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ABSTRACT

We consider a system of a nucleus with an electron together with the quan-
tized electromagnetic field. Instead of fixing the nucleus, the system is confined
by its center of mass. This model is used in theoretical physics to explain the
Lamb-Dicke effect (see [5]). When an ultraviolet cut-off is imposed we initiate
the spectral analysis of the Hamiltonian describing the system and we derive the
existence of a ground state. This is achieved without condition on the fine struc-
ture constant.

RESUMEN

Consideramos un sistema de un niicleo con un electrén junto con el campo
electromagnético cuantizado. En lugar de fijar dos nicleos, el sistema es confi-
nado por su centro de masa. Este modelo es usado en fisica teérica para explicar
el efecto de Lamb-Dicke. (ver [5]). Cuando un truncamiento ultravioleta es im-
puesto inici el andlisis | del Hamiltoni describiendo el sistema y
obtenemos la existencia de un ground state. Esto se obtiene sin condicién sobre
la constante de estructura fina.
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1 Introduction and statements of results

In this paper we address the problem of the existence of a ground state for the hy-
drogen atom and more generally for the hydrogenoid ion confined by its center of
mass. The fact that the nucleus is confined but not fixed is important since intense
rays appearing in the scattering spectrum for dynamical nucleus disappear when the
nucleus is fixed (see [5]). This model is used to explain the Lamb-Dicke effect (see
[5]). Some questions related to this problem have been considered in [7].

We consider a system of one nucleus and one electron, together with the electro-
magnetic field. Here the nucleus is dynamical and our Hamiltonian acts on an Hilbert
space describing the nucleus, the electron and the photons. The center of mass of the
system is confined by an external potential. Let us denote by U (resp. V) the external
confining potential (resp. the attractive Coulomb potential). The Hamiltonian of the
system is H,‘j and HX (m) is the corresponding operator if we decide that the photons
have a positive mass m > 0.

The main result is theorem 1.4 below giving the existence of a ground state for
HY/. In order to establish it we follow the fundamental strategy of (9] and [12] (see
also [8]). However we only reproduce here the new aspects of the proofs and often
refer to [9] and [12]. Precisely our contributions are essentially the following three
points which are not straightforward modifications of (9] and [12], the first point being
the main one.

e The proof of the binding condition (theorem 1.3(i1)) (see section 3.2).

e The systematic use of quadratic forms throughout the paper. In particular,
with the help of [10] and the functional integration method we determine Q(HY),
Q(HY (m)). This allows us to get Q(HY (m)) = Q(HY) N Q(N) where A is the
number operator for the photons (see section 2). This appears to be useful in order to
obtain rigorous results. In particular, we always consider any (¢, 9), QY (m) (")
instead of (¢, HY ¢), (¢, HY (M)9),. ..

e The proof of the exponential decay for the ground state of I_{b’(m) (without
using [8]). To this end we introduce the localizations functions ¢ 7, ¢, 7, ¢2.§, (2%
then we follow the standard method (see section 4.2).

Remark 1.1 (i) The proof of the other binding condition (theorem 1.3(i)) is closer
to theorem 2.1 of [9] and is given in section 3.1.
(i) The existence of a ground state for Hij (m) follows these two binding conditions
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and [9] when the localization functions (for the electrons and the nucleus) have been
properly chosen (see section 4.1).

Let us state precisely our results (theorems 1.1-1.4 below). We first define H
precisely using quadratic forms:

Theorem 1.1 HY defines a self-adjoint operator.

Remark 1.2 The hypoth on the confining potential U are stated in section 2.

i

For a semi-bounded self-adjoint operator A, let E(A) be the infimum of the spec-
trum of A. Let us denote by HY, (vesp. H{') the operator HY when V' (resp. U) is
put to zero. We shall prove

Theorem 1.2 Assume that E(HY) < min(E(HY), E(HY)). Then HY has a ground
state.,

The assumptions in theorem 1.2 are the so-called binding conditions.

Here we obtain the existence of the ground state without assuming any conditions
on the smallness for the different charges. We follow the strategy of [8], [9] and
[12] where the authors consider a similar system (actually more general) but with
fizred nuclei and succeed to deal with the quantized electromagnetic field in a non
perturbative way. The heart of the proof is to specify correctly the binding conditions.
These conditions need to be properly chosen so that, on one side we are able to prove
them and on the other side they imply the existence of a ground state.

The main result of the paper is theorem 1.3(i1).

Theorem 1.3 The following inequalities are true.
(i) BE(HY) < B(HY) , (i) E(HY) < E(HY).

Theorem 1.2 and 1.3 imply

Theorem 1.4 H}Y has a ground state for all value of the fine structure constant.

The proof of the existence of the ground state once the binding conditions are as-
sumed (theorem 1.2) and the proof of the first binding condition (theorem 1.3(i)) are
derived in the same way as in [9]. Indeed, HY is a translation invariant operator. The
translation invariance is a key point in the proof of theorem 2.1 of [9]. The validity of
the remaining binding condition (theorem 1.3(ii)) is more difficult because H{) is not
translation invariant and its proof borrows ideas of [12] and still uses tools given in [12].

For the sake of simplicity the spin of the electron is not taken into account in this
work. This and the case of several electrons should be treated in a similar manner.
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As it is already mentioned intense rays should appear in the spectrum of HY. This
may provide resonances with a very small imaginary part among other resonances,
The resonances for Hj are studied in [6] following mainly [3](4].

These results have been announced in [1]. Let us also mention another case of
a similar system with a dynamical nucleus: the case of free atoms and ions with

quantized electromagnetic field. It is analyzed in [2].
The paper is organized as follows. In section 2 we verify theorem 1.1. In section
3, theorem 1.3 is derived. Finally, we prove theorem 1.2 in section 4.

2 Definition of the Hamiltonian

2.1 Fock space, creation and annihilation operators
The Hilbert space in which operate the Hamiltonian considered in this paper is
H :=L%(R%) ® F, ~ L*(R%; F,), (1)

where L?(R%) ~ L?(R*) ® L?(IR®) is the space of states describing the nucleus together
with the electron, and where F is the bosonic Fock space over L?(R%; C?). This Fock
space describes the states of the polarized radiation field and is defined by

Fo = F(L*(R%) ® Fu(LA(R?)), (2
where F(L*(R®%)) = C® @ S,L*(R*";C), and where S,L?(R*";C) is the set of all
elements (ki,...,kn) — li)‘(zkll, .+ kn) in L2(R%"; C) which are invariant under any
permutations of {ky,...,kn}. Note that

Fy = Co @ S, @ LR C?). (3)

n>1

Moreover F2(L?(R%)) (respectively F?) is defined as the set of all & = (&), &M, .,)
in F,(L2(R?)) (respectively in F,) such that ®(") = 0 except for a finite number of
terms.

For any f € L?(R®), the creation operator a*(f) and the annihilation operator
a(f) are defined for all & € F(L3(R%)) by
{imal X K
(@*(£)®)™ (ky, ..., kn) i= —ﬁZf(k,)(b"‘ (VR B )
J=1 (4)
(a(HN®) M (ky, ... kn) = \/n+1/ FR)B™HD (k Ky, .., kn)dk,
RY
where ¥; means that the variable k; is missing in =%, and where f is the Fourier

transform of f. These operators are closable on F2(L?(R*)) (their closed extensions
are denoted by the same symbols) and they verify on F7(L?(R?))

