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ABSTRACT
An inverse initial-boundary value problem for identifying the coefficient of
some second order hyperbolic equation by single set of boundary measurement
is considered. The problem is transformed to a minimization problem of a func-
tional. After a concrete expression of the Gateaux derivative of the functional is
obtained, an algorithm for identifying the coefficient is given based on the pro-
jected gradient method. A numerical result is presented to verify the algorithm.

RESUMEN
Es considerado un problema inverso de valores inicial y de borde para identi-
ficar el coeficiente de cierta ecuacién hiperbélica de segundo orden, para un tinico
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con]unw de medidas en el borde. El problema es transformado a un problema de

de un funcional. Ademas es obtenida una ién concreta de la
derivada de Gateaux del funcional, es dado un algoritmo pura identificar los coe-
ficientes, basado en el método del gradiente proyectado. Un resultado numérico
es presentado para verificar el algoritmo.

Key words and pl : Inverse initial-boundary value problem, coefficient
identification, wave equation, variational method,
projected gradient method

Math. Subj. Class.: 65M32, 35R30

1 Introduction

Let @ € R™ (n = 2 or 3) be a bounded domain with C*-class boundary 9. Of
course, we only need to assume that 9§ is smooth enough, but it is convenient just
to assume it is . Let K (x) € L™(Q) satisfy the following conditions:

0<0 < K(x)<C; in T,
K () is C®-class in Q\F, (1.1)
|VK(z)] < C in Q\F,

where Cy, Cy, Cj are fixed positive constants and F' C Q is a compact set with 9QNF =
0. We notice that our coefficient K is smooth function near the boundary from the
assumption of the compact set F'. This will be used later to show the regularity of
the solutions of boundary value problems and initial boundary value problems. For
a given @ € C%( ([0, T); H(g)(aﬂ)) with 9}7u(z,0) = 0 (x € 8Q,0 < i < 5), we consider
an initial boundary value problem:

%-v (K(z)Vu) =0 in Qx(0,T),
0(10)=10, %’:(-,o)=o Q2 (2:2)
u=1 on 9 x(0,T).

Here H, ?1(09) is the Sobolev space of order o defined over 892, and C™ ([0, T}; X)
with m € Zy := NU {0} denotes the set of all C™ class functions defined in [0,7]
taking their values in some Banach space X.

The problem of (1.2) admits a unique solution u € Hs((0,T); Hyyy(R)). We
denote this u by u = u[K](z,t) to clarify the dependency on K.

Here and hereafter, we define H(,)(ﬂ) fors € Rbyge ﬁ'(,)(ﬂ) if and only if
there exists an extension f € H,)(R") of g to the ambient space R" of Q and the
norm ||glg,,, () is defined by |g|g,,, ) := inf {I1f1l##,,@: fla = g}. We also define
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H(,)(ﬂ) = {g € H,)(Q); supp g C 0} with norm ||g||,-,m(m = |lglla,,, @) These
kind of Sobolev spaces are discussed systematically in [3].

Now, suppose we do not know K'(z), but we are given g := l\’(.r)ﬂ on Q% (0,T)

beside i for T' large enough. Then, we are interested in the following inverse problem
(IP):

Inverse problem (IP): Reconstruct K (z) from {i,7}.

Let K be the set of all K(z) € L*(Q) satisfying (1.1). For any L € K, we define

J(L) by
(]
J(L) =/0 /m |L(z)6—1;[7{i] —g*dodt,

where u[L] is the solution of (1.2) for K = L. Since the absolute minimum of J(L) is
attained when L(z) = K (x), we can expect to recover K (z) by minimizing J(L).

One of our coauthor Shirota started the numerical study of the inverse problem
(IP) in his paper [9). He used the projected gradient method to minimize the func-
tional J(L). There are many methods for minimizing J(L). The projected gradient
method is one of them. It needs to compute the Gateaux derivative J'(L) of J(L).
Shirota computed J'(L) approximately by a formal ar, Some of the ical
results in [9] were quite good.

The aim of this paper is to justify his formal argument, give the complete form of
J'(L) and provide some numerical results using J'(L). The complete form of J'(L)
is given by the following theorem.

