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ABSTRACT 
An im·ersc initial-boundary vnluc problem for identifying the cocffi cicnL of 

!!Ome seoond a rder hypcrbolic cquation by single set of boundnry mcnsuremcnt 
is considercd. The problem is t.rnimformcd to n minimizntion problem of n fu nc­
tionnl. After a concrete exprnsl:lion of the Cntcnux dcrivntive of the fu nctiono.l is 
obtnincd, 111\ nlgori tlun for ideutifying the cocfficicn t is given bnsed on Lho pro­
jectcd grndient method. A numcricul rcsult is presente<! to ve.rify thc nlgorithm. 

RESUMEN 
Es considerado un prob\cmm inverso de vn\orcs inicial y de borde ¡mm identi-

ficar el coeficiente de cierto ecuación hipcrbólicn de segundo orden, para un único 

1PMlin.lly aupported b)' GrtmL-ln-Ald for Scicnlific Rcsenrch (0 )(2)(No.14340038) of Jnpnn Sod­
cly for Promot ion of Sclenoo 
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conjunto de medid os en el borde. El problema es t ransformado a un problema de 
minimización de un funcional. Además es obtenida una ex presión concreta de la 
deri vndn de Gateaux del íuncionul, es dado un algori tmo para identificnr !os coe­
fi cientes, basado en el método del gradiente proyectado. Un resultado numérico 
es presentado pa ra verifica r el a lgori tmo. 

K cy wo rds a nd pbrases: ln uerse inilial-boundan; ualue probfo m , coefficicnt 
identificotion, wave equa tion, 11orio tion11/ mcthod, 
prnjectcd gmditmt meth od 

M a t.h . SubJ. C lass.: 6SMS!!, !JSR!JO 

1 Introduction 

Let íl e R" (11 = 2 or 3) be n bounded domain wi th C 00-class bounda ry éJíl. Oí 
course, we only need to nssume that 8D. is smooth enough, but i t is convenient just 
to assume it is C 00 • Let K( x) E L00 (n ) satisfy t he followi ng conditions: 

{ 
O < C 1 $ K (x) $ C2 

K(x) is C00~class 

j\7 K(x)J s e, 

in TI , 
in n \ F , 
in n \ F , 

(1. 1) 

where C1, C2 , C3 a.re fixed positive constants and F e n is a compact set with 8ílnF = 
0. We notice t hat our coefficient [{ is smooth fun ction near t he boundary from the 
assumption of t he compact set F . This will be used later to show the regulari ty of 
the solutions of boundary value prob lems and ini t ial boundary val ue problems. F'or 
a given U E C6([0, T]; H( ~ ¡ ( 8n)) with a:u(x, 0) = O (x E 8 11, O $ i $ 5}¡ we consider 
an initial boundary value problem: 

( 

~2~ - \7 · (K(x)\?u) = O ;,, íl x (O, T), 
l. 8 

',,'.< __ ·,~u) = o, if c. o) = o in n, 
on IJfl x (O, T). 

(1.2) 

Here Ho>(8íl) is the Sobolev space of order ~ defined over a n , nnd C"'([O, TJ; X ) 
with m E Z+ := N U {O} denotes t he set of ali C"' class functions defined in [O, T] 
tn.king their vnl ues in some Banuch space X. 

The problem of (1.2) ad rn its a un ique solu tion u E H(6)((0, T ); R(l i(n)). We 
denote this 11 by u = u.! I< )(x , t) to claril)• the dependency on !( . 

Here and hereafter, we define 8 (,¡ (íl ) fa r s E R by g E FJ(,¡(11 ) i f a ncl only if 
there ex.ists All ext.ension f E H(a)(R") of g to t he n.mbient. space IR" of n and the 
norm /lglfnt»cni is defi ned by llYIJn<»(n) := inf {fl/llH1, 1(R"); / In = g}. \·Ve also define 
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//1,¡(íl) := (g E /i(>l(íl); supp g e l'i) with norm 119111).,,¡n¡ := ll9lln,.,¡n¡· T hese 
kind of Sobolcv spaces are discussed systcmntically in [3J. 

Now, suppose we do not know l((x), but we nre given q := K(:r)~ on an X (O, T) 
/Jn 

bcsidc ii for T lnrge enough. T hen, we are interested in the following inverse problem 
(IP): 

lnversc p roble m (l P): Reconstruct I<(x) from {ü,r;}. 

Lct K. be the set. of nll K (x) E L00(fl) sntisfying ( 1.1). For any LE K., wc define 
J(L) by 

J(L) = 1 '° 1 IL(x) 11
8" [LJ _ r¡[2 dudt, 

o on 1i 

whcr u[LJ is th solution of (1.2) fo r /(=L. Since t he absolute minimum of J(L) is 
uUoined when L(x) = I<(x), we cnn expcct to recover K (x) by minimizing J(L). 

One of our conut.hor Shirotn stnrted t he numerical study of the inverse problern 
(IP) in his paper [9J. He used the projected gradient method to minimize t he func~ 
t.ionnl J (L). Thcre are mnny methods for minimizing J(L). The projectccl gradicnt. 
mcthod is one of lhem . It needs to compute t he Cateaux derivative J 1(L) of J(L). 
Shirotn computed J '(L) npproxinrn.tely by a formal argument. Some of t he numerical 
l'csults in [9J were quite good. 