[a(f).a*(@) = (£,9), [a(f),a(9)] = [a*(£),a" ()] =0, (a(f)®,¥) = (®,a*(f)¥).
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Let
Ds = {q: € FOLA(R), 8™ € S(R®") for all n}, (5)

where S(R*") denotes the Schwartz space over R*", and let
@YD) (ky, .., k) 1= VA F IO (k Ky, k),

@ R)D) D (ks k) 1= % z":«s(k i A
I=1

as quadratic forms on Ds x Ds.
Then in the sense of quadratic forms on Dg x Dgs we have :

@)= [ @0k o) = [, 7w @)
R3 R3
Now for A = 1,2 and f € L(R?), ai’(j) are defined to be the closures in F, of

() =a*(Nel, of(f)=Iea* (), ®)
where a* stands for a or a*.
ﬁf(k) is defined as a quadratic form on (Ds ® Ds)? similarly.
It follows that on F2
[ax(f),a3:(9)] = Oax(£,9),  [ax(f),ax(9)] = [aX(f), a3 (9)] = 0.
If f € L3(R3;C?), we can write f = (f1, f2) with f; and f; in L2(R®), and o (f)

is defined by
a*(f) =Y af(h)- )

A=1,2

Finally, for A = 1,2, define the creation and annihilation operators acting in the
configuration space by

1 g L6 R i
30 = g [, SO, o) = e [ BBk, o)
as quadratic forms on (Ds ® Ds)?. Then we have
“0)= % [ sono. an= 3 [ a@Res o

in the sense of quadratic forms.
The number operator AV is defined by

(N®) ™ (ky,..., kn) = n®(ky, ... kn) (12)

L\ T,
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n>

for all ® € DIN) = ¢ ® € Fy, T nl|@™|gp_ L2msic?) < oo}, and it is easy to see
21 kY
that A is self-adjoint on D(A). In the sense of quadratic forms, A is given by

N=Y ‘4 a3 (k)ax(k)dk. (13)

A=12
Moreover D(N'}/2) = {(I) € Fay L0 20Mlgp_ La@s;cr) < oo} and we have
n1

(NMV20)) (ky,. .. k) = n'/2®(ky,. .., kn) (14)

for all & € D(NY/2).

Asin [12] we can decompose an element of F, in a suitable basis. Namely if (f;)ien

is an orthonormal basis of L*(R?; C2), the vectors of the form
. ; 1 b
[i1,P1} - iny ) 1= TR

constitute an orthonormal basis of F(L?(R%; C?)) (where Q = (1,0,0,...) denotes the
vacuum vector in Fock space). Any ® € F; can be written as

e=3> 3 D0 B piittnspal[i2 P S Uy B (16)

n20i1<ig< <in Prye P

(fu)" .. .a®*(fi)Q (15)

where the term for n = 0 in the sum is a constant times Q.

2.2 Definition of the Hamiltonian

We denote by m; and ¢ the mass and the charge of the electron respectively, and by
my and gy the mass and the charge of the nucleus. Moreover z; and p; := —iliV,,
denote the position and the momentum of the electron, and w3, py are the position
and the momentum of the nucleus. Let
mymy
M =m; +m = —_— 17
Loh T S my + my an
Then the variables R, P of the center of mass, and the relative variables r, p are defined
by
myay + maxy
M

r=o) —%3 ,

Ri=
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We assume that i = 1 and ¢ = 1 where c is the velocity of light. Thus the Pauli-Fierz
Hamiltonian of the system we consider is given as an operator acting in H by

HY = 3 (s — s4s) + Hy + V(r) + U(R). 19)

2m;

Here A; := (4], A2 A3) is the quantized electromagnetic vector potential in the
Coulomb guuge deﬁned for Y=oNS by

= [ A, (20)
where X = (1,22) and for z € R®
Al() = a*(h(z - ) +a(hi(@ - ), 1)
where the coupling function h' = (h‘i,hg) is defined for A = 1,2 by

Xa(k)

27r re /Tk]

The vectors £5 used in the last definiton are the orthonormal polarization vectors in
the Coulomb gauge. They are chosen as

(’”;;%ki) ) e(k)= lklAe‘(A) (23)

Note that £;(k) and e3(k) are well-defined and smooth only on R* \ Oz where Oz is
the axis {(0,0, k3), ks € R}. But this singularity is not a problem in this paper.
Finally, A is the parameter of the ultraviolet cutoff, and Y, is a real smooth function
depending only on |k|, which is equal to 1 in the ball B(0,A/2) and which vanishes
outside the ball B(0,A).

It is well known that A’(z) is essentially self-adjoint on F? for all € R? (see [14]),
and one can verify that in the sense of quadratic forms acting in the moment space

h\(y) = e (k)e~*vdk. (22)

ei(k) =

Az) =5 Z/ X\’}% ex(k) @ (k)e*= + a(k)e'*=) dk. (24)

The free energy field of the photons, Hy, acts in F, = F,(L*(R%)) ® F,(L*(R*))
and is defined by

Hy :=dl(w(=iV)) @ I + I ® dT'(w(=iV)), (25)
where w(k) = |k|, and where dI'(A) denotes the second quantization of the self-

adjoint operator A. The massive photon field Hy(m) will be defined by replacing
w(k) = |k| with wn(k) = VETFm?, m > 0, in the definition of Hy. Then the

A /AT
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massive Hamiltonian HY (m) is Hj with Hy(m) replaced by Hy.
Hy is essentially self-adjoint on Ds ® Ds and we have

= 3 [z @k (20)
A=1,2/R
as a quadratic form acting in the moment space.
V is the attractive Coulomb potential and is defined by
V)= 1)

Ir[*

where C is a positive constant.
Finally, U is a confining potential for which we make the following assumptions:
(i) U € Lip(R?),
H (11) inf(U(R)) > —oc0 and U~ is compactly supported,
(Ho) (iii) P?/2M + U has a non-degenerate ground state ¢ > 0 with energy
— eg < 0,and there exists vy such that |¢(R)| < ye~!Rl/7,

In the next subsection we precise the relations between domains of self-adjointness
(or domains of quadratic forms) for the operators that we work with in this paper.

2.3 Self-adjointness and quadratic forms domains
Let g be the quadratic form defined by
1
9@, 0) 1= 3 (b~ 40)2), (s~ A)Y) + (H) % H*W). (28)
j=1,2 "

Lemma 2.1 q is closed on Q(p? + p}) N Q(Hy).
Proof First we have to verify that ¢ is well-defined on Q(p} + p3) N Q(Hy). Lemma
A4 of (9] shows that

(A;®, A;d) < 327A [(H}”cp, Hy*®) + %((b, d’)} : (29)

for all ® € C3°(R®) ® Ds.

Since C§°(R®) ® Dy is a core for H,l/z, this proves that Q(Hy) € D(A;). Hence g is
well-defined.

Next let us show that ¢ is closed on Q(p + p3) N Q(Hy). By lemma A.5 of [9], we
have, for all ® € Q(p? -+ p3) N Q(Hy),

(H)*0, H)/*3) < q(@,®), (30)
3 (pi®,ps®) < a.q(®, D) +b(2, &), (31)
i=1,2

e A
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where a, b are positive real numbers.
Ifd, € Q(p? + p3) N Q(Hy) is such that &, — ® and g(®, — @n, Pn — Bn) — 0,
then (30) yields & € Q(Hy) and (31) yields ® € Q(p}) N Q(p3). Hence g is closed. W

In addition, we see that g is positive. Thus, there exists a unique self-adjoint
operator, that we call Hf, associated with g. In other words, g = an (where g,
denotes the quadratic form associated with the self-adjoint operator A).

Lemma 2.2 V — U~ is relatively bounded with respect to q in the sense of forms,
with relative bound 0.

Proof According to the assumption (Hp), U~ is infinitesimally small with respect
to P2. Moreover the Coulomb potential V' is infinitesimally small with respect to p®.
Thus, V — U~ is infinitesimally small with respect to pf + p3 since we have

it N R

2my - 2my oM 3 5 )

Then V — U~ is infinitesimally form-bounded with respect to p} +p3 (see [14, theorem
X.18]). We conclude with (31).