Theorem 1.1 Let L € K and M € L®(Q). For anye > 0 with L+eM € K, it holds
for the Gateauzx derivative J'(L) that

J(L +eM) — J(L) = eJ'(L)M + o(e),
J(L)M = / / MVu[L] - Vvdzdt + / < (T)wdz,

where w € H“,(ﬂ) is the weak solution of the elliptic equation

V. (LVw) =0 in Q,
{w:?(Lag—["L](T)—ﬁ(T)) eno, (13)

and v € L*((0,7); H(n(Q)) is the weak solution of the equation

—U—V (LVv)—U in Qx(0,T),

a2
o(T) =w, I‘?‘(T) in Q, (1.4)
o ( el ) on 89 x(0,T).

e /M
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Moreover, U € 3(5)((0,T);L2(Q)) is the weak solution of the equation

;—;U— V. (LVU) =V (MVuL]) i Qx(0,T),
U©) =0, ‘;—[t’(o) — in Q, (L35)
=) on 8% (0,T).

Remark 1.2 In the pmo/}jnf Theorem 1.1 given later, we showed that the mapping
®:L®Q)>M — %{(T)w dz € R is bounded linear. Hence, by Ezample 5 in
Q

page 118 of [12], there exists a unique h € L*(Q) such that

/ﬂ%%ﬂm::/thdz. (1.6)

The assumption which @ € C%([0,T); H(%)(BQ)) with 8ju(z,0) =0 (z € 09,0 <
1 < 5) is too enough for the existence of the solution to (1.2). However, this assump-
tion is needed to guarantee the existence and regularity of the adjoint problems (1.3)
and (1.4). The details for the existence and regularity of u, v, and w are given in
Appendix. The proof of this theorem and the existence of U are given in section 5
and section 4, respectively.

To the best of our knowledge, there is not any paper other than [9] which tried
projected gradient method to obtain some good numerical results for the inverse
problem (IP). The inverse problem (IP) is only a prototype. The same method can
be applied to similar inverse problems with other corresponding equations. When
we consider elastic equations, the problem becomes more practical because it really
models the nondestructive testing of a material using ultrasound.

The rest of our paper is organized as follows. In section 2, we will show preliminary
computation of the variation of J(L) with respect to L as an intermediate step to
get the complete form of the Gateaux derivative J'(L) of J(L). In section 3, we will
present some theorems, which play a major role to prove Theorem 1.1. In sections 4
and 5, using the theorems given in section 3, we will prove Theorem 1.1. Finally in
the last section, we show a numerical algorithm based on the complete form of J'(L)
and its example.

2 Preliminary computation for J'(L)

In order to obtain a concrete expression of the Gateaux derivative of the functional
J, we have to calculate the difference J(L 4 eM) — J(L). For this purpose, we have
the following result.

a0 )
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Lemma 2.1
% dou
J(L+eM)— J(L) =E/ / MVu[L]<Vudzdt+/ —— (T wdz
o Ja o Ot
G T
% / / eMVu - Vodzdt + / / |6q|dodt, (2.1
0 Ja

where du = u[L+eM]—u([L], §¢ = (L + eM)
is the weak solution of the elliptic equation
V. (LVw) =0 n Q,
Ou £
w=2 (La—"(T) = q(T)) on 9Q.

OulL +eM] Bu(Ll
n

The function v € L*((0, T);I:I(l)(ﬂ)) is the weak solution of the equation

G2 A
Wu—V-(LVv):O in Qx(0,7),
v(T) = w, %(T) =0 n Q,
u
0:2(La—q> on 90 x (0,T).
Proof Let g[L] := Lau—[L] . For L, M € K, we have
on 20x(0,T)

T
@+em) -3 = [ [ (ale+eM) -0 - (olz] -7 doct

T
= / / (qlL + eM] + q[L) — 27) 6q dodt

//2(q[L] 6qdadt+/ / |6q|?dodt .

[L]

Integrating by parts and reminding & (0) = 0 and v(T) = w, we can see

/ [ 2% A([Bgfl L /OTL“L.L.‘ud:)dI

9 [L] Pu[L)
n” (T)wds // o vdadt.

By another integration by parts, we also see

/OTALVu[L]-Vuda:dt=/0T (/qu[L]da—/nV-(LVu[L])vd:r)dt

L /AT

, andw € H;)(Q)

(2:2)

(2:3)

(2.4)



Vi

86 Cheok Choi, Gen Nakamura and Kenji Shirota CuBy

Hence, we can get
/ / (aull _—LVu[L] Vv)dzdt /na];—&L](T)wd:—/oT/qu[L]dadL
(2

By a similar way, we have

/ / (au[L +eM] Bv — (L +eM)Vu[L +eM)] - Vv) dzdt

:/n"_“[%'_tﬂlmwdz—/o /anvq[L+£M]dadt. 26)