T he aim of this paper is to justify bis ÍOl'mal argument, give t he complete form of 
J'(L) nnd provide some numericnl results using J '( L). The complete form oí J' (L) 
is given by the following t heorem. 

T hcore m 1.1 Let LE X:. and M E U'º(O.). Por arty E> O with L +E/11 E X:., it holtls 
for the Cateau.x derivatiue J'(L) that 

{ 

J (L + <M) - J(L) = <J'(L)M +o(<), 

J '(L)A/ = J.r k MV'u[LJ. V'udxdt + k ~(T)wdx, 
where w E flco(O) i.s the weak solution of the elli¡,t·ic equation 

{ 
V'· (LV'w) = 0 

w = 2 ( L 8~~~J(T) - ¡¡(T)) 
in n, 
on 8fl , 

<md ·u E L1 ((0, T); Hcl)(fl)) is the weak soltitiori of the equation 

in n X (O, T) , 

iri n , 

8íl X (O,T). 

(1.3) 

(1.4) 
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Moreover, U E H(s) ((O, T); L2(D)) is the weak solution of the equation 

¡ f,u - 'V· (L\IU) = 'V· (M\lu[L)) 

U(O) = O, ~(O) = O 
8t u = 0 

in il x (O,T), 

in n, 
8il X (O,T). 

(1.5) 

Rem ark 1. 2 In the proof of Theorem 1.1 given later, we showed that the mapping 

~ : L"'º(D) 3 M i-+ In ~(T)wdx E IR is bounded linear. Hence, by Example 5 in 

page 118 of /12}, there exists a unique h E L 1(0) such that 

k ~(T)wdx = k Mhdx . (!.G) 

The assu mption which U E C 6([0, T); H(~)(8D )) with OfU(x, O) = O (x E Oíl, O ~ 
i :5. 5) is too enough for the existence of the solution to (1.2). However, this assum p­
tion is needed to guarantee t he existence and regularity of the adjoint problems (1.3) 
and (1.4) . The details for the existence and regularity of u, v, and w are given in 
Appendix. The proof of this theorem and t he existence of U are given in section 5 
and section 4, respectively. 

To the best of our knowledge, t here is not any paper other than [9) which tried 
projected gradient method to obtaiu some good numerical results for the inverse 
problem (IP). T he inverse problem (IP ) is only a prototype . The same method can 
be applied to similar inverse problems with other corresponding equations. When 
we consider elastic equ ations, the problem becomes more practica! because it really 
models the nondestructive testi ng of a materi al using ultrasound. 

The rest of our paper is organized as follows. In section 2, we will show preliminary 
computation of the variation of J(L) with respect to L as an intermediate step to 
get the complete form of t he Gateaux derivative J' (L) of J (L). In section 3, we will 
present some theorems, which play a major role to prove Theorem 1.1. In sections 4 
and 5, usi ng the t heorems given in section 3, we will prove Theorem 1.1. Finally in 
the last section, we show a numerical algorithm based on the complete form of J1(L ) 
and its example. 

2 Prelimina ry computa tion for J'(L) 

In order to obtain a concrete expression of the Gateaux derivative of the functional 
J, we have to calcu late t he difference J (L + dvf) - J (L). For t his purpose, we have 
the following result. 
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Lemma 2 .1 

J(L + <M) - J(L) = < J,T h M \7u[L[ · \7vdxdt + h ª:; (T)wdx 

+ 1T fo dv/\lóu \lvdxdt + 1T ko lóql2dadt, (2. l ) 

8u[L + <M[ 8u[L] -
whern óu = u[L+<M[-u[LJ, óq = (L + <M)--0-- - L-8- , and w E H(1¡(rl) 

un n 
is the weak solution o/ the elliptic cquation 

in n , 
80 . 

Thc function v E L2((0, T); R (l)(fl )) is the weak solution o/ the equation l 8' 
Wv-\7 · (L\7v) =O 

v(T) = w, ~(T) = O 

v = 2 ( L~ -q) 

ín ¡¡ x (O,T), 

in n, 

80 x (O,T) 

8u[Llj 
Proof Let q!LJ := L---¡¡;;- OOx(O,T) . For L,M E K., we have 

J(L + <M) - J(L) = {T { [(q[L + <MJ - ¡¡)2 - (q[LJ - ¡¡)'] dudt 
lo loo 

= { ,. { (q[L+<MJ+q[Lj-2q)óqdudt 
lo lao 

(2.2) 

(2.3) 

= {T { 2(q[Lj - q) óqdudt + {T { [óq[2dudt. (2.4) 
lo loo lo lao 

Integrating by parts and reminding Bu[LJ (O) = O and v(T) = w, we can see 
8t 

{T { 8u[L]~dxdt = { ([8u[Ljv]T - ( 8'u~LJ vdt) dx 
lo lo 8t at ln 8t 0 lo 8t 

{ 8u[Lj {T { 8 2u[Lj 
= l o --¡jt(T )wdx- Jo l o --¡¡¡2vdxdt. 

By another integration by parts, we also see 

1T LL'Vu[LJ· \7vdxdt= 1T (J.
0

v q[L]du - L \7·(L\7u[L])vdx)dt. 
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Hence, we can get 

[ 1 C'~~L]~ - L\?u/L]. vv)clxdt = 1 ª~,L](T)wdx - [ ¡8fl vq/L]dodt. 

