CM]JB@ A Mathematical Journal
Vol. 9, N° 2, (59 - 79). August 2007.

N,-free abelian group with no non-zero
homomorphism to Z

Saharon Shelah !
The Hebrew University of Jerusalem, Einstein Institute of Mathematics
Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
shelah@math.huji.ac.il

Department of Mathematics, Hill Center-Busch Campus
Rutgers, The State University of New Jersey
110 Frelinghuysen Road Piscataway, NJ 08854-8019 USA
shelah@math.huji.ac.il

ABSTRACT

‘We, for any natural n, construct an R,-free abelian groups which have few
homomorphisms to Z. For this we use “R,-free (n + 1)-dimensional black boxes”.
The method is hopefully relevant to other constructions of R,,-free abelian groups.

RESUMEN

Para natural n, contruimos un grupo abeli libre R, el cual
tiene pocos homomorfismos hacia Z. Para esto usamos R, cajas negras libres
(n + i)-dimensionales. El método es relevante para otras construcciones de gru-
pos abelianos R,,-libres.

1T would like to thank Alice Leonhardt for the beautiful typing. We thank Ester Sternfield and
Ridiger Gébel for corrections.
This research was supported by German-Israeli Foundation for Scientific Research and Development.
Publication 883.

—



60

N

Saharon Shelah o qwmum

Key words and phrases:  Abelian groups, freeness, few homomorphism,
set theory, black boz
Math. Subj. Class.: 03B75 , 20K20, 20K30

Annotated Content

Constructing Ry (.)41-free Abelian group

[We introduce “x is a combinatorial k()-parameter”’. We also give a short cut
for getting only “there is a non-Whitehead Ry(s)+1-free non-free abelian group”
(this is from 1.6 on). This is similar to (5, §5], so proofs are put in an appendix,
except 1.14, note that 1.14(3) really belongs to §3.]

Black boxes
[We prove that we have black boxes in this context, see 2.1; it is based on the
simple black box. Now 2.3 belongs to the short cut.]

Constructing abelian groups from combinatorial parameter
[For x € Kfcl(’,)ﬂ we define a class Gx of abelian groups constructed from it and
a black box. We prove they are all Ry(.)+1-free of cardinality |T'|* +Ro and some

G € Gy satisfies Hom(G, Z) = {0}.]

Appendix 1
[We give adaptation of the proofs from (5] with the relevant changes.]

.
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0 Introduction

For regular 8 = R, we look for a 0-free abelian group G with Hom(G,Z) = {0}.
We first construct G and a pure subgroup Zz C G which is not a direct summand. If
instead “not direct product” we ask “not free” so naturally of cardinality 8, we know
much: see [1].

‘We can ask further questions on abelian groups, their endormorphism rings, simi-
larly on modules; naturally questions whose answer is known when we demand R,-free
instead Rn-free; see (2] . But we feel those two cases can serve as a base for significant
number of such problems (or we can immitate the proofs). Also this concentration is
reasonable for sorting out the set theoretical situation. Why not 8 = R, and higher
cardinals? (there are more reasonable cardinals for which such results are not ex-
cluded), we do not fully know: note that also in previous questions historically this
was harder.

Note that there is such an abelian group of cardinality R;, by [7, §4] and see
more in G6bel-Shelah-Struiingman (3. However, if MA then R < 2%0 = any Ry-free
abelian group of cardinality < 2R° fail the question.

The groups we construct are in a sense complete, like “Z. They are close to the
ones from (5, §5] but there S = {0,1} as there we are interested in Borel abelian
groups. See earlier [8], see representations of (8] in (10, §3], [1].

However we still like to have § = R, i.e. R,-free abelian groups. Concerning this
we continue in [11].

We shall use freely the well known theorem saying

Theorem 0.1 A subgroup of a free abelian group is a free abelian group.

Definition 0.2 1) Pr(), k): means that for some G we have:
(@) G=(Ga:a<k+1)
(b) G is an increasing continuous sequence of free abelian groups
(€) |G| S A,
(d) Gr41/Gy is free for @ < &,
(¢) Go = {0}
(f) Gp/Gq is freeif a < B < &
(9) some h € Hom(Gy;Z) cannot be extended to h € Hom(Gr+1,Z).