With the help of this lemma and the KLMN theorem, we define H}_ as the self-
adjoint operator associated with the closed and semi-bounded quadratic form v

e

defined on Q(p? +p3)NQ(Hy) by any_ = q+av-uv-- Next, we define the Hamiltonian

HY by

HY =HY_+U*, (33)

that is to say, HY is the self-adjoint operator associated with the closed and semi-
bounded quadratic form ggy defined on Q(HY-) NQ(U¥) by gy = ay_ s

Remark 2.1 One could have defined the Hamiltonian of the system using a
Schridinger rzpneszntutmn of Fy, say L*(Q,du). Namely, it is proved in [10] that
the operator Ho defined on D(p? + p2) N D(Hy) by

& 1
Hy:= Z ﬁ-(pj —q;A;)* + Hy (34)
i

=12
is self-adjoint. This result is obtained thanks to FKN and FKI formulae that lead to
the following functional integral representation:

(F.e*Pog) = fA  (F(X0) 1(X)G(X0)ya ) 4X- (35)

Here, M = R® x P, where (P,db) is a probabilil iated with the
6-dimensional Brownian motion {b(t)}¢>0, and X‘ X+ b(l) is the Wiener process
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on M.
Moreover,
Ji(X) = Sge oKz, (36)

where Z, is the second quantization of &*¢,. The isometry &, : &3L2(R?) — @JLQ(RA)
is defined by

Ecf(k, ko) =

@o(f) is a Gaussian random process indezed by real f € &*L2(R'), on a probability
measure space (Qo, djo). Finally, K(t) is the stochastic integral

t t
K(t) =ea;’=1q1/0 £,p(~—Xs)db.‘(s)+e>.’=1qz/0 Ep(- — X,)db(s),  (38)

with p(k) = a(k)/ (m/Z]k[).

Next it is proved that V — U~ is infinitesimally small with respect to ffq, so that the
Kato-Rellich theorem gives a meaning to HY_ := Hy+V —U~.

Finally, ﬁl‘,/ is defined in the same way as for HY/, that is FI),' = ﬁL‘,’_ L%,

Let us show here that the two definitions of the Hamiltonian are the same:

Proposition 2.1 HY = ﬁz‘//

Proof This will follow from two lemmata:

Lemma 2.3 Let A be a i-bounded self-adjoint operator and let B be a self-adjoint
operator that is relatively bounded with respect to A with a relative bound strictly less
than 1. Then

A+B=A+B,
that is to say the definitions given by the Kato-Rellich theorem and the KLMN theorem
respectively lead to the same operator.

Proof We easily see that g4 p equals g44p on D(A), and since this domain is a form
core for each of the two closed quadratic forms, we get 4.5 = qa4n- Moreover, since
A is semi-bounded, we can see that the two quadratic forms are semi-bounded. This

yields A+ B = A4 B. "
Lemma 2.4 HY = Hy.

Proof Since g9 and g are positivc,l it is sufficient to show that these two closed

quadratic forms are equal on a domain that is a form core for the two of them.

According to [10], C3°(R®) ® Ds is a core for Hy. Thus it is a form core for qp,- Let
o

e 3200 A
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us show that it is also a form core for gpo.
By lemma A4 of (9], we have

1
anp@.0) < 37 o [ a3 ) 10,2y ) + (5] + 43) (327 AH} 22, H )
=127
AmA3 (D, @))] + ()20, H)*D),

for all ® € CF(R®) ® Ds.

Now if ® € Q(pf + p3) N Q(Hy), there is a sequence ®,, € C3°(R®) ® Ds such that
&, — &, p;®, — p;j® for j = 1,2 and H;/I‘D,. — H;”(t From the last inequality,
we get gy (P — y, @ — @) — 0. Hence C3°(R®) ® Dy is a form core for qug. n

Now, HY (m) is defined similarly by HY (m) := HY_(m) + U*, so that we have
QHY (m)) = Q(p} + p3) N Q(Hy(m)) N QU). (39)
We note that the inequalities [k| < vEZ+m? < [k| + m, for all k € R?, yield
Q(Hy(m) = Q(H)NQW) , QHY(m)) = Q(HY)NQN). (40)

2.4 Massive and massless ground state energy

In this subsection we recall (see [9, part. 5|) that the ground state energy of the
massive Hamiltonian H,‘,’(m), m > 0, converges to the ground state energy of the
massless one as m goes to 0. We will denote by E(A) the infimum of the spectrum of
any semi-bounded self-adjoint operator A, so that we have

E(A) = inf , Ad) = inf , ).
) OED(X;-I|'AI|=1(¢ ¢) ¢EQ(:“I)I.II¢Il=lqA(o 9)

Lemma 2.5 E(HY (m)) — B(HY).
Proof We sketch the proof (see (9, theorem 5.1 for more details). Namely, if m >
m' > 0, we have Q(HY (m)) = Q(HY (m')) € Q(H) by (40). Then

E(HY) = iy (1, 0) <

inf v (0,0
%)= ..wé’bm; (mv»q"” ( )
Ay mey (W, ¥) = B(HY (m")) < -+ < B(HY (m)).

inf
1¥l=1.VEQ(HY)
< inf
I¥I=1¥EQ(HY (m"))
Thus E(H}Y (m)) converges to a limit E* that is greater than E(H}Y) when m goes
to 0.

To see that E* < E(H}), let € > 0 and take Wy € Q(HY) such that [|¥o| = 1 and

any (Yo, Wo) < E(HY) +e.

WL .
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If IT,, denotes the projector onto }',(") 1= {<l> € Fe,®® =0 for all k > n}, then we
can see as in [9] that amy (1T, Wo, IT,, Wo) et ‘ll!,},’(‘l’l)-‘l’o)~ We set W := II,,, ¥,

where ng is chosen such that |r1,.,g(Hym\1’o. ne o)/, Yol — quy(‘l'o,lIlg)l <5
Then we have

T € Q(HY) N QW) = QHY (m))
for all m > 0, so that

E(HY (m)) = qu'\;(m)(‘I’v ¥) < Wil‘;(m)(i’o» o) /[|Wo?

inf
WEQH Y (m)),IV||=
< apy (Fo, To)/[Toll? + m.ax (To, ¥o)/|[To|?
< q”l‘/,(lllu’ Wo) + & +m.ng < E(HY) + 2¢ + m.no.

Letting m — 0, next € — 0, we get the stated result. [

Note that the same result holds when H}Y is replaced by HY' (respectively HY).

3 Binding conditions

Asin [9], the key step is to define binding conditions under which we are able to prove
that a ground state exists for the Hamiltonian H}/. We define the binding conditions

as:
E(HY) < E(HY), (i)

E(HY) < BE(HY). (i)

The proof of the condition (i) follows the one in [9, theorem 2.1], whereas the proof
of (ii) is more difficult and needs the localization methods used in [12].

Remark 3.1 Note that as soon as (i) and (ii) are satisfied, lemma 2.5 yields
min [B(HY (m)), E(HY(m))] — E(HY (m)) > C >0, (41)

for any suitable constant C' and any m small enough.

3.1  Proof of condition (i)

Following (9, theorem 2.1), we shall show that E(HY) < E(H}') — eo. The point is to
find a normalized state & € Q(H}) such that quy (P, ®) - (®, [B(HY) - eo + €] ®) <
0 (where € > 0 is fixed).

Let € > 0 and let F' € D(H{),||F|| = 1 such that (F, Hy'F) < E(HY) +&.
Define the unitary operator U, for all y € R* by

U, = eV (P14pa+dl'(=1¥)) (42)

e
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Uy acts in H, and if ¥ € H, ¥ := Uy @a*(f1)** ...a"(fn)*~Q, then we have

U =Ta(-+y, +y) @a* (h(-+ )™ ...a"(ful + )" (43)
Since [HY ,4,] = 0 on C3°(R?*)® Dss and since this domain is a core for HY (see [10]),
then, for all W € D(HY), U,V € D(HY') and [HY ,U,|¥ = 0.
Let us note here that, in particular, this translation invariance of Hy is due to the

fact that V itself is translation invariant. But this becomes false if V' is replaced by
U, so that we will have to face a difficulty through the proof of condition (ii).