Using (2.5) and (2.6), we get
bl ddu v
/ / [».~ — (L +eM)Vu[L +eM] - LVu[L]) - Vv] dudt

ot ot
ddu o
= [ —(T)wdz - / / Sqde
/n Fad bl ot odt. (2.7)

Moreover, applying the integration by parts, we have
95u dv w)” T g2
E & =

/o ETaE dzdt = / ([ uat] /0 Juatzdt dz
== / / éumdzdt
and

V4 T v
[ [rvsu-vvasa= [ [/ du (L—) da-/ﬁuV-(LVv)dz] it
o Ja o [Joa on a
i
= >/ /5uV<(LVu)d$dt.
o Ja
Therefore, we can get

dou ov
/0 /,,(8:5 o~ LVbu- w) ddt =0. 28)

From (2.7) and (2.8), we have
i dbu T
_/ eMVu[L + M) - Vo dodt = —(T)wdr—/ / v6qdodt.
Q o Joa

Reminding v]anx(o 1) = 2(q[L] — G), we can see

/ / 2(aL]|~7)éqdodt= / / eMVulL] - Vo dzdt

o Joa o Ja

+/T/5MV<5u-Vvd1dt+/@(T)wdr (2.9)
o Ja a Ot e

s .
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Hence, substituting (2.9) into (2.4), we get (2.1). [ |

3 Continuous dependence of the solution on the co-
efficient

Fix M € K and take a small ¢ > 0. We write
2 82
L i=w~AL, AL, :=ﬁ—AL“
where the notation Az, A, are defined as in (A.2) of Appendix.
Let v € Hs)((0,T); H)(Q)) and ve € Hs)((0,T); H(1)(Q)) be the solutions to

L.(z) := L(z) +eM(z), A

Arv = f(L) € C4([0,T); I:I(,)(Q)) Hi @ (@),
v=0 on 9Qx(0,T), (3.1)
= 8 < .
v(0) = o, EU(O) =T,
and <
Ap.ve = f(Le) € C4([0,T); Hay () wa @ (D),
ve =0 on 9N x(0,T), (32)

2 a .
ve(0) = %o, EUE(O) =1,

respectively. Here, f(L), f(Le), tio, and #; are defined by the formula given in (A.5)
of Appendix.

Then, we can obtain the following continuous dependency of the solution on the
coefficient in a Gelfand triple (V, H, V'), which is defined as in the statements below
(A.5) of Appendix.

Theorem 3.1

ve = v (e = 0) in C(0,T);V)nC[0,T);H).
Proof If the inhomogeneous terms of the equations (3.1) and (3.2) are same, the
continuous dependency of the solution on the coefficient is given as in Theorem 2.8.1

and Theorem 2.8.2 in [10]. The proof for them can be also applied to the present
situation without any essential change. So we omit giving further details of the

proof.
Now, for given ug € H, u; € V' and f € L*((0,T); V'), we consider the Cauchy
problem :
Agu=f in Qx(0,7T),
u(0) = uo, %U(O) = inQ: &9,

In order to define a weak solution u to (3.3), we first define the test function space



A

88 Cheok Choi, Gen Nakamura and Kenji Shirota g %

Definition 3.2 (test function space) The test function space X is the set of all p €
L%((0,T); V) satisfying
{ Axyp € L*((0,T); H),

op
¢(T) = 5 (1) =0.
The definition of the weak solution is as follows.

Definition 3.3 u € L2((0,T); H) with w' € L*((0,T); V') is called a weak solution
of (3.3) if it satisfies

it fr ap
/ / uAgpdrdt = / / fodzdt +/ (ulgo(O) = uoa—(())) dz for Vo€ X,
o Ja o Ja Q t

where ' means the derivative in distribution sense.

Then, we have the following existence and uniqueness result from [4].
Theorem 3.4 Given (f,uo,u1) € L%((0,T); V') x H x V'. Then there is a unique
weak solution u with (u, a—'t‘) € C([0,T); H) x C((0,T); V).

For the continuous dependence of the solution to (3.3) on the coefficient, we have
the following result.

