we can show f(\nu) \not \le 1 - \lambda. Therefore \lambda is not c_3- pairwise connected. ``` Received: April 2005. Revised: June 2005. The proof is similar for c4- pairwise connectedness. ### References - NASSEEM AJMAL AND J.K.KOHLI, Connectedness in fuzzy topological spaces, Fuzzy Sets and Systems 31 (3) (1989), 369-388. - [2] C.L.CHANG, Fuzzy topological spaces, J. Math. Annl. Appl. 24 (1968), 182-190. - [3] U.V.Fetteh and D.S.Bassan, Fuzzy connectedness and its stronger forms, J. Math. Annl. Appl. 3 (1985), 449-464. - [4] A.KANDIL AND M.E.EL-SHAFEE, Biproximities and fuzzy bitopological spaces, Simon stevin 63 (1989), No. 1, 45-66. - [5] T.Kubiak, Fuzzy bitopological spaces and fuzzy quasi-proximities, Proc. Polish Symph. Interval and fuzzy mathematics, Poznan 26-29, August 1983. - [6] PU PAO-MING AND LIU YING-MING, Fuzzy topology I. Neighbourhood structure of a fuzzy point and moore smith convergence, J. Math. Annl. Appl. 76 (1980), 571-599. - [7] L.A.ZADEH, Fuzzy sets, Inform and control (Shenyang) 8 (1965), 338-353.