Now, as in [9], we would like to choose d), = @U,F, for a suitable y, as a trial
state. First we have to show that &, € Q(HY). We know that 3y > 0 such that
&(R) < ve~!RI/7 for all R € R®. Thus, @, € H for all y. Let &,(R) = £(R/n) be
a smooth function in CF(R*) with 0 < ¢ < 1, £ = 1 in the ball B(0,1) and £ =0
outside the ball B(0,2); let ¢, := &,¢. Then @] := ¢ U, F =5 ®, in H, and
e Q(HY) since ¢, is a smooth, compactly supported !uncnon Thus to be able
to conclude that &, € Q(H), we only need to show that quy (P, OY) is bounded
uniformly in n. Smce Quy is semi- bounded from below, we would hke to check that
q"y((b ,®}) is bounded from above. But

n gn 1
ny (B3, 87) = 3 oo (05 — 0 A} (2 — 054,) )+
I=12°7
(85, 00) + (@, [Hy + V185).
The last term of this sum is uniformly bounded from above since V' is negative, since
92(R) < ¢*(R) < v2e~!RI/27 and since (UyF, HjU, F) < oo (because U, F € D(HY)).
As for the other terms, following (9], we can show

o2 (0~ AN, 0y~ 0, )85) + (85,U8)
/ au() (357 +) #u() @ FX)U F X
+ ,_Z‘_,zT-, [ R, =~ AU (X, 5 = 0,A(e,) Wy X)X
4 _e.,/ (R Uy F(X),UyF(X))dX
™ L P26 ()G (RORY W F (X)X X
el o(m’ms..mxpen)(m(u F(X), Uy F(X)ldX

+ Z / Gu(R)*(py = 4 A(2;)Uy F(X), (p; — 5 Alz))Uy F(X))dX.
j=12

A W
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CUBEQ
2.2(2001)

All of the terms in this last sum are bounded from above, which can be seen using
again the fact that ¢(R) < ye™!Rl/7 together with (&), (P€,), (P?€,) are uniformly
bounded, and U, F € D(H{'). Therefore ®, € Q(H};) for all y € R3. In addition, we
have

amy (By, ®y) = —eo fpo H(R)* Uy F(X), Uy F(X))dX + (y, [Hf + V]D,)
+Cjer2 Ty Jro PRV ((Ps = a5 ) Uy F(X), (p; — 45 Ale) Uy F(X))dX.

The end of the proof is the same as the one in [9]. That is we integrate apy (Dy, D)

in y over R* and do the changes of variables x, +y — x1, T2 + y — x3, which leads
to

[ @)y = [ 6 (P HYF) ~ eol PP = (R HYF) - e,
R 1 R?

since 6| 2gs) =1 and || Py = 1.
But we assumed (F, HY F) < E(HY') + ¢ and we have | ®,|| = ||¢|[||F|| = 1 so that

g (0, 80) — LBCEY) = o+ €]y, 8,y < 0.
Therefore 3y € R%, and &, € Q(H,‘J’), which is necessary # 0, such that
i1y (Puy Byo) = [B(HY) = eo +€](Dyy, Dyy) < 0.

Then E(HY!) < E(HY') — e + ¢, and since this inequality is true for all &€ > 0, we
obtain

E(HY) < B(H) - eo.

3.2 Proof of condition (ii)

As stated above, we can not follow the proof of the previous subsection because the
Hamiltonian H{} is not translation invariant. Actually, if (F;) denotes a minimizing
sequence for Hp; we can consider two possibilities: either a part of the support of F;
lies in a ball with fixed radius, or F} is supported outside balls with increasing radius.
In other words, consider a state "close to” the ground state. Then, the two particles
of the system live either not too far from each other, or, on the contrary, as far as we
want from each other. In the first case the proof is easy, whereas in the second case
it is more difficult.

Namely, we shall localize the electronic particles together with the photons in
a similar way as the one used in (12]. This bring us to pay attention to a new
Hamiltonian l.l(”, which operate in L*(R®) ® F, ® F,, and whose ground state energy
is such that

E(HY) > E(HY) > E(H),

which will give the result.

We begin with the simplest case:
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Theorem 3.1 Let (F;) be a normalized sequence in Q(HY) such that aquy (Fj, Fy)
— E(Hp).
joo
Assume that
3p>0,3a > O.VJ',/ / |F;(X)|[*dRdr > a. (44)
B(0,0) JR®
Then, E(H};) < E(HY) - Ca/p.
Proof Since Q(HY/) = Q(HY), we have F; € Q(HY). Hence it suffices to write
g (B F) = g (P B+ [ VOO C0[ax
(o] (¢]
< e SiE 012 iy &
< aug (B3, Fy) /ew,,,) L SIE0PaX < ary (73, - Sa
We get the result as j — oo. n
Now we have to deal with the second case. As stated above, we need to define a

new Hamiltonian acting in L?(R%) ® Fs ® F,. Namely, we define HY to be the self-
adjoint operator associated with the closed and semi-bounded quadratic form gjo ,

with domain Q(p? + p3) N Q(Hy) N Q(U+), such that:
0y (.9) = = ([(p1 — 40) © 118, (01— 0141) ©119)

+ (18 (2 = A8, [ © (72— 242) )
+(H)*®, B)*W) - (U™)/2®, (U7)/20) + (U)/?@, (U) /W),
(45)

where we have set H; := H; ® I + I ® Hy. Note that in order to show that ajg 18
closed, one can follow the subsection 2.3. Then we have:

Theorem 3.2 Let (F}) be a normalized sequence in Q(Hf) such that any (Fj, Fj) —
j—oo

BE(Hp).
Assume that

vneN 3 [ [ 1B ORI < . (46)

B(0,n) JR* n

Then E(HY) < E(HY) < BE(Hp).
Proof Note that in order to prove that E(HY) < E(Hg) with the localization
method of [12], we do not need to assume (46). However, we need it to show that

E(HY) < E(HY).
We begin with the proof of the first inequality. Since the method is quite similar to

e AT



118 Laurent Amour and Jérémy Faupin o OuB0

prove the second one, we shall not write the details.

First step: proof of the inequality E(H}) < E(flg).
To show this inequality, we follo‘\_v (12]. Namely, as in theorem 4.3 of [12], we would
like first to find a state W in Q(H) such that:

a) the electronic part of W is supported in B(y1, Ro) x B(ya, Ro),

that is to say W(X) = 0 as soon as x1 € B(y1, Ro) or 22 ¢ B(ya, Ro),

the photonic part of I is supported in B(y1, L) x B(ya, L),

that is to say the photons of the first component of the tensor product F, @ F,
live in B(y, L), whereas the photons of the second component live in B(ys, L),

e, (W, ) & () Ry
ﬂl‘]W < BUIY) + z; D (u) (1+|In(ARo)]),

where Ro > 0 and L > 2R, are fixed, where Cy and C; are positive constants, and
where 5 is any real number such that 0 <5y < 1.
We start with localizing the electron and the nucleus in balls of radius Ry.

b

()

Lemma 3.1 For any fized Ry > 0, there exists yy,y, € R® and a state ¥ € Q(ﬁﬂ)
such that the electronic part of W is supported in B(yy, Ro) x B(y2, Ro) and

jry, (v, ¥)
—E < < B(HY) + —A (47)

where Cy is a positive constant,

Proof of the lemma

This lemma is proved in (12, theorem 4.1]. However in [12], the authors have to deal
with the Pauli principle according to which the states in H have to be antisymmetric
under the exchange of the particles labels. Here the electronic particles are distinct so
that we do not have to deal with this problem. Then the proof becomes a bit simpler.
Let ¥ € D(ll LW = 1 be such that

(W, W) < B(HY) + n?

Let u € C3°(R*) be such that 0 € » < 1, u = 1 in the ball B(0,1/2) and u = 0
outside the ball B(0,1). Let us set

uy(X) 1= .L('TR—(') —y) , ugy(X):= u(;—z —v), (48)
and note that

/ u‘f.,,(X)dy =/ ug_vv(z\')dy’ :/ u¥(z)dz:= 3> 0. (49)
JR? R R

T
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Define Wy, := Juy yus,W; with the definition of u, we easily see that ¥y, €
Q(ﬁg) Then we have

(W Uy ydy’ = l/ / 2 (X)dy/ w2, (X)dy' < U(X),¥(X) > dX
Ro B JroJrs Y pe Y
(W) =1,
and
1
Vﬁ?’(‘l‘v.v';"’u,v') =F(‘I’x (lvn“l.v'z“g,v’ G ]Vx:"ly‘lz“%y) )
1 i
+ FRe(uf”ug_v.\P.Hf,\I()

(here Re(z) denotes the real part of the complex number z).
We compute in one hand

L (Tarta Py + 19ty o) W)
=p / / <U(X), 2 Rz (V) (F - DPE(X) > dydX

"2 1y _ 28C0
+ﬁ/"/w X), (TG~ )PU(X) > dyax = 22,

where Cg = [gs |Vu(2)[*dz > 0, and in the other hand

[ it Bt = 57, E ).
This leads to
L. e ) = s (o 4 g+ ECED)) 9]
— (W, AY) - B(HY) - RLE <.
Therefore 3(y;,v2) € R such that

Cste

a5 (Varwar Yy ) < [E(ﬁzo/) 3k ] (¥yy w20 Yy 2 )

and in particular, ¥y, ., is # 0 (here we have set Cste = 1 + 2Cof3). |
Back to the proof of the inequality E(HY) < E(HY).
Now, we have to localize the photons around the nucleus and the electron. We do

not write the details of the proof here but sketch only it; we refer once again to [12,
lemma 4.3).