By a similar way, we have 

{T { ( 8u/L + <M] !!.". _ (L + <M)\?u[L + <M] · \?v) dxdt 
Jo Jn 8t 8t 

= { 8u/L+<M](T)wdx- {T { vq/L+<M]dodt. 
ln 8t lo lan 

Using (2.5) and (2.6), we get 

{T { [8óu!!."._((L+<M)\7u/L +<M]-L\7u[L])·\7v]dxdt 
} 0 } 0 8t 8t 

= { a:u(T)wdx- { T { vóqdodt . 
Jn ut lo Jan 

rvioreover, applying the integration by parts, we have 

{T { aóu!!.".dxdt = { ([Óu8;.]T - {Tóu 82"dt) dx 
lo ln at at lo ul o lo fJt2 

{ T { 8'v 
= - Jo Jn óu 8t2 dxdt, 

and 

[ 1 L\?óu \?vdxdt = [ [L óu (i;;;) do- fo Óu\7 (L\?v)dx] dt 

= - J,T 1 óu\7 (L\?v)dxdt. 

T herefore, we can get 

1Tln ( a;t?t Fi -L\lóu · \lv) dxdt = O. 

From (2. 7) and {2.8), we have 

-lT 1 <M\?u/L + <MJ · \?vdxdt = 1 ª;,u(T)wdx - J,T l.n vóqdodt. 

Reminding vlanx {O,T) = 2(q/L) - q), we can see 

J,T ¡Bn 2(q/L] - q) óqdodt = lT 1 <M\?u/LJ · \?vdxdt 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

+ J,T l•M\7óu·\7vdxdt+ h ª;,u(T) wdx . (2.9) 
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Hence, substituting (2.9) into (2.4), we get (2.1 ). 1 

3 Continuous dependence of the solution on the co­
efficient 

Fix M E K. and take a small €. > O. We write 

8' 
L,(x) := L(x) + <M(x), AL:= 8i'i - AL, 

where the notation AL, AL. are defined as in (A.2) of Appendix. 
Let v E H¡5¡((0, T); H¡1i(!'i)) and v, E H¡5¡((0, T); H11i(IT)) be the solutions to 

ancl 

{ 
~~v0= f(L) E C '([O, TJ; H11i(!1)) 

v(O) = u0 , ;,v(O) = u1 , 

{ 
A¿,v, = J(L, ) E C 4(JO,TJ;H¡l)(!1)) 
Ve= Ü 

v<(O) = Uo, ~vc(O) = Ü1, 

in !1 x (O,T), 
on an X (O, T) ' 

in !1 x (O,T), 
on 8!1 x (O, T) , 

(3.1) 

(3.2) 

respectively. Here, J(L), J(Lc), Üo , and ü1 are defined by t he formula given in (A.5) 
of Appendix. 

Then, we can obtain the following continuous dependency of t he solution on the 
coeffi.cient in a Gelfand triple (V, H, V 1), which is defined as in the statements below 
(A.5) of Appendix. 

Theorem 3.1 

v, - V (• - O) in C([O, TJ; V) n C 1([0, T[; H) 

Proof If t he inhomogeneous terms of t he equations (3.1) and (3.2) are same, t he 
continuous dependency of the solution on the coeffi.cient is given as in T hcorem 2.8.1 
and Theorem 2.8.2 in [10]. The proof for them can be also applied to the present 
situation without any essential change. So we omit giving further details of t he 
pro o f. 1 

Now, far given u0 EH, u¡ E V' and f E L2{(0,T); V'), we consider the Cauchy 
problem : 

{ 
AKu = f 
u(O) = uo , ;,u(O) = u 1 

in !1 x (O,T), 

in n. (3.3) 

In order to define a weak solution u to (3.3), we first define t he test function space 
X. 
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D e fini t ion 3 .2 (test funclion space} The test function space X is the set o/ all <p E 
L2 ((0 , T ); \f) satisfying 

{ 
A 1<'P E L 2 ((0, T); H) , 

8<p 
<p(T) ~ Ft(T) ~O. 

The definition of the weak solution is as follows . 

D e fini t ion 3 .3 u E L2 ((0, T); H } with u1 E L2 ((0, T); V') is called a weak solution 
of (3.3) if ít satisfies 

1T In uAT<rpdxdt = 1T k fipdxdt +In ( u 1rp(O) - uo~(O)) dx for V¡¡; E X , 

whe1-e 1 m.eans the derivative in distribution sense. 

Then, we have the following existence and uniqueness result from [4]. 

T heorem 3 .4 Given (f,u0 ,u1) E L2((0,T);W) x H x V'. Then there is a unique 

weak solution u with (u,~) E C([O, TJ; H) x C([O, T]; V'). 

For the continuous dependence of t he solution to (3.3) on the coefficient , we have 
the following result. 

Theorem 3.5 Let Ve and v be the weak solution of (3.3) with /{ = L + Ei11/ and 
I< = L, respectively. Then, Ve -> v (é-> O} in L2((0, T); H) and v~ -> v' (t:--+ O) in 
L2 ((0,T);\f'). 