2) We let Pr=(), 8, ) be defined as above, only replacing “Gy+1/Ga s free for a < £”
by “Gus1/G, is 6-free.
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1 Constructing Ny,).i-free abelian groups

Definition 1.1 1) We say x is a combinatorial parameter if x = (k,S,A) =
(k*, 8%, AX) and they satisfy clauses (a)-(c)

(a) k<w

(b) Sis aset (in (5], S = {0,1}),

(¢) A C*1(«S) and for simplicity |A| > Ro if not said otherwise.
1A) We say x is an abelian group k-parameter when x = (k,S,A,a) such that
(a),(b),(c) from part (1) and:

(d) ais a function from A x w to Z.
2) Let x = (kX, 8% AX) or x = (k*,S*,A*,aX). A parameter is a k-parameter for
some k and Kz'(")/KE(:) is the class of combinatorial/abelian group k()-parameters.
3) We may write a% , instead a*(n,n). Let wi,m = w(k,m) = {¢ < k:€#m}.

4) We say x is full when AX = k(*)(¥3).
5) If A C A* let x [ A be (k*, 5%, A) or (k*,8%,A,a | (A x w)) as suitable. We may
write x = (y,a) if a = a*,y = (k*, 5%, A¥).

Convention 1.2 If x is clear from the context we may write k or k(x), S, A, a instead
of k*, 5%, A%, a*,

A variant of the above is

Definition 1.3 1) For § = (S, : m < k) we define when x is a S-parameter: 7 €
AXAM LK = 0y € Y(Sm).
2) We say @ is a (x, ¥)-black box or Qr(x,¥) when:

(a) X = (xm :m < k*)
(b) a@=(ay: 7€ A*)
(c) @y = (g mmn:m < k*,n<w)and agmn < Xm

(d) if hm 2 A%, = xm for m < k* then for some 77 € A* we have: m < k*An < w =
hm (71 (M, 1)) = @m,n, see Definition 1.4(a) below on “77 1 (m,n) and A%,.

2A) We may replace ¥ by x if X = (xe : £ < k*). We may replace x by A* (so say
Qr(A*, ¥) or say @ is a (A, ¥)-black box).
3) We say a parameter x is S-full when AX = H ),

m<k

oy
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Definition 1.4 For an k(*)-parameter x and for m < k(*) let

(8) A%, = Axm = {71: 7= (ne: £ < k(x)) and 1 € “>S and £ < k(x) AL #m =
ne € “S and for some 77’ € A we have n < w,7 =7’ | (m,n)} where
7 =1'1 (m,n) means nm = nj, [ nand € < k(x) AL #m = ne =17}

(b) A%y, is UAT, : m < k(x)}
(¢) m(7) = m if 7 € A%,.

Definition 1.5 1) We say a combinatorial k(*)-parameter x is free when there is a
list (7% : & < (%)) of AX such that for every a for some m < k(x) and some n < w
we have

(*) i 1 (mym) & {1 (myn) < B < a}.

2) We say a combinatorial k-parameter x is f-free when x [ A = (k, S*, A) is free for
every A C AX of cardinality < 6.

Remark 1) We can require in (*) even (3%°n)[n%(n) ¢ U{n?(n’) U<k B<an<
w}].
At present this seems an immaterial change.

Definition 1.6 For k() < w and an abelian group k(*)-parameter x we define an
abelian group G = Gy as follows: it is generated by {z; : m < k(x) and 7j € AX,} U
{¥n :n <w and 7 € AX} U {2} freely except the equations:

Ron  (M)¥nn+1 = Yan + 502 + L{g<cmms> : m < k(x)}.