A W
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First, replacing the Laplacian by the Dirichlet Laplacian, ﬁg is seen as an operator
acting in L?(B(yy, Ro) x B(ya, Ro); Fo @ F,). We can show that this operator (that
we call H{, ;) has a ground state ®p, so that in particular

Cste
R

where ¥, . is the (normalized) state given by lemma 3.1, which satisfies the Dirich-

let boundary conditions by construction.
Note that the Hamiltonian IIBD is defined in the same way as I],'} in (45) the

(@0, 1, p®b) < 4z (Yysva0 Yo a) < B(HY) +

only modification is that the domain of the quadratic form associated with HUD is

Hﬂ(B(tho)x By, Ro); Fa ® Fa) NQ(H(m))NQ(U+) instead of H(R%; F, ® F,)n
Q(H;(m))NQU*). In particular if we set ®p(X) = 0 outside B(yy, Ro) x B(ya, Ro),

then ®p € Q(ﬁg),

Therefore we would like to localize the photons in the state &,

Recall from section 2.1 that any state ¥ € L*(R% F, ® F,) can be written as

U X = U(X) with

U(X) =

o o

Qi
720 (s Sist, M
20 ifeifcil, Mty

i (X)inaPai- - iny Pad g ® |4, Pl i r, ) gy
ey

where

[iy, i inyPady =

and where (f;) is an orthonormal basis of L?(R*; C?).
Then the operator 7, will be defined by
Ti (livsPri - 3iny Pudyg ® [, Pls i, Pl g) =

— 1 — 1 — _lq‘(h]f-l)l’n a*(hy fi,)'"Q 30-(,12-/‘,‘),,; ..'a.(h”.'l"’),,rﬂ'ﬂy
(50)

where the functions hy, hy € C§°(R®) are defined by

+ hy = 1in the ball B(y, L/2) and hy = 1 in the ball B(y,, L/2),

+ 0<h <land0<Lhy <1,
+ hy = 0 outside the ball B(y1, L) and hy = 0 outside the ball B(y,, L).

In other words, /iy localize photons next to the particle x; (which lives in B(y,, Ry))
and Ay localize photons next to the particle 3 (which lives in B(ys, Ro)).
Next we set W := J,®p/||TL®p|*. Since p € Q(HY), we casily sce that Wy €

e A
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Q(ﬁﬂ)- Following [12], theorem 4.3, we can show that

4y, (TP, T ¥p) Gy
AT < BU) + 5 + e (12) 0+ Im(aRa), (61

for any 0 < vy < 1 and where Cy,C; > 0. s
Note that we can use here some invariance of the Hamiltonian Hj) to simplify the
proof of the last inequality. Namely, if we set

T= R (prHdl(=i9) ®e-u;}m+dr4—-vn‘ (52)
we can see that for all ¢ € R and all & € Q(HY):
gz (T, Te) = qzz (P, D). (53)

In other words, if one translates the electron (with its cloud of photons) and the nu-
cleus (with its cloud of photons) without moving the position of the center of mass,
one does not modify the energy of the state under consideration.

We take t = 3L — (y; — ya) and we replace ¥ by Wq := .7 ®p/||TL®p]|?, so that
the new state Wy has the same properties as the previous one, except that in the new
state a distance L separate the two balls where the particles live. Thus we do not
have to pay any attention to the fact that the balls may overlap or not (as it is done
in (12, lemma 6.1)).

Finally we would like to find a state £ € Q(H{,) whose energy in H{ would be
sufficiently close to q,—,nu(‘llu.\llo). Then the term (Z, VE) would be the main term in
gy (E,E) and we would be able to conclude.

We shall apply formulae of the type (2.24) of [12], so that it is convenient to replace
A(a¢)* with the normal-ordered : A(x;)? : in the definitions of the Hamiltonians H/
and HY). We write the norma]-mdered Hamiltonians” as : HY : and : HY : respec-
tively. We easily see that E(: H) :) — E(: HY @) = E(ﬁ?,) — E(HY).

Now, let (fi) be an orthonormul basis of L’(B(y,, L); C?) and let (g;) be an orthonor-
mal basis of L2(B(yz, L); C*). We know that

. {Ih-m:---:---vn)z = Zptmat (f)™ . a*(£i,)P"Q,n € N,ix, pi € N} is an
orthonormal basis of F,(L?(B(ys, L); C?)), and

{|'|»P’|~«--: W Prde = W_p'-l (94 Yi...a *(9e, )P~ n’ €N, i, Pk € N}
is an orthonormal basis of F,(L*(B(ys, L); C?)).

So we can write Wo as

Wo(X) =

W e
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.z, 5

"0 G<i<i<in ML
w20 gl Pl

where ¥ “ o E L’(}R") and

BT

W30 i) <ig<ii<in DL
W0 feif il Plirly

o (X)linsPri -« 3iny Pn) s ® [81, P13 - - 3y s Pl )gy

Pick an orthonormal basis {e;} of L2(R3) in H*(R%). Thus, we can also write

r €i(@1)er (x2).

Then we can compute:

2.573.(Vo, Vo)

S By

A

i)
o

Joud0
.l

niploggm

-/s;: (er(@1)lin, pri- iins Pud ot (01 = @ A@1))? t em(@1)]71, 915+ Gy Gn) g ) dy

1 S AT T
4"2"—.2 Z z o, o "

mipdodam ‘o

/ (ev@2)lif, Phi - s ihes Phrdgr (P2 — q2A(x2))? : e (@2)|31, a1 - Gy G g ) A2

5 o

nipdoggm ‘4

(I, p1i- - 5in, o /,Hjljwn,..

io.d0 Stm (i it ) (1 010 0) X

doidly ity

o OtmOtme S, piit, 1P ) dhsatineidln gl ) X

Jnstin) £)

o StmOUm? iy py:...iimipa) G100 70) %

5.u1'5. Yoo Hyld1s 13-+ 3 G @)

b S e

nmaploggm ‘i

m,m
n U arsidots 0041 Paiciim ) U 915000
siofrdlonely

é,

e /n U(R)erCen)ec a)em (e (22)drdas.

(8 Pt Pl YA 01

Here § denotes the Kronecker symbol.

€ L*R% F,) as

Now, we define the sta

T
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oo (X)i, Pri 3 iny Pa) g @I P i Pl )y

R0 (<G <in T
W30 i<ty orly

with
iy Pt -+ iy Pa) @I PR iy D)o

.________1__' Pyt (e YPrat (gu VPR (g0 )P Q)
= e e ) 0 i) 0 0, PR

In particular we can see that E € Q(H}) and that ||Z|| = || ¥ol = 1.
Thus, applying formulae of the type (2.24) of (12] to the states

(54)

[3, P15+ §7iny Pa) y®lis PR - - - s Par s

we get
@.py:(E,8) = (1] 4 (2] + (3] + [4] + [5],
with
R T
2m, Z Z i T

niplogqm
/w (er(@)linapri- - iny Pa) ot (1 — Q1 A(®1))? t em(21)]d1: 915+ - 35ny ) 1) dot

1 T
e X X T

mapdogam ‘i

/ (ev(@)lit, P
OB OW

n,i,plojgm
(P iing Pa) gy Hyliny i 5 Gy Qo))

- Tl —

niplojgm 4

Vi Yot (P2 — G2 A(®2))? ¢ e (%2) 131, G55 - - 3 s G )g ) dv2

‘I’";';’.: ‘5lm5” O, AN ittt i

mm
e g ‘S""‘s" O3, Pt P ) G 1o 1) X
i iecisly

e r“y

(i Phi - - -3 Phy ),uHJIJ"l.rn;...;Jv.uqi.')n)