Proof Let 

E(t) '~ ~((v,v)H + (A¡:'v',v')11) 

and 

Ee(t) := ~((ve,Ve}H + {AL.1v;,v;)H) 

Here, from the well-posedness of (2.2), we can guarantee the ex.istence of the inverse 
operators AL 1 and AL~· T hen, from the proofofTheorem 9.3 ofchapter 3 in [4) and 
by the same argument with Lemma 2.4. 1 in [10), we have 

E(t), E,(t) s; C ( llvallj¡ + llv1lli, + J,T ll flli, dt) (3.4) 

and 

E(t) - E(O) ~ [<A;:'J,v')Hdt, E,(t) - E.(0)= [ <A z: 1.v;) ,,dt, (3.5) 

respectively. 
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First, we show that vE converges weakly to v. From the coercivity in (A. l ), we 
ha ve 

E,(t) 2' C(llv, llJ, + llv;1¡~,) · 
So, by (3.4), vE and v~ is uniformly bounded independent of € in L2((0, T); H) and 
L2((0, T); V'), respectively. Therefore, by the weak compactness of t hese spaces, 
there is a sequence {E:(l)}, which is t he subsequence of {E:}, o E L2((0, T); H ) and 
p E L2 ((0, T); V') satisfying 

{ 
VE(!) ___,, CI:' 

V~(!) ___,, {3 
in L2((0, T); H), 
in L2((0, T);V') 

Now, we will prove that this o is t he same wit h v by showing 

(3.6) 

J,r k "Aupdxdt = J,r k f'l'dxdt + k ( u1'1'(0) - u0~(o)) dx (3.7) 

for 'v'<p E X. Let g := Aup E L2( (O, T); H) and extend g to t he whole t ime interval by 
putting g =O in (-oo,OJ U JT,oo). Also, Jet g1 := X¡o,r - )¡9 E L2((0, T); H ) with the 

characteristic function X¡o,T-f ) of [O, T-f J and g1·m := Pm •g1 E C"°([O, T], H }, where 

Pm* is t he mollification with a mollifier Pm(t) := m-1p(m-1t). Here p E C8°(R) is a 
function which satisfies OS: p S: 1 and JR p(t) dt = l. Then, gl,m is ftat at T and we 
ha ve 

{ g1"" - g1 (m - O) 
g1 - g (l - 0) 

in L2((0, T) ; H) , 
in L2((0, T) ; H) . 

(3.8) 

Taking t = T as an initial surface and g1·m is ftat at t = T into account, we have 
from Theorem A. l t hat there exists a unique <pl,m E L 2((0, T); V) with enough time 
regularity to 

By defining ¡p~·m :=AL: Auf"·m, it has enough time regularity and satisfies 

{ Ai.'i':''" =A;:; A i(,,,1•'")'' + Ai'I''''" E L2((0, T ); H), 
,,,:·'"(T) = M"')'(T) =o. 

Hence, <p~· "' is a test function. By (3.2) and t aking u = vE in (3.3), we can see 

1T l v,(('I':·'")" + Ai.'i'~"')dxdt 

= 1r k f'I':·"' dxdt + k (u1 '1'~"'(0) - 11o('l':'"')'(O)) dx. 

From AL - AL.= AL.(AL: - A¿1)AL, we have 

11'1'~"' - ,,,'·"'llv = llA;:; Ai'i'1''" - 'i'1'"'llv = IJ(A;:; - Ai:')Ai'i'1''" 11v 
= llA;:;(.4i - Ai. )'1'1""11v 5: Cll(Ai - Ai.)'1'1·'"Jlv• 
- O (E: - O) uniformly with respect to t E [O, T] (3.9) 
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Here C stands for a generic constant. Similarly, we can show 

Using (3.6), (3 .9), (3 .10), and uniform boundedness of { v~J, we reach 

J,T 1 a((<p1,m)" + Ai,'P' '"') dxdt 

~ J,T 1 f<p1•"' dxdt + 1 (u1<p1'"'(0) - uo(<p1'"')'(0)) dx . 

, ClllO, 

Furthermore, by {3.8) and the continuous dependency of i.p1•"' on the source term in 
Theorem A.l , we get (3 .7). 

Also, we can show that Ve itself converges to v weakly. In fact, if not, t hen, we 
can find €>O, one subsequence {vc(m}} and ip E X satisfying 

1T(V -Vc(m)1'P)H >€. (3.11) 

However, {vc(m)} is uniformly bounded in L2((0, T); H) . As a result, it has convergent 
subsequence to v, which is in contradiction to (3. 11 ). 

Second, we show that Ve converges strongly to v. Reminding {A L.1 f, v~) 11 -
{A"L 1f,v' }H = (Al,: f,v~ -d)11 +((A¿; - A¿ 1 )f,v~}H and A¿;(AL - Ai.)Al1 = 
(A¿; - A¿ 1), we can show in (3.5) as 

E,(O)~E(O), [(A'i.'J, v;)Hdt~[(A'i'J,v')Hdt (E~O). 

As a rnsult, E, (t) ~ E(t) (E~ O). 
Now, !et ~(t) = (ve - v, Ve - v)H + (AL 1 (v~ - v'), v~ - v') H· Then, by expanding 

the right side of ~(t), we have 

<(t) = 2E(t) + 2E,(t) - ((A'L;-A'i 1)v;,v;)u - 2((v,v,) H + (A¡: 1v',v;)H)· (3.12) 

On the other hand, by coercivity (A. 1), 

<(t) ?: C(llv, - vll1' + llv; - v'lli• ). (3.13) 

Therefore, using uniform boundedness of {vd and {v} , (3.6), (3. 12}, and (3.13}, we 
get t he strong convergence of Ve and v~ to v and v1 in L2 ((0, T) ; H) and L2 ((0, T); V'), 
respectively. 1 

4 Asymptotic of t: - 10:; (T) (t: __,O) 

This section is devoted to the following theorem which gives a representation formula 
of the second term on the right side in {2. 1). 
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Theorem 4.1 

fo ª:;(T)wdx =<fo ~(T)wdx +o(<) , 

where U is the weak solution to (1.5). 