Explanation 1.7 A canonical example of a non-free group is (Q, +). Other examples
are related to it after we divide by something. The y’s here play the role of provided
(hidden) copies of Q. What about #’s? For 7 € A we consider (y;n : n < w), as
a candidate to represent (Q, +), k(*) + 1 “chances”, “opportunities” to avoid having
(Q,+) as a quotient, say by dividind K by a subgroup generated by some of the z’s.
This is used to prove Gy is not free even not R,;-free which is necessary. But for
each m < k(*) if (Tgy(mm) : 7 < w) are not in K, or at least Tpj(;mn) for n large
enough then Q is not represented using (¥4, : 7 < w); so we have k(x) + 1 “ways”,
“chances”, “opportunities” to avoid having (yan : n < w) represents (Q,+) in the
quotient, one for each infinite cardinal < Ry.). This helps us prove Ri(.)-freeness.
More specifically, for each m(x) < k() if H C G is the subgroup which is generated by
X = {Tpj<mn> : m # m(x) and 7] € ¥®)+1(«S) and m < k(*)}, still in G/H the set
{ynn :n < w} does not generate a copy of Q, as witnessed by {Zz1<m(e)n> : 1 < w}.

As a warm up we note:

—
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Claim 1.8 For k(x) < w and k(*)-parameter x the abelian group Gy is an N;-free
abelian group.

Now systematically

Definition 1.9 Let x be a k(*)-parameter.

1) For U C “S let Gy = G be the subgroup of G generated by Yy = V¥ = {z} U
{van : 1€ ANKOIHL(TU) and n < w}U {Tpemns : m < k(%) and 7 € AN &(')H)(w
and n < w}. Let Gff = G3y™ be the divisible hull of Gy and G+ = Glg):

2) For U C “S and finite u C “S let Gy, be the subgroup 2 of G generated by
U{Guu(u\(n}) : 1 € u}; and for 7 € k20 let Gy,5 be the subgroup of G generated
by U{Guum:k<tg(n) and k) : £ < £9(7)}.

3) For U C “S let Zy = E} = {the equation &y, : j € ANKMHU and n < w}. Let
Evu = Efu = U{Euu\(p)) * B € u}.

Claim 1.10 Let x € Kj ().

0) If Uy C U € “S then G, C G, € G*.

1) For any n(*) < w, the abelian group Gf; (which is a vector space over Q), has
the basis Y1) = {2} U {ynnee 71 € ANEOYD)} U {giamn> M < k()7 €
ANKOH(U) and n < w}.

2) For U C“S the abelian group Gy is generated by Yy freely (as an abelian group)
except the set Zy of equations.

3) If m(x) < w and Uy, € “S for m < m(x) then the subgroup Guy + .. + GUp -y
of G is generated by Yy, UYy, U...UYy,, ., , freely (as an abelian group) except the
equations in Sy, UEy, U...UEy, ., _,-

34) Moreover G/(Gu, + ...+ Gu,,.,_,) is N1-free provided that

® ifno,.. ., Mk(e) € U{Um : m <m(*)} are such that
(Ve < k() (3m < m(x)[{no, - Mk }\{ne} € Un)

then for some m < m(x) we have {no, ..., Mk} € Un.

4) If m(x) < k(%) and Uy = U\Uj for £ < m(x) and (U : £ < m(*)) are pairwise
disjoint then ® holds.

5) Gy C Guuw if U C“S andu C “S\U is finite; moreover Guu Spr Guuu gx‘:r G.
6) If (Us : @ < a(x)) is C-increasing continuous then also (Gu, @ @ < a*)) is C-
increasing continuous.

7) IfUy, CUp C U C “S andu C “S\U is finite, [u| < k(+) and U2\U1 = {n} and
v=uU {n} then (Guu + Gu,ou)/(Guu + Guyuu) is isomorphic to Guiuw/Guyu:
8) IfU C“S andu C “S\U has < k(x) members then (Gy,,+Gu)/Guyu is isomorphic
t0 Gu/Gou-

2note that if u = {n} then Gy,, = Gy

e A F



e W

Eg“‘_gg,, Rn-free abelian group with no non-zero homomorphism to Z 65

Discussion 1.11 : For the reader we write what the group G is for the case k(*) =
0. So, omitting constant indexes and replacing sequences of length one by the unique
entry we get that it is generated by ynn (for n € “S,n < w) and z, (for v € “>S)
freely as an abelian group except the equations (n!)yn n+1 = Yyn + Zytn-

Note that if K is the countable subgroup generated by {z, : v € “>2} then G/K is a
divisible group of cardinality continuum hence G is not free. So G is R;-free but not
free.