Theorem 3.5 Let v, and v be the weak solution of (3.8) with K = L + eM and
K = L, respectively. Then, ve — v (e — 0) in L*((0,T); H) and v. — v’ (e — 0) in
L((0,T); V).
Proof Let 1

B(t) = 5((w,v) + (AL, )n)

and

Eu(®) = ({ve,vedn + (AT}t vn) -

Here, from the well-posedness of (2.2), we can guarantee the existence of the inverse
operators Azl and AZ‘I. Then, from the proof of Theorem 9.3 of chapter 3 in [4] and
by the same argument with Lemma 2.4.1 in [10], we have

2
E(t), Ee(t) < C (Huollﬁ (]2 +/0 [I£11% dt) (34)

and
t t
E(t)f5(0)=/(r42’f,v’)ydt, E's(t)—Ee(O):/o (Azlfvimdt,  (35)
0

respectively.

T
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First, we show that v. converges weakly to v. From the coercivity in (A.1), we
have
Be(t) 2 O(llvellzr + lIEI13) -
So, by (3.4), ve and v, is umfoxmly bounded independent of € in L((0,T); H) and
L?((0,7); V'), respectively. Therefore, by the weak compactness of these spaces,
there is a sequence {&(l)}, which is the subsequence of {¢}, @ € L?((0,T); H) and
B € L((0,T); V') satisfying
vey =~ @ in LX(0,T); H),
{ o =B i L(O1)V). (o

Now, we will prove that this a is the same with v by showing

/OT/naAupdzdt=AT/nf<pdzdt+/n (unp(O)—qu—f(O)) dz (3.7)

for Vo € X. Let g := App € L2((0,T); H) and extend g to the whole time interval by
putting g = 0 in (—o00,0] U [T, 00). Also, let g' := Xjo,r-119 € L?((0,T); H) with the
characteristic function Xo, 7 ) of [0,T7—1] and g"™ := pm*g' € C=([0, T, H), where
pm* is the mollification with a mollifier p,(t) := m~!p(m='t). Here p € C§°(R) is a
function which satisfies 0 < p < 1 and fn p(t)dt = 1. Then, g™ is flat at T and we
have

{ g™ =gt (m—0) in L%((0,T); H), (38)

gd—>g (1—0) in L2((0,T);H).
Taking t = T as an initial surface and g™ is flat at ¢ = T into account, we have
from Theorem A.1 that there exists a unique p*™ € L2((0,T); V) with enough time
regularity to

{ i = gl
() = (p™)(T) = 0
By defining k™ := AZ‘ALtﬁ""‘, it has enough time regularity and satisfies

{ A pb™ = AL‘AL(w"")"+AW"" € L¥((0,T); H)
T) = (¢i™)(T) = 0.

Hence, ob™ is a test function. By (3.2) and taking u = v, in (3.3), we can see

T
/ A ve((P4™)" + Ap,oh™) dadt
0

£ /‘]T/nf«p';"‘ dadt + /ﬂ (164™(0) — (™)' (0)) da.
From A; — AL, = AL,(AZ.1 = A7Y AL, we have
llg™ = @™l = IAZ Augh™ — gty = ||(Az! = AT Acg'mly
= II4Z/ 4z - 4, )™y < Cll(AL ~ Az)e" v
=0 (e-0) uniformly with respect to ¢ € [0,T]. (3.9)

- ﬂ'""_——\\
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Here C stands for a generic constant. Similarly, we can show
(™) = (™Yl [l(e™)" = (©"™)"|lv — 0. (3.10)
Using (3.6), (3.9), (3.10), and uniform boundedness of {v.}, we reach

I ¢ [ altehmy+ gt dnd
0 aQ
fred
:/ /f¢‘vmdzdt+/ (1g"™(0) = uo(6"™Y(0)) d.
0 aQ Q

Furthermore, by (3.8) and the continuous dependency of ¢"™ on the source term in

Theorem A.1, we get (3.7).
Also, we can show that v itself converges to v weakly. In fact, if not, then, we
can find € > 0, one subsequence {ve(m)} and ¢ € X satisfying

T
/] (v = Ve(my, P)H > €. (3.11)

However, {v¢(m)} is uniformly bounded in L2((0,T); H). As a result, it has convergent
subsequence to v, which is in contradiction to (3.11).