Proof Let Uc := u[L + éM], u:= u[L]. T hen, we define t he functions Ü and Üc by 
ü = u - ,P and Üc = Uc - ,P, respectively. Here ,P := Nü and A is the inverse t race 
operator given by {A.3). Then we have V· (M'V)u = V (M'V)ü +V (M'V)</> E 
!f(6l((O, T); V') , and Uc - u = ü, - ü. 

By defining U, := ü, - ü , we have 
€ 

and 

Moreover, we have 

AL.Ve= ~(AL. tic - AL.ü) 

= ~(ALü + f(L , ) - f( L ) - AL, ii) 

= V· (M'VU) +V· (M'V</> ), 

u, (o) = u;(o) =o 

for O :::; i :S 5. Therefore, by Theorem 3.5, we have 

U, ~ U(<~ O) in Hcs¡{{O, T); H ). 

As a result, we have 

aóu (T) = aü, (T) - ~(T) = <~(T) + o(E) in H ' 
8t 8t 8t ª' 

which completes t he proof. 

5 Completion of the proof of Theore m 1.1 

First, we show that t he third and fourth terms on the right side in (2.1) are o(é). 

Theore m 5 .1 

J.T fo eM'Vóu · 'Vvdxdt +J.'' J.0 ióql'dudt = o(<) (<~ O). 

1 
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Proof Let u, ui:, ii and íie be those given in t he proof of Theorem 4. 1. Usi ng 
T heorem 3.1, we can show easily that the first term is o(.::) . 

Let Zi: := ue-u = Ui:-Ü E H(sj ((O , T) ; if(1)(fi)) . If we ca n show Jlzel! L~((O,TJ;Rc~¡(fl\F)J 
= O{.e:) (.::--+O), t hen t he proof is done. To begin with, we observe 

A LZe = ALÜi: - A¿ii 

= Á L,Üe + (A i - A ¿.)iie - A ¿ii 

= (f(L, ) - J(L) ) +(AL - A L.Ju, 

= €( 17. (Ml7~) + 17 · (Ml7u,)) 

='" E fl¡,)((O,T); V') n fl¡sj((O, T); fl¡1)(n \ F))' (5 .1 ) 

where h := 'V· (M \lue) · Fi:om (5.1) , we have, fo r Os; i::::; 5, 

in n X (O,T)' 

in n. 

By (3.4) together with (A.l) given in Appendix and t he uniform boundedness of {íie}, 
we can show 

ll ~z,11 <,e 11 !!_,hll < €C (O< i < 5). 
&t• L2((0,T);J/) - &t' Ll((O,T);V') - - -

(5 .2) 

Now, !et Ze := aze where o: E G8°(1R.") satisfying sup p a e JR. 11 \ F ando: = 1 
near ali xo E &n. Then, we ll ave 

A ¿Z e = z;1 - A1,Ze 

= w :h - zE\JL· \7a-2L'Ver.· 'Vze - L zel:::.er.. 

By defining g := -éer.h+ze 'VL ·'Va+ 2L'Vo: · 'V ze + Lzel:::.a:, we get 

ALZ, =ca:+ g E L2((0, T); H ). (5.3) 

~foreover, reminding llzellL~((O,T); V ) :::; c¡¡z;' - éhllL2((0,T);V') from A ¿Zt = z;' - éh, 

by (5.2) we can show 
(5.4) 

To get exact inequali ty of Ze in L2((0, T); H¡2){0 )), we change the coordinate into 
a boundary normal coordinate near x0 . For example, in t he case of dimension 3, by 
a transform F: n - IR" wit h F(x) := y(x) = (y1(x),y2 (x),y3(x)), we have near xo 

{ 17, · (117,Z, ) =en;'+ g, 
(y, > O} = F(n), (y¡ = O} = F(on ), 

(5.5) 

- - 3 Oyr Oy., 
where L = {Lr., ) = (Lg)(F- 1(y)), g = (9rs) = L a-.~· and we used t he same no­

j=l x1 ux1 

tation Zt, Zg, g to denote t hei r puU back F- 1 • Then, t he principal part of 'Vy ·(Z'VyZt) 
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3 

is L(8~1 + L g¡;81JJ11; ) due to g11 = l , g1, = O(s #- 1) where we used the same 
1,;~2 

notation L t o denote its pull back by p - 1 . By defining [Zc]k := Ze(Y + kek) - Zt(y) 

and letting ii := L2 (R'.f. ), V:= FÍ'úi(°R'.f) (Notice t hat (íf,ii, í") becomes a Gelfand 
triple), we have 

\7,. L'V,[Z, ]k = [az;' + g[, - \7, . [L], 'V,Z, (y + ke; ) 

= [<>z~], + [g], - 'V, · [L]k'V,Z, (y + ke;) E L2 ((0, T); í") . 