Now we have the abelian group version of freeness, see generally 1.13.

Claim 1.12 The Preeness Claim Let x € Ky(y).

1) The abelian group Guuu/Gu,u is free if U € “S,u C “S\U and |u| < k < k(*) and
|UI < Riggy—k

2)IfU C “‘S fend U] £ Riay, then Gy is free.

Claim 1.18 1) If x is a combinatorial k(*)-parameter then X is Ry (+)+1-free.
2) If x is an abelian group parameter and (k*, S*, AX) is free, then Gx is free.

Proof. 1) Easily follows by (2).
2) Similar and follows from 3.2 + Def 3.3 as easily G belongs to Gy (.-

Claim 1.14 Assume x € K, is full (i.e. AX = *+1(=(5%))).

1) IfU C“S and |U| > (S| + Ro)tF*EEHD | the (k(x) + 1)-th successor of |S| + Ro.
Then G¥ is not free.

2) If |S*| 2 Ri(ay+1 then Gy is not free.

3) Assume x € Kb, |S¥|+Ne < Aewr for £ < k(x) and [AX] > M.y and G € Gx (see
§3) then G is not free.

Proof. 1) Assume toward contradiction that Gy is free and let x be large enough;
for notational simplicity assume |U| = Rq,k(s)+1, this is O.K. as a subgroup of a free
abelian group is a free abelian group where Ry = |S|. We choose N¢ by downward
induction on £ < k(*) such that

(a) Neis an elementary submodel ® of (H(x), €, <3)
(8) INell = INe 0 Ragoy] = Rawe and {C: ¢ < Raye} € N,

(¢) (wq : 1 € A¥yey) Wan 1 1 € A* and n < w),U and Gy belong to Ng and
Ny, -, Ni(s) € Ne

Let G¢ = Gy N N¢, a subgroup of Gy. Now

3H(x) is {x: the transitive closure of = has cardinality < x} and <% is a well ordering of H(x)
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(¥)o Gu/(Z{Ge: £ < k(x)}) is a free (abelian) group [easy or see [6], that is:
as Gy is free we can prove by induction on k < k() + 1 then G/(E{G(s)41-¢:
£ < k}) is free, for k = 0 this is the ion toward contradiction, the
induction step is by Ax VI in [6] for abelian groups and for k = k(*) + 1 we get
the desired conclusion.]

Now
k(x)

(%)1 letting U} be U for £ = k() + 1 and ﬂ (Nm N U) for £ < k(x); we have: U}
m=t

has cardinality R for £ < k() + 1
[Why? By downward induction on £. For £ = k() + 1 this holds by an assump-
tion. For £ = k() this holds by clause (b). For £ < k() this holds by the choice
k(%)
of Ng as the set ﬂ (N NU) has cardinality o441 > R¢ and belong to Ny
m=t41
and clause (b) above.]

(¥)2 U =: U}“\(Ng NU) has cardinality Ray1 for £ < k()
[Why? As |U}, ;| = Reps > Re = ||Ne|| > [Nen U

-1
(*)3 for m < £ < k(x) the set U3, , =: UF N ﬂ N, has cardinality Ram
r=m
[Why? By downward induction on m. For m = £ —1 as U € Ny, and |UZ| =
Ra4e41 and clause (b). For m < £ similarly.]

Now for £ = 0 choose } € U2, possible by (*)2 above. Then for £ > 0, € < k(*) choose
7; € U,. This is possible by (x)s. So clearly

(*

4 n; €U and nf € N NU & €# m for £,m < k(x).
[Why? If £ = 0, then by its choice, 7; € U, hence by the definition of U? in
()2 we have n; ¢ N, and 77 € U}, hence 1 € Nega N ... N Niay by (¥)1 50
(*)4 holds for £ = 0. If £ > 0 then by its choice, n; € U3, but U3, , C U by
(*)3 so 7} € U? hence as before n; € New1 N ... N Ni(a) and 77 ¢ Ne. Also by
-1
(*)3 we have 7; € m Ne so (*)4 really holds.]
=0
Let i* = (7 + € < k(%)) and let G' be the subgroup of Gy generated by {Zgj<mn> ¢
™M < k(x) and j € ¥(*)+1U and n < w} U {ygn @ 7 € K®)+1U but 77 # 7* and n < w}.
Basily G, C G recalling G¢ = Ne N Gy hence £{Ge : £ < k(x)} € G', but ype 0 ¢ G’

hence

()5 e 0 ¢ T{Ge: £ < R}

But for every n
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(¥)6 Alyne nt1 — Yge.n = E{Tpr1<mns> 1 m < k(¥)} € B{G, : £ < k(¥)}.