B D W“'n

! A 4
Ll Oy R R

L) X /“° U(R)ei(x1)er (22)em(x1)em: (22)dayday

Joutn (4 prieiim ) U1 @ i0ut)
aly

Pr) U913 id000)
nipdoggm

S Pt PG T idl ) X /R_ V(r)e(x)er (za)em(z1)em: (v2)dz1dxa,

A
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Hnpn) G

D VD L

nipdoggum il

/m (@) (Prem) @) ([ Phi -3 e P )gs A@1) |31, 015 - - 3, @) g) ey

92 m,m’
_E Z FEE it P )G aieidl ) X
niplod,gm s

/R ) (paeme)2) (in,Pri s )12 A 3+ ) ),

i Pn) (F1 00 0) X

=5 D I B p—

mdplogam

/R er(®@)em (@1){[i1, Pli -« - s P dar s A@1)? 2 131,085 - 3 Fher @l )

Zm, z DI l. it \II"A:I":I as Oim O3 53

niploggm  Guhieailnl,  Saiieloal,

gy X

2P

/R, v (@a)en ()it Pri- iy Pa) o A@2)? < 0,015 3 oy o) )z,

m
nloggm

o CL@0em @) it pri iy Pu) 1 A 131,035 Jor o)1)
XL, P e Pl )or A2)13 015 13 G )g) A

+ 2o~ R
OB T ,n‘pnn ,_,,6,,,,x
L P R A A )

-/nn v (@g)em (22)(lin, Prs- - 3 in, Pa) 12 A(Z2)|51, 915 - - i Joy G0) r)

X (|i4, i« i ines P gy A@2) 1 @i - - - s Jory Gl ) g ),

Ea A\
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=3 3 O, e O3

nhploggm ‘BPilael, S

[2 /. VI @ (RN Pis iy Pa) gy |, i 5o Ge) )
A

X ([P i Padgy @x(R) |31, 045 - - -5 302 Gl Vo)
5] LR ABNENRVENCIARRREAAR
A
X (@(K)i1,PLi e+« e Pl g |80 @i - - -3 3000 G o)l |

We see that (1] equals g, (W0, o) = (=V)"/2Wg, (~V)/2i).
Moreover, (3] is less than Cste/L?*" according to (12, lemma 5.6].
Finally we can assume (2] + [4] + (5] < 0 because if we replace = by = where

ROl o 30 43 32,

n20 <ig<i<in P lzn G
w20 feif<cdr, P

e(@)er (@a)in, P13 iny )y @i, B3 -3 Pl
with i
fit i o) 1= e ()P (L) (50

then (1] and [3] do not change whereas [2],(4] and [5] are replaced by their opposite
terms.

Now in the state Wy (and also in the state ), the particle z; is localized in
B(y1, Ro) € B(y;, L), whereas a3 is localized in B(ya, Ro) C B(yz, L), and we have
chosen yy,ys such that the distance between the two balls B(y;, L) and B(yz, L) is
L. Therefore Wy is supported in {|r| < 5L}, which yields

(V)0 (V) 00) € ~ - (W, o) =~

Here (53) is crucial because otherwise the balls B(yy, L) and B(yy, L) could be far
away from each other and we could not estimate ((—V)¥2Wo, (—V)1/20;).
To conclude, (51) yields

Cy C

any(.3) < B )+ m( )(l +|In(ARo)|) + Lh 5T

i

\
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for all v < 1, all Ry > 0 and all L > 2Rq.
We choose + such that § <y < 1, and Rg = L® with § < a < 2y — 1. Then, for L
large enough, C/L becomes the dominant term in the last inequality, that is to say

Cl Cy (o]
m ( )(1 +|In(ARo)|) + 5= Lh =50

Thus 7 <
E(HY) < E(HY)

and the proof is complete.

Second step: proof of the inequality E(Hp)) < E(H{)).

The proof uses again the localization methods of [12] and we only sketch it. Let us
note yet that the localization errors need not to be estimate as precisely as in the
previous step. We only need to know that these corrections can be made as small as
we want.

Recall that the assumption (46) tells us that there exists a normalized minimizing
sequence for HY, (F}), which verifies:

Vo N3, [ [ 1B (0 1PdRar < . 57)
B(o,n) JRY n

Let 7, and v, be functions defined by
* Ta(r)=1if|r|<n-1}
* v(r)=1if|p|>n
* ()= .,(J'_L:ﬁ'-_l)_,) and v, (r) = v(* "lr';' r)ifn—4<|r|<n,
where 7 and v are defined on 1/2 < [r| < 1 and are mdependm\L onn
* 0<v,<land0<7,<1
% Un, Ty € C®(R?)
e ViiTi=1.

Then we have 7, Fj,, v, Iy, € Q(HY) and

ang (Fio s F5.) = quy (P, Py )+ aug (vnFi vn By ) = (i, (197024 Va2 B, ),

with
(Fas (IV7a ] + [ Vo) F, ) =/ (197 () + \Vl/(f)lz)/ 175, (X)||*dRdr
(n—4<Irign) R
_ Cste
B
so that

a3 (vaFy v Fy) = BUHYvaFy, vaF},) < ang (Fyo, Fy.) — E(HS) + S

- (58)



4 The confined hydrogenoid ion in lativistic ... 12

=

Since
12 w2 [ 1By, (X)|PdRdr 21— X,
B(On) JRY n

this shows that v, Fy, /||lv, Fy, || is & normalized minimizing sequence for Hf).

Then, we note again v, F; = v, F /|vaF;, ||, and we localize the particles in this
state. More precisely, we pick Rg > 0 and L > 0 such that L — 2Ry > 0. Then there
exists ng such that for all n > ng, v, Fj (X) = 0 on {X,|r| <3L}. Next, with the
help of [12], starting with 1, F;, (for n large enough), we can construct a normalized
state =, in Q(HY)) such that

a) the electronic part of E, is supported in B(yy, Ro) x B(ya, Ro),
b) the photonic part of Z, is supported in B(yy, L) U B(ya, L),

(&) Cy
o+ Ty (22) 0+ AR,

where €'y and €, are positive constants, and where + is any real number such that
0 < 5 < 1. In addition, the distance between the balls B(y;, L) and B(ya, L) is at
least L by construction.

The proof to get this result is close to the one of the first step, that is we localize first
the nucleus and the electron in the state 1, F; . Next, we replace the Laplacian with
the Dirichlet Laplacian, which defines a new Hamiltonian that has a ground state.
Finally, we localize the photons around the electron and the nucleus in this ground
state. Note that the operator 7y, that allows us to localize the photons is defined here
by:

) auy(En,En) < B(HD) +

Tra® (h,) ...a* (hi,)P"Q = a* (hhy, )P ... a* (hh,, )9, (59)

where 0 < h < 1 is a function in CF°(R?) that is equal to 1 on B(yy, L/2)U B(y2, L/2)
and that is equal to 0 outside B(y1, L) U B(ya, L).
Thus, we have h = h|g(y, 1) + h|B(y, 1), and we can write =,, as

(X)a*(fir)P .- 0" (fiu)P*a" (9 )7 ... a* (g, JPh 2,

b e

where f,, is supported in B(y, L) and 9, is supported in B(yz, L). In other words,
all the factors a*(h|p(y,,1)f) are put on the left whereas the factors a*(h|p(y,,1)f)
are put on the right.

Now, we can define ¥, in L*(R% F, ® F,) by

Un(X) =Y =",

4R

X)a* (fu) .. (fu) Q@ a"(9,)" ... 0" (gi, )Ph .

The same computations as the one of the previous step yield
g (Vn, V) < E(HY) + ¢

for all n large enough, where & depends on Rg, L and 5 but can be made as small as
we want. Note that, contrary to what we did in (55), it is useless to replace W,, with

L —
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a state W, in order to eliminate some terms, since these terms are small when R and
L are large. 3

This shows that B(H[)) < B(H)) + ¢, where € can be made as small as we want.
Thus the proof is complete. L}

4 Existence of a ground state for [}/

In this section we shall prove the existence of a ground state for the Hamiltonian
HY. The proof follows the one in [9]. Namely, the existence of a ground state d,, is
proved first for the massive Hamiltonian HY (m). Next it is shown that &,, decays
exponentially in X, so that Theorems 6.1 and 6.3 of (9] concerning ||@y(k)®,, || and
[IVan ()@, || follow. Finally the Rellich-Kondrachov theorem shows that the weak
limit of &, (when m — 0) is a ground state for HY.