Then, from (5.4), 

ll [<>z~], + [g], - 'V, [L], 'V,Z,(y + ke; )llL'((o,n Y.¡ $ €C. 

Hence, ll[Zc]k!IL2((0,T):ii) :::; E.C. By uniform boundedness of {[ZE]k}, it has a subsct 

which converges to a function W E L2((0,T);\/) weakly. Moreover, W = 811¡ Zc(2 $ 

j $ 3) nnd 11 w 11 L'((O,T);V) $€C. So aeiz, E L'((O, T) , H) for lill $ 2 and 2 $ j $ 3. 
Also, we can show a;¡ Z E E L2((0, T ), H) from (5.3) and observing t he principal part 

of 'i/11 · (L\711ZE) · T hen , using the interpolation theorem of P roposition 3.8 in [5] we 
ha ve 

(5.6) 

Since we can easily show l lazE lli2((0,T),1?(2l(l1)) :::; C llZE(Y)llP ((o,T),flc2i(R+.ll wit h some 
constant C > O independent of E. , l lozEllL2((0,T),fi¡2¡(0 )) :::; E.C with another constant 

C > O. Reminding óq = L, iJu[L, ] - L iJu[L] = L ( ou[L,] - iJu[L]) + , Miiu[L, J 
8n an 811 8n 811 

and (5.6), we arrive at t he assertion that the second term is o(E.). 1 

Now we can finish the proof of T heorem 1.1. From Lemma 2.1, T heorem 4.1 and 
Theorem 5.1, we have a representation in Theorem 1.1. We clearly have t he linearity 
of t he mapping : L00(íl) ~ M i-+ J'(L)M E IR. By using (3.4) , we easily ho.ve the 
boundedness of t his mapping. Furthennore, J' (L) gives t he Gateaux derivat ive of 
J(L) at L. 

6 Nume rica l a lgorithm a nd example 

To find t he minimum of t he functional J , we make use of t he projected gradient 
method[6J: 

L,+1 = Pe (L, - <>k 'VJ (Lk)) (k = O, 1, 2, . . .... ) , (6.1) 

where a k (O < ak :::; 1) is a suito.ble step size and \7J(L) is a sea.rch direct ion defined 
by 

(\7 J (L), M) = J' (L) M foc \IM E L~(n). 
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Here t he map Pe is a clip-off operator such that 

{
e, 

Pc L(x ) = L(x ) 
e, 

(L(x) < C1) , 

(C1 "° L(x) "°C,), 
(L(x)>C2 ). 

From T heorem 1.1 and Remark 1.2, we not ice t hat 

'i!J(L) = 1T 'i!u[L[ 'i!vdt+ h . 

We have to discuss how to obtain numerica.lly the function hin arder to use (6. 1). 
Let { B;} ~1 be a division of the domai n n such that 

N 

n = u B;, B; n B; = 0 (i "j) . 
i = I 

We denote by Xi a characteristic function, namely, 

X;(x ) = { ~ (x E B ;), 

(x~ B;) 

T hen, we consider fi nding the approximat ion of the density function h in a subspace 
of L00 (f2 ) defined by X a = span {x1 , x2, · ·· , XN }· By using the relat ion (1.6) and 
the Galerkin method, we can get 

Lhsx;dx = k ~[x.](T)wdx 
for i = l , 2, . . , N. Here ha E X B is t he approximation of t he density function and 
the function U[x;J is t he solution to (1.5) with t he source term \l · (x ;'Vu[L]) . We 
represent h a by t he linear combination of X; , namely, hB = L:f=I hiXi · Then, f,he 
linear system can be obtained as follows: 

N Í Í au 2:, h; x;x; dx = -;;- [x;[(T)w dx 
i = I n n v t 

for i = 1, 2, .. , N . Since X; has the orthogonal relation with respect to L2 inner 
product, we have 

1 r au 
h; = IBd f o a¡-lx;[(T)wdx (i = 1, 2, ... , N) , 

where IBd means the area of B;. T berefore we can get the approx.imation ha by 
solving N init ial-boundary value problem {1.5) with !vi = X•· By using thjs approxi­
mation, we define the approximated search di rection as follows: 

VJ(L) := k 'i!u[L) . 'i!v dt + h 8 . 
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Hcre we notice t hat our method with ij J(L) is not exactly the projected grndient 
method but its cakulation is very easy. 

Hence we summurize an algorithm far our inverse problem as follows: 

Algorithm for coeffic ient ide nt ification 

Given the division { B;}. 

1. Pick an initial coefficient function Lo which belongs to the adm.issible set K. . 

2. Fo1·k=0,l,2, . . ;do 

(a) Solve (1. 2} with J( = L, to find 'Vu[L,] and L,~ ¡ . 
11 8ílx(O,T) 

(b) Salve the bounda17.1 value problem ( J.3) to find w. 

(e) Salve the inilial-boundary value problem (1 .4) to find 'ílv. 

{d) Fori = 1, 2, , N; do 

i. Salve the initial-boundanJ value problem ( J. 5) with the source tenn 
au 

'V· (x;'Vu[L,]) to find a¡-[x;[(T ). 

ii. Calculate h¡ by 
1 ¡ au 

h, = [B;I ln a¡-[x;](T)wdx. 