[Why? Zpe1<mmn> € Gm as 7* [ (k(x)) + 1\{m}) € Nmm by (x)4.]
We can conclude that in Gy / Y {Ge : £ < k(x)}, the element y;- 0+ 3 {Ge : £ < k(x)}
is not zero (by (%)s) but is divisible by every natural number by (*)s.

This contradicts (x)o so we are done.
2),3) Left to the reader. []

2 Black Boxes

Claim 2.1 1) Assume k(x) < w,x = x™ and A = Tie)(X), S = A Agwy = KEIEL(ES)

or just Se = xe = (N = xe for £ < k(+x) and Ayey = ][ “(So) and
£<k(s)

x5 = (k(*),\, Ax(s)) s0 X is a full combinatorial (S : £ < k())-parameter. Then

A has a x-black boz, i.e. Qr(Ayxc),x), see Definition 1.3.

2) Moreover, x has the (x¢ : £ < k(x))-black boz, i.e. for every B = (By:7 € Ak

satisfying clause (c) below we can find (hy : 7j € A) such that: £

(a) hy is a function with domain {1 1 (m,n) : m < k(x),2 < n < w}
(b) hy(@ 1 (m,n)) € Byy<mn>
(€) Byy(m,ny is a set of cardinality 3y (x)
(d) if h is a function with domain A’;k(_) such that h(7j 1 (m,n)) € B(z1<mn>) and
ap < Jg(x) for € < k(x) then for some 71 € A*,hy C h and 1¢(0) = ¢ for
£ < k(*).
3) Assume x¢ = )\f",x“.l = X34y for € S k(x). If Se = A for simplicity £ < k(x),x
is a full combinatorial (S, k(*))-parameter, and |Bpj<mn>| < Xk(s) for 7j € A* then
we can find (hy : 7 € AX) as in part (2) replacing Je(x) by Ae, moreover such that:
(e) if 7 € A then ne is increasing

(f) if Ae is regular then we can in clause (d) above add: if Ey is a club of \¢ for
£ < k(*) then we can demand: if j € A* then for each £ for some af < \¢ we
have ne € “(Ee U {ag})

(9) if e is singular of uncountable cofinality, Ae = S{ ¢ : i < cf(Ae)}, cf(Nie) =

Ai e increasing with i we can add: if ug C cf(\e) is unbounded, Ey; a club of Mg ;
then ne € “(E; ¢ U {a}}) for some i € ug.

Proof. Part (1) follows form part (2) which follows from part (3), so let us prove
part (3). To uniformize the notation in 2.1(1), i.e. 1.3 and 2.1(2),(3) we shall denote:

Y e
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= ki
©1 hy( 1 (myn)) = o).
Note that without loss of generality By = |Bp| and we use ag(a)mn = hy(77 1 (m,n)
for 7 € Ax,m < k(*) and n < w. We prove part (3) by induction on k(*). Let
Ax = AX and without loss of generality S = Aq.
Case 1: k(x) = 0.
By the simple black box, see (9, ITL,§4], or better [4, VI,§2], see below for details
on such a proof.
Case 2: k(x) =k + 1.
Let
@ o = (a:-;vm_" 17 € Ag,n < w,m < k) witness parts (2), (3) for k, i.e. for x*,
hence no need to assume x* is full.
So A = Ak()sX = Xk(») and let H = {h : h is a function from Ay to x}. So

H| < (/\)*:0 = x. By the simple black box, see below, we can find (h, : 7 € “A) such
that

@3 (@) hy=(hyn:n <w)and hyn € H for n € “A

B) if f=(fs:vew“)and f, € H for every such v and a < \ and
p € “ZX is increasing then for some increasing n € “A we have p a7 and
n<w= hyn = fomn

() if cf(A) > R and E is a club of A then we can add U{5(n) : n < w} € E.