4.1 Existence of a ground state for H}(m)

As in (9], the proof is divided into two steps: the first step is to find a sufficient
condition in order to get the existence of a ground state. Namely, it is sufficient to
show that for all normalized sequence (W7) € Q(HY (m)) which converges weakly to
0 and such that gy ) (17, /) is uniformly bounded, we have

liminf g o (W, ¥) > E(HY (m)). (60)

The second step is to prove that the condition (60) is satisfied. This follows again
from the localization methods of (9], with some slight modifications.

Theorem 4.1 For all m > 0 small enough, 30, € D(HY (m)) such that ||| = 1
and

HY (m)d,, = E(HY (m))d,,. (61)

Proof First step
Assume that (Gn) is satisfied and let us show that a ground state exists for IIU (m).
Let (9/) € Q(H} (m)) be a normalized sequence such that

Ty ey (P BY) = E(HY (m)).

)0

Since (97) and ([HY (m) — (I'I(‘,'(m))]'/: @7) are bounded sequences, they converge
weakly along some subsequences to limits denoted by @, and @], respectively. These
subsequences are still denoted by (97) and ([HL (m) - B(HY m))] e ®7). Then we
have

1/2 1/2

(6, [HY (m) = BY ()" #) = ([HY (m) = E(HY ()] 6, 07,
for all ¢ € Q(H}Y (m)). When j — oo, this leads to

/2

(&, 1) = ([HY (m) = E(HE (m))] " 6, &)

Eemm o .\
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Therefore ® € Q(HY (m)) (and [HY (m) — E(HY (m))]"* &, = ¥,).
Then, setting ¥/ = &/~b,, as in (9], we have W/ — 0 and [HY (m) — B(HY (m))]"/* W

— 0, so that
0= lim gy ) (¥, ) = BCHY () (&, )
= Jim ([ (m) = E(HY ()] @+ ), [HY (m) = EHY ()" (@ + 09))
= ([ (m) = BHY )]/ @y, [HY (m) ~ EEHE )] D)
o+ lim (B (m) — E(HY (m))] /2 W2, [HY (m) — ECHY (m)]* 99).

Thus [HY (m) — E(HY (m))]'/* ®,, = 0 and Jim | 28 (m) - BHY (m))]* W) =

0. Together with (60), this leads to U/ — 0 strongly, so that ||®,,[ = 1.
Finally @, ]| = 1, ®,n € D(HY (m)) and HY (m)®, = E(HY (m))Dpn.

Second step
Let (W) € Q(H(‘f(m)) be a normalized sequence which converges weakly to 0 and
such that q,,t;(,,,,(‘ll’.‘lﬂ) is uniformly bounded. Let us show that

i inf gpry () (9, 97) > E(H (m)).
Let ¢y, 2, &3 € C(RY) be such that
{ + ¢y =1 on the set &.\'GR‘.IrISI.ER]SI},

+ ¢r=00n {XeR|r|>2}u{X R |R| > 2},
0 <1,

.

$a(X) = dha(r),

¢a=10n {X €R% |r| =2},
¢a=0o0n {X€R%|r| <1
0<da<1,

“ e oe s

}
+ dy=0on {X€R%|r|>2)U{X R |R <1},

+ ¢3=1on §.Y€R°,|r]§l.m[22 '
¢ 0<¢y<,

and ¢f +¢3 4¢3 = 1.
Moteover we set ¢ 7(X) = ¢i(X/T) for all T > 0 and i = 1,2,3. Then, ¢ 7%/ €
Q Hl‘,'(m)). and we can show

e 8) = 3 auyem(@ar¥ ar¥) - 3 (W, [Vair/ W), (62)

i=1,23 =123
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where ¥ is the gradient vector in R%.
Note that |V¢;| < C; where C; is a positive constant. Therefore
Cste
= 4 N> - 63
> (W Vel W) 2 ——5- (63)

=120

Now, let us estimate auy om)(é1,7%, 61, 7¥7). Here, the Hamiltonian ﬁ,‘f(m) is
defined in the same way as in (45), as an operator acting in L*(R%; F, ® F,), to be
the self-adjoint operator associated with the quadratic form with domain Q(pi +p3)n
QU*)NQHy(m)):

93y oy (2, W) = R ([(I'l —qA) @)D, [(p — g dy) @ 1|W)

| m(((m — 2 A2) ® 1), [(p2 — q2A42) ® I))
A+ (Hy(m) 20, Hy(m)"2W) — (V)20 (=V) /)
= ((U™)2, (U-)V2) + (U+)V2D, (U*)/2W),

where we have set lll((m) 1= Hy(m)® I +1® Hy(m).
Note that, on C§°(R") ® Dg ® Dg, we have

HY (m) = HYm)el+Ie Hy(m).

Since Hy(m) > m.J = m.Py, where Py denotes the projector onto the subspace
spanned by Q, we get

Uy my 2 > E(HY (m)) +m —m.I® Pq. (64)
In addition, we define the unitary operator Up from F, into F, ® F, by
Upa® (WUp = a*(jy,ph) ® I + I © a*(ja,ph), (65)
for all h € L2(R% C?), and where jy p, jo,p € C3°(R*) are such that
* ji=1in the ball B(0,1),
* j1 = 0 outside the ball B(0,2),
* 0<h <1,
¢ ji+i3=1,

and ji p(k) := ji(k/P) for i = 1,2.
Then, following (9, lemma A.1], we can show that

auy () (A1,0V, 120 V) = qpy oy Upr ¥ Updy 7V) + v(m, P,T),

e )
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where v(m, P,T) is such that for all fixed m, T, v(m, P.T) . 0.
e
~ Thus (64) leads to

C anyem GV 61V

2 [E(HY (m) + m)(é, 7V, 61,7%) + v(m, P,T) — mUpéy 79,1 ® Pallpdy 1)
= [E(HY (m)) + m|(1,7%,61,7%) + v(m, P,T) - ¥/(m, P, T, j),

¥ (66)
by

with /(m, P,T, j) := m(Up¢1,7%, I ® Pallpéy 7%’).
~ Lemma A3 in [9] tells us that for all fixed m, P, T, liminf(s/(m, P, T, j)) = 0. The
3 e

point to get this result is that ¢ p is compactly supported, so that the operator
-2
o1,70(h) [1 +Y m+ HI(M)]
j=12
Is compact, where T'(jy) is defined by D(j1)a*(fi) .. .a*(fa) == a*(a fr) ... a* (G fu) 2.
Next, let us estimate qyy () ($2,0%7, 62,7%7). We have
g o) G279, 2.7%7) = gy oy (a7 V, b, 7W) = ((=V) a7V (=V) 2y p W),
Since ¢, is supported in {X € R, |r| > T}, we get

g2 ua¥) 2 (B - T @aa¥ 0wy, o)

Finally, let us estimate qyy (n) (63,797, 637%). We have
vn,-;(-..(és.'r‘l"|¢s.'rW’) = quy (m) (@3, 7V, é37V’)
+ (U 2o W, (UH) 2y 7W) — (U7)V2g3.7%, (U™) /2 ga,70?).

But ¢57 is supported in {X € R% |R| > T} and we know by (Ho) that U~ is com-
pactly supported. So (U~)"/¢y 7 = 0 for any T large enough. Therefore

Qo (B3, 7V, d3.7W) 2 E(HY (m)(63.7% ,da,7V), (68)
, for any T large enough.
Then, (62) with the inequalities (63), (66), (67), (68) leads to
} Qg oy (W, ) 2 min [E(HY (m)) + m, E(H}(m)), E(Hy (m))]
C Cste

+v(m,P,T) +V(m,P,T,j) - 7T
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for any T large enough.