(e) Calculate the approximated search direclion ~ J(L¡J by 

T N 

VJ(L,) = 1 'Vu[L,] · 'Vvdt + L h•X•. 
o i = l 

(f) Choose tite step size Ctk by using some conventional meViod. 

(g) Update the coefficientfunction: Lk+I =Pe (Lk - o-kVJ(Lk)) . 

We show a numerical example far our algorithm. Let íl e R 2 be a unit disk. T he. 
coefficient f( is given by 

K (x) = { ~~5 ([xi < 0. 15) , 
(lxl > 0.15) 

as shown in Fig. l . Here 1 · 1 means the Euclidean norm on R2 • 

The consta.nts in the constraint (1.1 ) are given by C1 = 0.90 nnd C2 = 1.35. The 
Neumnnn boundary value for t his example are supposed to be given by 

q(t) = { -p(t) 
o.o 

011 an.., x (O, TJ , 
0 11 can\ an..,¡ x (o, TJ , 
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F igure 1: Exact coefficient 

where 

p(t) ~ {0.25sin(l2.5rrt) (O~ t ~ 0.16), 
o.o (t > 0.16) . 

Here an"' (m = 1, 2, , 5) are set as 

{ rr rr rr } 811m = (cosB, sinB) 1 - 50 < B- (m-1)¡ < 50 · 

The Dir ichlet boundary value U is generated by solvi ng numerically the wave equation 
with t he exact coefficient /( and the Neumann boundary value q. In arder to salve 
this problem numerically, we make use ofthe Newmark method[2] for t ime integration 
with linear triangular finite elements in space. The measu red va!ue ü is given by 
U(x, t) = 'l.lcal(x, t) + J(x, t), where Ucnl means the calculated value on tbe circle 
and ó(x, t) is a random small valued function satisfied IJ(x, t)I < 10- 10 ¡ucnil on the 
boundary 80 far any t > O. This treatment far the measured data is to avoid an 
inverse crime which t he numerical errors may be cancelled out inadvertently if we 
use t he data obtained by using the same finite element. The length of time is set as 
T = 4.0. The division { B;} is supposed to be given by 

B, ~ (x E fl 1 O.l(i - 1) ~ lxl < O.li} 

far 1 :::; i:::; 10. We employ the Armijo criterion[ l ) in arder to find the step size o:k in 
our algorithm. 

We assume that L0 (x) = I<IBn = 1.0 in the whole domain. After 100 times of 
iterations, we have the calculated coefficient as shown in Figure 2. Figure 3 shows 
the distribution of the relative error far calculated coefficient. The maximum value 
of the relative error is about 8.94%. T hese figures show that calculated coefficient is 
in good agreement with the exact one. 
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Figure 2: Calculri.ted coefficient 
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Figure 3: Relative error 
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Appendix Proof for exist ence of the solutions to 
(1.2) , (1.4) and (1.3) 

In thfa Apeendix, we show t~e existence of solutions u E R (s¡((O,T); R (l)(íl)), v E 
L2((0, T ); H(li(íl)) and w E H(i}(íl) to (1.2), (1.4) and (1.3), cespectively. 

To begin with we cite from [11) the existence and regularity theorem for the 
abstract hyperbolic evolution equation of second arder in the time variable. Let V, H 
be real Hilbert spaces and V be separable. Suppose the embedding i : V <-+ H is 
continuous, injective and its image is dense in H. Then, the dual i' : H ._. V' of 
i is cont.inuous, injective and has a dense range. Such a triple (V, H , \fl) is called a 
Gelfand triple. For T > O, k E Z+ and X = H or V, the Sobolev space W:f ((O, T); X) 

is t he collection of mea.surable functions ip : (O, T) - X with ~t~ E L 2 ((0, T); X) 

(O :S l :S k), where the differentiation is in the distributional sense. The norm of 

k Tlldl 11' 'PE W{( (O, T); X ) is given by ll'Pllk = L 1 dt~ (t) dt. 
l=O O X 

Let aK(<P, 1/J) ((ip, 1/J ) E V) be a continuous, symmetric sesquilinea r form satisfying 
the coercivity: 

t here exist k0 , a> O with al((<p,<p) + koll 'Pll Ji 2' <>ll'Plli ('PE V) (A. 1) 

Then, it is well known that there exists a unique A1< E L(V, \!') (i.e. the set of ali 
bounded linear operators from V to V') such that 

(A.2) 

d2y 
For t he Cauchy problem for the abstract hyperbolic equation dt 2 + Á1<Y = J, wc 

have the followi ng theorem. 

Theornm A. 1 Let y0, y1 E V and / E w;-i ((O, T); H ) wilh k E N satis/y the 
compatibility co ndition o/ degree k - l. That is 

y¡ E V (O°' l °' k - 1), y, E H , 

where 

Y21-1 = ¡!21- Jl(O) - AK ¡ (2l - 5l(O) + . + (- 1)'-' A\(' /'(O)+ (- 1)1- 1 A\(1Y1 ' 

y,, = ¡<21-2l (O) - Al( ¡ P'-'>(o) + . + (- 1)1- 1 A\( 1 f(O) + (- 1)1 Aiyo. 

Then , the Cauchy problem 

{ 
~;; (t) + Al( y(t) = f(t) in (O, T), 

y(O) = Yo, y'(O) = Y1 



P 'W!lu Variational approach for identifying a coefficient of the wave equation 99 

admits ci unique solution y(t) such thcit 

y E L2((0, T); V), 'f¡', E L2((0, T); H ) 

tmd they depend linearly and continuously on 

(f, y,,y,) E L2((0,T); H) X V X H . 