[Why? First assume x = A. Let (Go = (ga,e : £ < na) : @ < A) enumerate “>H such
that for each g € “>H the set {or < A : o = g} is unbounded in A. Now for 7 € “A
and n < w let hyn = gyk),n for every k large enough if well defined and g,(n1)n
otherwise. So clause (a) of ®3 holds and as for clause (3) of @3, let f = (f, : v € “?))
be given, f, € H.

Assume p € “\ is increasing. We choose a, by induction on n < w such that:

@1 (@) an = p(n)ifn < Lg(p)
() an<Xand oy >y ifn=m+1

(7) if n > lg(p) then ay, satisfies Ga, = (fiazieam) : m < 1),

Now 7 =: (a, : n < w) is as required in (3) of @3; to get also (y) of ®3 we should
add in clause (8) of ®4 then o, > min(E\am).

Second, if x > A but still x < A¥, let (ga : & < x®0) list “>H, and let hy : x — A
for n < w be such * that a < 8 < x = (Y®°n)(ha(a) # hn(B)) and let cd: A — >\
be one to one onto. Now for 7 € “A and n < w let h, , be g, where a is the unique
ordinal a < x such that for every k < w large enough (ed(n(k)))(n) = hn(c) so in

4recall (¥°N) means “for every large enough n < w"

T
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particular (£g(cd(n(k)) : k < w) is going to infinity or h, , is not well defined; in fact,
we can use only the case fg(cd(n(k)) = k; stipulating h,, € “{0} when not defined.
So we have defined (h,,, : 7 € “A,n < w). Now we immitate the previous argument:
clause (f) of @2 holds.

Next we shall define a**) = (as(m)»" 17 € Agy1,m < k(*),n < w) as required; so
let 7 = (ne : € < k() € Ag(s) we define Er',;(') (af‘l(;)" m < k(x),n < w) as follows:

@ if 7k(e) € “A and (no, ..., Mk(x)—1) € Ag then for m < k() and n < w

(@) if m = k(*) then a4, = hy, o (M0, -, Th(e)=1)) < Am

(B) if m < k(%), i.e. m <k then af,_(,:,)ln =ak

k() mn < Am-

Clearly a,) ,,. n < Ap in all cases, as required, (in clause (a),(b),(c) of 2.1(2) and
(e) of 2.1(3). But we still have to prove that (a,-,_,,,)l,, 15 € AL m < k(x),n < w)
witness Qr(x*(*), x), see Definition 1.3(2) this suffices for 2.1(2), little more is needed
for 2.1(3); just using () of ®3 and the induction hypothesis.
Why does this hold? Let h be a function with domain A’g,f(_)) as in part (3) and
aj < A for € < k(x).
For v € “> A let f, : Ax = X = Ay be defined by: f,((ne: €< k) =:h((ne: €<
k)" (). So by ®3 above for some increasing Me) € “\ we have 71;(_)(0) = o, and
O8 1 <w=> foriyte = hugin-
Now substituting the definition of f we have
Or (Moy+- 1) € Ak A <w = hye (0,5 1k) = A0 -3 s My 1))+
Substituting the definition of @ we have
®@s if (no,...,mk) € Ax and n < w then aﬁ(;:v__”%q;(‘P = ({0, -y My Wy [ 1))
Now we define a function &’ with domain A’ék by: iffj € A<,L then A'(7) = h(7 (’h(-)))

So by the choice of &* in ®2 we can find (13,...,7}) € Ax with no repetitions
such that 77 (0) = aj for £ < k and in ®y

Oy mEkAR<w= afye o o= R0 1) 1 (myn).

Let 7% = (05, -+« s s Mgn )y 71 = (08, 10)-
Note that

Ouo if m < k,n <w then K(i7" 1 (k,m)) = (7" 1 (k,m))" (mi(o))) = h(T* 1 (k,m)).
Now by ®g + @10 and ®5(8) this means

@ if m <k and n < w then oz:ff,)“." = h(7* 1 (k,m)).