Let € > 0 and pick Ty large enough such that —C/Ty — Cste/T§ > —e. Next, pick

Py such that |v(m, Py, Ty)| < e. Then liminf(s/(m, Py, Ty, 7)) = 0 for any m small
J—e00

enough, which yields
liminf’ (q”.\;(,,,](”/, wf)) > min [E(HY (m)) + m, E(HY(m)), B(HY (m))] - 2,
J—oo

for all £ > 0 and any m small enough. Thus,

timinf (amy o (¥, 1))

> min [F (HY (m)) +m, E( (m)), E(II,:/(m))]

= E(H} (m)) + min [m E(HY(m)) — E(HY /(m)), B(HY (m)) — E(I[,‘,’(nx))]
> E(H} (m)),

for any m small enough (see the remark 3.1 above).
Thus the proof is complete, n

4.2  Exponential decay of the ground state ®,,

In order to prove the exponential localization of @,,,, we follow (9, lemma 6.2], with
some modifications, More precisely, we would like to show that || exp(3|X[)®m ||
(where /3 is o suitable constant) is bounded by a constant which does not depend on
me. In 9] the bound depended on m. Here, the proof is simpler, and we do not need
to follow [8].

Lemma 4.1 Let &, be a normalized ground state for H‘ (m)
Then for all # > 0 such that 0 < f* < min(E(HY ) - E(”u) B(HY) = B(HY)), we
have

e @

Jor any m small enough, Here, Cy is a positive constant which does not depend on
m.

Proof For i = 1,2,3, ¢ p denotes the function defined in the previous subsection,

Moreover, we set
b= \[$ir+ 835 (70)

-2 P
that is @y 7 = 1 - ¢ 4.
We have 3 e g
u,‘/‘lf\'lq,m" o ||¢er"""'d'm“ + Ig‘,mm,\upm

and since ¢y 7 is compactly supported, the first of this two terms is bounded by a
positive constant C) that does not depend on m.

e A\
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We set Gr := &, 7 exp(fe) where f, is defined for all £ > 0 by

BIX|
T+eX|

Note that f, and |V ;| are bounded functions. Thus, Gr®., € Q(H}/ (m)), and using
the fact that ®,, is a ground state for HY (m), we can show

Ay () (G1 P, Gr ) = E(HY () |Gr®pm |l = (¥, |VGr[* @)
But we can compute
[VG2l* = [Véy e + 2V, 7.V fe)e" Gr + [V 1e*Gh.

Je(X) = (71)

Therefore
A ) (G P, GrPin) = B(HY ()| Gr®ml|* — (GrPem, |V fe|*Grm)
= (B, (I8, pI*e** +2(V, 7.V fe)e!Cr] Bm) (72)
<G,

where € is a positive constant which depends on T but not on m or e. Here, we used
the fact that V3, 7 is compactly supporhed
In addition, we note that ¢, 1/ 4’1,7‘ = 0. Thus

g ) (G, G1%m) = D7 Qygy () (Gr®im, 8 7/2GrPim)
=23

- Z quy (m) (D4,1/2G1Pm, i 1/2G 1) — Z (Gr®pm, [Vebi 12| G ).
-3

=23

Now, as in the previous subsection we have

Auy m) (@2,7/2G7Pm, ba,1/2CGr ) = [E(Hé.("l)) = '—] [|¢2,272G 7 Pml?,

and
Ay () (@a1/2G 7 P By, 1/2C ) > E(H(m)) s 7/2Gr0mll?,
for any T large enough. This leads to

Aty () (CTm, GrPpm) 2
min [B(HY (m)), E(HS(m))] [Gr®a17 ~ (3F + ) (|G D%,

for any T large enough. Since |V f,| < 8, we get
g (Crem, Grdn) - E(HY (m)IGr®m|® = (Cr@m, |V /e[*Crd,m)
> min [B(HY (m)) = E(HY (m)), E(H(m)) = E(HY (m)] [|Grdm|?

— B - ( T+ C,‘;’) IGrénl.

—
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Thus, remark 3.1 leads to
g () (GO, Gridyn) = B(HY (m)ICT®m* = (Grdm, [V fe[*Crdum)
> 1 [min [E(HY ) ~ ECHY), E(HE) ~ E(HY)) - 7] |Gravm?

2C = Cste 2
-(F+ 51681,
for any m small enough.
Therefore, we can choose 7y such that

Y (m)(C1y O, Gy D) = B(HY (m)) |G, ¥ I* = (G, [V fe|* Gy Br)
, 73
> X (min [B(Y) - BUIY), B(HS) - BCHY)) - ) 1Gm, 8, i
for any m small enough.
(72) and (73) yields
4Cy
Gr, || < =0y,
167&nl" < min [E(HY) = E(HY), E(HY,) — E(H)] - p* G
for any m small enough and any & > 0. Thus, as € — 0, we get
2
ll;l_“cmxl.bm" <0,
for any m small enough. So the proof is complete with Cy := C) + Cy. n

4.3 Convergence of the ground state @, when m — 0

The end of the proof of the existence of a ground state for 4 follows step by step the
one in [9). Namely, it is shown that [|ay(k)®,,|| and [[Vyas(k)d,,|| are bounded for
almost every k, with bounds that do not depend on mi. Next the Rellich-Kondrachov
theorem leads to the conclusion. We only give the results.

Theorem 4.2 Let ®,, be a normalized ground state for HY (m), where m > 0 is
small. Then, for almost every k € R®, we have

T lk)

[lax (k) Pl < Cx (lgs] + |a2l) XDl (74)

Morvover, for almost cvery k € R such that [k| < A/2 and (ky, ky) # (0,0), we have
~ 1
[IVaax(k)Pmll < CX (Igs] + |gal) mmxl‘bmll- (75)

v

Here Cy and C}y are constants that depend on A, my, ma, but not on m.

e )
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b Remark 4.1

“, 1. Note that ., € Q(N) by (40). Then (74) means

1 o2

“ (P, Pm) < CR (Ia] +l'h|):/ Mdkdl(-‘fli’mll’- (76)
o k|

The meaning of (75) is given in the appendiz B of [9].

2. A key step to obtain (74) and (75) is to use the following gauge transformation:
the unitary operator T is defined by

o /:'r(X)dx with T(X) = e~ Ssma0s%-A0), )
Then we have By (k, X) = T(X)ar(K)T*(X) = a (k) — fu(k, X), with
k
wak,X) = 5= f,“lf,,’nm 3 wn (8)

Hence the transformed Hamiltonian is

Y (m) = THY(m)T* = 2—'1'U(p’ — AP+ Hy(m)+U+V, (19)
J=12

with A, = [ A,(X)dX, Hy(m) = [go Hy(m)(X)dX, and

A(X) = Azy) - A(0) , Hy(m)(X)= Z/ Wi (k)B3 (K, X)ba (K, X)dk
A=1,27R )

3 Theorem 4.2 together with lemma 4.1 show that ||ax (k)| and || Vi@ (k) @oml|
are uniformly bounded for small m.

Now let (m,) be a sequence that decays to 0 and such that (74) and (75) are
satisfied for all . We can suppose that &, converges weakly to a limit ® when j
goes to co. Let us show that & € D(H ).

Since, for all j, Q(HY (my)) € Q(Hu) by (40), we can write

il - BN G| = aty @i, B, ~ ECHE)
< Qg imy) (P Om,) = E(HY) = E(HY (my)) - E(Hu)j:‘m 0.

Thus, for all ¢ € Q(HY), we have
([HY - E(HY)]

3y )= ,E.‘L‘.([H“; = E(”t:‘]'“ ¥, m,)

= lim (v, [HY ~ E(HY)]" @p,) = 0.
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Therefore, & € Q(H) and [H}Y E(M,S:)g"”@ = 0. This yields
beDHY) snd HY®=E(HY)d. (81)

Then, in the same way as in theorem 7.1 of (9], (81), lemma 4.1 and theorem 4.2 lead
to

Theorem 4.3 ,,, converges strongly to &, so that ||| = 1 and ® is a ground state
for HY.

Remark 4.2 With the help of the functional integral reg ion of remark 2.1,
we can prove that the ground smta of HY is non-degenerate. Indeed, it is shown in
[11] that v=Ye="" v is positi proving as an op acting on L*(R® x Q),

where L2(Q) denotes a Schridinger representation of F, and where v is a unitary
operuator from L*(Q) to F.

Received: Dec. 2006. Revised: Feb. 2007.
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