Second, we show that v. converges strongly to v. Reminding (Aztlf, v H —
(Ap f, vV m = (AT ot = v')a + ((Ap) — AT vl)m and AT} (AL — Ag,)A' =
(AZ'l — A7'), we can show in (3.5) as

t t
B0~ BO, [ (5wt~ [ e (=0

As a result, E(t) — E(t) (¢ - 0).
Now, let £(t) = (ve — v,ve — v) i + (A7 (vl — v'),v. —v')iz. Then, by expanding
the right side of £(t), we have
&(t) = 2B(t) + 2Be(t) — (A} — Ap' ol vidm — 2((v,ve)u + (A7, vl)m). (312)
On the other hand, by coercivity (A.1),
£(t) 2 C(llve = il + vz = v'lI})- (313)

Therefore, using uniform boundedness of {v:} and {v}, (3.6), (3.12), and (3.13), we
get the strong convergence of v, and v/ to v and v’ in L?((0,T'); H) and L?((0,T); V'),
respectively. n

4 Asymptotic of 6“1%@) (e —0)

This section is devoted to the following theorem which gives a representation formula
of the second term on the right side in (2.1).
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Theorem 4.1 0 G
“(T)w do=c | Sr(Twdz+o(e),
where U is the weak solutian to (1.5).

Proof Let ue :=u[L + eM], u := u[L]. Then, we define the functions % and %, by
U =u—¢ and U = ue — ¢, respectively. Here ¢ := A% and A is the inverse trace
operator given by (A.3). Then we have V. (MV)u = V- (MV)u+ V- (MV)¢ €
H®((0,T); V'), and ug —u=U— .

By defining U, := T we have

ArUe = 2(AL,Te - Ar )

= LA+ F(L) - £(D) = Ar.T)
=V (MVu)+V-(MV¢),

and
U.(0) = U(0) = 0.

Moreover, we have

s oit
2:U(0) = 5 Us(0) = 0

(V (MV) +V - (MV$)) , TS

ai
AL Ve at'

for 0 < i < 5. Therefore, by Theorem 3.5, we have
Ue —» U(e = 0) in He((0,T); H).
As a result, we have

6u5 o
T )=

which completes the proof. [ |

(T) 2(1) = (T)+a(£) in H,

5 Completion of the proof of Theorem 1.1

First, we show that the third and fourth terms on the right side in (2.1) are o(e).

Theorem 5.1

T e
/ / eMVéu - Vudzdt + / / |6g|?dodt = o(e) (e — 0).
0 aQ 0 Jaa

e A
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Proof Let u, ue, @ and U be those given in the proof of Theorem 4.1. Using
Theorem 3.1, we can show easily that the first term is o(e).

Let z := ue—u = U~ € Hs)((0,T); H1)(Q)). If we can show "z;llLQ((olT);ﬂ(:)(n\p))
= O(e) (¢ — 0), then the proof is done. To begin with, we observe

Apze = Al — ALt

= Ap e + (AL — Ap, )i — ALt

= (f(Le) = £(L)) + (AL — AL, )Ze

=¢e(V-(MV¢)+V - (MVi,))

=ch € H((0,T); V') 0 Hp)((0,T); Hyy (R F)), (5.1)
where h :=V - (MVu,). From (5.1), we have, for 0 <i <5,

AL%n:a% in Qx(0,7),

aat‘zs(ﬂ) atl“zs(o =08 Sin O
By (3.4) together with (A.1) given in Appendix and the uniform boundedness of {i,},
we can show

!‘llzg <eo|Zn <eC (0<i<h).  (52)
0t | 2o,y Ot | 2oy

Now, let Z. := az. where a € C§°(R") satisfying supp o € R"\ F and a = 1
near all zo € Q. Then, we have
ALZe =2 - ALZ,
=eah — 2 VL -Va—-2LVa:Vz — Lz.Ac.
By defining g := —eah + 2.VL - Va + 2LVa - Vze + Lz.Aa, we get.
ApZe = a2l + g € L¥(0,T); H). (5.3)
Moreover, reminding ||ze||12(0,r);v) < Cllz¢ = €hllez2(o,r)v7) from Apze = 2 —eh,

by (5.2) we can show
[lzg + gllz2(o.ryiny < €C. (5.4)

To get exact inequality of Zc in L2((0,T); H2)()), we change the coordinate into
a boundary normal coordinate near xo. For example, in the case of dimension 3, by
a transform F : Q@ — R" with F(z) := y(z) = (¥1(2), y2(2), y3(x)), we have near o

Yy (IVyZ) =zl +g,
Gt e (y1=0)=F(am, @)

=, = Ay, O,
where L = (Lys) = (Lg)(F~'(y)), 9 = (grs) = 6; ay’ , and we used the same no-

tation Ze, z¢, g to denote their pull back F'~*. Then, the principal part of V,,~(ZV,,Z¢)

e A
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3
is L(L‘)f‘ + Z 9ij0y,0y,;) due to g11 = 1, g1 = 0(s # 1) where we used the same

ij=2
notation L to denote its pull back by F~1. By defining [Z.]x := M

and letting H := L*(R7}), V := Hyy(RT) (Notice that (V, H, V') becomes a Gelfand
triple), we have

Vy - IVy[Ze)k = [0zl + gk = Vy « [E1kVy Ze(y + ke;)
= (@2l + (gl = Vy - L)k Vy Ze (y + ke;) € L3((0,T); V7).