Moreover, y has the regularity such that 

y E w;- ' ((O,T);V), yCk) E L2((0,T);H), yC'+t ) E L2((0,T); V') , 

d' 
where y(k) := dt~. 

For ó > O small enough !et B5 := {x E IR"; dist {x, fül) < ó}. Let {\lj , <I>;) 
(1 ~ j S J ) be patches of the manifold 85 where t he collection is an atlas of 
85. We can assume that Vi n an f. 0, <I>J{V; n an) e 81Rf. = IR"- 1 , and 4>j{\lj n 
íl) e IRf. for each j {1 ~ j ~ J). Let {{;}i:si:SJ, {7JJ h :Si :SJ e Có'°{IR"} be parti­
tion of unities subordinated to {Vj} 1:si:SJ· Now, we can construct an inverse trace 
operator A: C6 ([0,TJ;H(j)(8!1)) ~ C6 ([0,T ];Hc3¡(!1)) i.e. (Al) [&n x¡o,r ¡ = 1 E 

0 6 (10, TJ; H¡¡ ¡(8!1)) in t he following way. 

For 1 E C6 ([0,T]; H(jl(8!1)), let I¡ := (¡I E C6 ([0, T [; Hc¡ ¡(8!1)), m¡ := I¡ o 

(/ x (<!>;Ion)-' ) E C6 ([0,T[;Hc¡¡(R"- 1) ), where l : [O,T J ~ [O,TJ is the iden­

tity operator. We define an invel'Se t race operator A.0 : C6 (10,T];H(!){R." - 1)) -+ 
06([0, T[; Hc3¡(1R~)) by 

( i )(t l - _1_ f. ,,., ( t + Wl' Jl - (t '')"' 
'om. ,x - {27r)"- ld R" e (1 +1{12)3 m • '> ....., 

for m E C' ([O, T]; H¡¡ ¡(IR" - 1)), where (' = ((1, · · , (,,_ .) for ( = ((1, · · ,(,,), d := 

/

00 ( l + r2)-3dr, and 111.(t,{') :=J. e-fa:'·t:'m(t,x1)dx 1• Then, A can be given by 
-oo R"- 1 

Al := t(11;((Aom¡) o (l x <!>¡)))[ (A.3) 

J= l i'ix [O,T] 

for nny 1 E c6([0, T J; Hc¡¡(8!1)). (See [8J for the detnils.) 
We first prove the existence of the solution u E R (s)((O, T ); fi¡l){n)) to (1.2) 

with u<•l E L2 ((0, T ); L 2 (!1)) and uC7 l E L2 ((0, T) ; (H(l¡(!1) )') . Let ¡¡:=u - ~ with 
r/J := Mi. T ben, ü has to satisfy 

{ ª' ai'i¡¡ - '(,1 • (l( '\lii) = f ' 

- - ª- -tt{O) = 110 , Bt't(O) = u 1 

(A.4) 
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with 

ª' -
{ 

f = /(K) = 'V· (K'Vef>) - 'ifi'i q, E C''([O, T J; H¡1¡(!l)), 

iio '= -~l •~o, ii1 '= - ~aq,I E \I ,= Hp¡(!l). (A.S) 
t t =O 

Now (V, H := L2 (0), V') is clearly a Gelfand triple and a1<(1/J,w) :=In K\11/J · \Jwdx 

(t/J, w E V ) is a continuous sesquilinear form satisfying the coercivity condition with 
ko = O. Moreover, it is easy to see t hat / , Üo, and Ü¡ satisfy t he compatibility 
condi tion of degree 5. T hen, t he existence of u to (1.2) with t he desired propertics 
immediately follows by applyi ng Theorem A.l to (A.4 ). 

By observing t hat ü E H(5¡{(0, T) ; ÍI(l¡(!1)) satisfies 

a2u - . 2 · 
'V. (K'Vii) = 8t2 - f E H(J¡((O , T) ; H¡1¡(!l)) e e ((O, T); H¡l)(!l))' 

we have;; E C 2 ([0,TJ;H(3¡(n \ F)) and hence u E C2 ([0,TJ;fi(3¡(n \ F)) by the 
regularity theorem near t he boundary of solutions to the Dirichlet boundary value 
problem for strongly elli ptic equations (See [5], Chapter 3, Proposition 3.7). This 

ª" ;mplies that 2(La,;(T) - q(T)) E H¡ ¡¡(8!l) and 

&u 2 
2(La,; - 1i) E C ([O,TJ;H¡¡ ¡(8!l)). (A.6) 

By t he well-posedness of (2.2), we immediately have w E f/(l)(fl). 
For the existence of v E L 2 ((0, T); Hp)( fl)), we argue likewise we did for t he 

solution u to (1.2) using t he inverse trace operator transforming (2.3) to an initial 
boundary value problem with the corresponding Dirichlet boundary condition. Then, 
by (A. 6), the second term of eq uation of t his initial boundary value problem belongs 
to L2 ((0, T ); H ) with H = L2(fl). Therefore , by Theorem A. l , we have the existence 
of u E L2((0,T); i'ip ¡(!l)). 

Received: Dec . 2006. Revised : Feb 2007. 
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