Then, from (5.4),
ozt + (gl = Vs - (L1k Vi Ze(y + kes)l| oo,z < €C-

Hence, H[Zz]k||u((o_7~);‘7) < €C. By uniform boundedness of {[Z.]x}, it has a subset
which converges to a function W € L2((0,T); V) weakly. Moreover, W = 0y, Z: (2 <
3<3) and [[Wl|a o7y < €C- S0 8, Ze € L((0,T), H) for || <2 and 2 < j < 3.
Also, we can show 331 Ze € L*((0,T), H) from (5.3) and observing the principal part
of Vy - (ZV,,ZE), Then, using the interpolation theorem of Proposition 3.8 in [5] we
have

[1Ze @)l L2(0,7), By Ry ) < €C- (5.6)

Since we can easily show ||aze|| 2 (0,7, 1,y (@) < C||Ze(y)||L2((OVT)_H“)(]R:)) with some

constant C' > 0 independent of €, ||vze|| 2 ((0,7), 4y () < €C With another constant
AuLe) (L) Ou[Le] _ ou[L] Eu[L ]

— - [== = eM——=

on O T A6 R AR e

and (5.6), we arrive at the assertion that the second term is o(e).

Now we can finish the proof of Theorem 1.1. From Lemma 2.1, Theorem 4.1 and
Theorem 5.1, we have a representation in Theorem 1.1. We clearly have the linearity
of the mapping : L>*(Q) 3 M — J'(L)M € R. By using (3.4), we easily have the
boundedness of this mapping. Furthermore, J'(L) gives the Gateaux derivative of
J(L) at L.

C > 0. Reminding 6q = L.

6 Numerical algorithm and example

To find the minimum of the functional J, we make use of the projected gradient
method([6]:

Liyr = Po (Ly = axVI(Lg)) (k=0,1,2,......), (6.1)

where o (0 < ax < 1) is a suitable step size and VJ(L) is a search direction defined
by

(VI(L), My = J(L)M for VM € L*(Q).

L. AT
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Here the map Pc is a clip-off operator such that

(e (L(z) <€),
Pol(z) = {L(z)  (Ci<L(z)<C),
Cy (L(z) > Cy).

From Theorem 1.1 and Remark 1.2, we notice that
be
V(L) =/ VulL]- Vodt +h.
0

We have to discuss how to obtain numerically the function A in order to use (6.1).
Let {B;}Y, be a division of the domain Q such that

N
Q=JBi, BinB;=0 (i#3]).
i=1
We denote by xi a characteristic function, namely,
i (@E ),
a {o ¢ B).

Then, we consider finding the approximation of the density function h in a subspace
of L>=() defined by Xp = span {x1, x2, -+, Xxn}. By using the relation (1.6) and
the Galerkin method, we can get

/hgx,dz / T [x:)(T) w dz

fori=1,2,..., N. Here hg € Xp is the approximation of the density function and
the function U[xi] is the solution to (1.5) with the source term V - (x;Vu[L]). We
represent hp by the linear combination of x;, namely, hp = EN hjx;. Then, the
linear system can be obtained as follows:

N
oU
h/-»d:/—.»T d
;Jnx.x,z | Zr D wds

for i = 1,2,..., N. Since x; has the orthogonal relation with respect to L? inner
product, we have

1 log
s ey A i =
i |B‘|/r.1 5 belam) el (= 12h 0 KD),
where |B;| means the area of B;. Therefore we can get the approximation hp by
solving N initial-boundary value problem (1.5) with M = x;. By using this approxi-

mation, we define the approximated search direction as follows:

VI(L) = /nVu[L]-Vvdt+hg.

e A
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Here we notice that our method with ﬁJ(L) is not exactly the projected gradient
method but its calculation is very easy.

Hence we summurize an algorithm for our inverse problem as follows:

Algorithm for coefficient identification

Given the division {B;}.

1. Pick an initial coefficient function Lo which belongs to the admissible set K.
DR o= N1 T

3 du

(a) Solve (1.2) with K = Ly, to find Vu[L] and Lk%

sax(0,1)
(b) Solve the boundary value problem (1.3) to find w.

(c) Solve the initial-boundary value problem (1.4) to find V.
(d) Fori=1,2,...,N; do
i. Solve the initial-boundary value problem (1.5) with the source term
V - (xiVu[Ly)) to find —ag—[x;](T),
ii. Calculate h; by
ho= TB}—il/n%[x.](T)wdr.

(e) Calculate the approzimated search direction V.J(Ly) by

= T 4]
VI(Li) = / Vu[Ly] - Vodt + Y hix-
0 i=1
(f) Choose the step size oy by using some conventional method.

(9) Update the coefficient function: Ly, = Pc (Lk = Okﬁj([tk)).

We show a numerical example for our algorithm. Let @ C R? be a unit disk. The,
coefficient K is given by

(125 (je| <015),
K(’)‘{ 10 (s> 018)

as shown in Fig.1. Here | - | means the Euclidean norm on R?.
The constants in the constraint (1.1) are given by Cy = 0.90 and C = 1.35. The
N b dary value for this le are d to be given by

SR = (&) on 8Q,, x (0, T|,
A= { 0.0 on (89 \ 3,) x (0, T,
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L 1

il =0 0 0.5 1

Figure 1: Exact coefficient

where
(o = [02sin (2510 (0<¢<016),
A= (t>0.16) .

Here 0Qm (m =1, 2, ..., 5) are set as

By = {(cosa, sin6) | — % <0—(m— 1)% < %} ]

The Dirichlet boundary value @ is generated by solving numerically the wave equation
with the exact coefficient K and the Neumann boundary value g. In order to solve
this problem numerically, we make use of the Newmark method|[2] for time integration
with linear triangular finite elements in space. The measured value % is given by
U(x, t) = Ueal(x, t) + 6(z, t), where ucy means the calculated value on the circle
and d(z, t) is a random small valued function satisfied |8(z, t)| < 1072|ucy| on the
boundary 9§ for any ¢ > 0. This treatment for the measured data is to avoid an
inverse crime which the numerical errors may be cancelled out inadvertently if we
use the data obtained by using the same finite element. The length of time is set as
T = 4.0. The division {B;} is supposed to be given by

Bi={z€Q|01(i~1) < |z] <0.1i}

for 1 < i < 10. We employ the Armijo criterion(1] in order to find the step size o in
our algorithm.

We assume that Lo(z) = K|oq = 1.0 in the whole domain. After 100 times of
iterations, we have the calculated coefficient as shown in Figure 2. Figure 3 shows
the distribution of the relative error for calculated coefficient. The maximum value
of the relative error is about 8.94%. These figures show that calculated coefficient is
in good agreement with the exact one.

e A
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Figure 2: Calculated coefficient
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Figure 3: Relative error
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Appendix Proof for existence of the solutions to
(1.2), (1.4) and (1.3)

In this Appendix, we show the existence of solutions u € Hs)((0,T); H)()), v
L2((0,T); Hi1y(Q)) and w € Hm(ﬂ) to (1.2), (1.4) and (1.3), respectively.

To begin with we cite from [11] the existence and regularity theorem for the
abstract hyperbolic evolution equation of second order in the time variable. Let V, H
be real Hilbert spaces and V be separable. Suppose the embedding i : V < H is
continuous, injective and its image is dense in H. Then, the dual i/ : H < V' of
1 is continuous, injective and has a dense range. Such a triple (V, H, V') is called a
Gelfand triple. For T > 0, k € Z and X = H or V, the Sobolev space W5 ((0,7); X)

is the collection of measurable functions ¢ : (0,7) — X with d_;f € L%((0,7); X)
(0 <1 < k), where the differentiation is in the distributiona] sense. The norm of
2
k
ip € WE((0,7); X) i given by 2 = Z/ w0

Let ag(p,v) ((¢,%) € V) be a continuous, symmetric sesquilinear form satisfying
the coercivity:

dt.

there exist ko, & > 0 with ax(p,9) + kolle|[} = allell} (g€ V). (A1)

Then, it is well known that there exists a unique Agx € L(V,V’) (i.e. the set of all
bounded linear operators from V' to V') such that

ax (¢, ¥) = (Axe, ¥ (A2)

g o dy
For the Cauchy problem for the abstract hyperbolic equation — 7 Ui Agy = f, we

have the following theorem.

Theorem A.1 Let yo, y1 € V and f € Wi='((0,T); H) with k € N satisfy the
compatibility condition of degree k — 1. That is

weV (0LI<k-1), yweH,
where

a1 = fC0(0) — A fH9(0) + - + (=1)! AR F(0) + (-1)' AR wn,
var = f@D(0) = A fP=D(0) + - + (=1)' AR S (0) + (<1) Ao

Then, the Cauchy problem

Y0+ Axy®) = 1) in O.T),
y(0) =yo, ¥'(0)=wm

T )
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admits a unique solution y(t) such that
veHODY), %erxoryim
and they depend linearly and continuously on
(fiv0,1) € L*(0,T); H) x V x H.
Moreover, y has the regularity such that
y e WETH((0,T); V), ™ e LA(0,T);H), y**V e L*((0,T);V"),

d*
where y*) .= T

For § > 0 small enough let B; := {z € R™; dist (z,0Q) < 6}. Let (V;,®;)
(1 € j < J) be patches of the manifold Bs where the collection is an atlas of
Bs. We can assume that V; N 8Q # §, &;(V; N 9Q) c OR: = R"~!, and &;(V; N
) C R} for each j (1 < j < J). Let {§}i<;<u, {nihici<s C C§°(R™) be parti-
tion of unities subordinated to {V;}1<;<s. Now, we can construct an inverse trace
operator A : CS([O,T];H(Q_)(aﬂ)) — C5([0,T); Hez) () ie. (AD)|saxpor) = € €
CS([0,TY; H3)(99)) in the following way.

For £ € C%((0,T); H5)(0Q)), let ¢ := & € CO(0,T]; Hig)(89)), m; = £; o
(I x (B5loq)™?) € Ce([O,T];H(%)(R"“)), where I : [0,T] — [0,T] is the iden-
tity operator. We define an inverse trace operator Ao : C°([0,T]; H(g)(R"™')) —
Cﬂ([U,T];H(a)(R:)) by

Lt e U
(Aom)(t,z) = @14 Jgn © (1+—|§l2)3_m(t'5 )dé
for m € Ce([O,T]§H(§)(R"_l))v where &' = (&1, ,€n—1) for £ = (&1, ,&n), d =
/ (1+72)~%dr, and m(t,£') := / e~ € m(t,2')dz’. Then, A can be given by
Loes Rt

Jf

AL:= " (mi((Aomy) o (I x &;))
i=1

(A3)

Qx[0,T)
for any € & ¢®([0, T); H(3)(09)). (See (8] for the details.)

We first prove the existence of the solution u € Hs)((0,T); Hiyy(Q)) to (1.2)
with u® ¢ £2((0,T); () and u(® e L2((0,T); (Heyy(Q)))- Let @ i= u — ¢ with
¢ i= AT. Then, u has to satisfy

o=V (KVD) = f,

W(0) =ip, —ii(0) =

e A

(A.4)
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with o
f=f(K) :=V4(KV¢)—chec‘([o,T];IfI(l,(ﬂ)), a8
= = 2] . d
Up 1= —¢|i=0, Uy = — a—f €V :=Huy(Q).
t=0
Now (V, H := L?(R), V') is clearly a Gelfand triple and ag (¥, w) : KV Vwdz

(,w € V) is a continuous sesquilinear form satisfying the coercivity condition with
ko = 0. Moreover, it is easy to see that f, %o, and @, satisfy the compatibility
condition of degree 5. Then, the existence of u to (1.2) with the desired properties
immediately follows by applying Theorem A.1 to (A.4).

By observing that @ € Hs)((0,T); Hy)(9)) satisfies

24 _ g .
W (A7) = %;g ~ f € H)((0,T); Hyy () € C*((0,T); Hy (),

we have @ € C?((0,T); Hiz (9 \ F)) and hence u € C2([0,T]; Hez)(Q \ F)) by the
regularity theorem near the boundary of solutions to the Dirichlet boundary value
problem for strongly elliptic equations (See [5], Chapter 3, Proposition 3.7). This

implies that 2(LZ—:—(T) =q(T)) € H3)(99) and
0
ALz2 —7) € CH(0,T1; Hg)(02). (A)

By the well-posedness of (2.2), we immediately have w € Hy(€).

For the existence of v € Lz((O,T);I:I(U(Q)), we argue likewise we did for the
solution u to (1.2) using the inverse trace operator transforming (2.3) to an initial
boundary value problem with the corresponding Dirichlet boundary condition. Then,
by (A.6), the second term of equation of this initial boundary value problem belongs
to L*((0,7); H) with H = L?*(Q2). Therefore, by Theorem A.1, we have the existence

of v € L*((0,T); Huy ().

Received: Dec. 2006. Revised: Feb 2007.
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