.
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So by putting together ®g + ®1; we are clearly done, i.e. we can check that
- - .,1],:.,1][_(_)) is as required. 1

Conclusion 2.2 For every k < w there is an R4 1-free abelian group G of cardinality
Jk4+1 and pure (non-zero) subgroup Zz C G such that Zz is not a direct summand of

Proof. Let y = 2% and x be a combinatorial k-parmeter as guaranteed by 2.1.
Now by 2.3(2) below we can expand x to an abelian group k-parameter, so Gy is as
required.

Claim 2.3 1) Ifx is a combinatorial k-parameter such that Qr(x,28°) then for some
a,(x,a) is an abelian group k-parameter such that h € Hom(Gx, Z) = h(z) = 0.

2) For every k there is an Ry -free abelian group G of cardinality Jy41 and 2 € G a
pure z € G as above.

Proof. 1) Let & witness Qr(x,2%). We define Ord — Z by w(a) is v if & < w, is =n
if @ = w4+ n < w+w and zero otherwise. For each 7 € AX we shall choose a sequence
(ag,n : n < w) of integers such that for any b € Z\{0} for no & € “Z do we have

X for each n < w we have

nlensr = cn + agnb + S{u(agmn) : m < k(x)}.

This is easy: for each pair (b,co) € Z x Z the set of sequences (az, : n < w) € “Z
there is a sequence (co,cy,ca,...) of integers such that &, holds for them, so the
choice of (ag, : n < w) is possible.

Now toward contradiction assume that / is a homomorphism from Gy to 2Z such
that h(z) = bz,b € Z\{0}. We define b’ : A%, — x by k() = n if n < w and
h(zg) =nz and K(7) = w +n if n < w and h(zy) = (-n)z.

By the choice of @, for some 7 € A* we have: m < kAn <w = h/'(77] (m,n)) =
aq,m,n. Hence h(zj1(mn)) = U(Qqmn)z for m < kyn < w.

Let ¢, € Z be such that h(ysn) = ¢uz. Now the equation &y, in Definition 1.6
is mapped to the n-th equation in ;, so an obvious contradiction.

2) By part (1) and 2.2. n

Remark 2.4 1)We can replace x by a set of cardinality x in Definition 1.3. Using
Zz instead of x simplify the notation in the proof of 2.3.

2) We have not tried to save in the cardinality of G in 2.3(2), using as basic of the
induction the abelian group of cardinality Ry or R;.

Claim 2.5 1) If xo = x:",xm“ = 2Xm and Ay = Xm for m < k there is a x-full x
such that (x, x)-black box ewist.
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Conclusion 2.6 Assume jio < ... < p(s) are strong limit of cofinality Ro (or pzo =
Ro), Ae = pf, xe = 20,

Then in 2.1 for 7 € A* we can let hj,» has domain {7 € AY, : [ve = n¢ for
b=m+1,...,k(*)}.

3 Constructing abelian groups from combinatorial
parameters

Definition 3.1 1) We say F is a p-regressive function on a combinatorial parameter
X€E K:?,) when: S* is a set of ordinals and:

(a) Dom(F) is A
(b) Rang(F) C [AXU A’ék(_)]g““

(c) for every 7j € A and m < k(*) we ® have sup Rang(n,,) > sup(U{Rang(v,) :
7 € F())}); note 7 € AX or 7 € A%k as F(7) is a set of such objects.

1A) We say F is finitary when F(7)) is finite for every 7).

1B) We say F is simple if 7)5(,)(0) determined F(7) for 77 € A*.

2) For x, F' as above and A C A* we say that A is free for (x, F) when: A C A* and
there is a sequence (7* : o < av()) listing A’ = AU U{F(7) : 7§ € A} and sequence
(lo : @ < a(*)) such that

(a) la < k(*)
(b) ifa < a(*) and 7* € A then F(77%) C {#%,7° 1 (m,n) : B < a,n < w,m < k(*)}

() if @ < a(+) and 7* € A then for some n < w we have 7% | (fa,n) ¢ {7° 1
(bayn) : B <’ € AYU (7P : B < ).

3) We say x is f-free for F is (x, F) is p-free when x, F are as in part (1) and every
A C A* of cardinality < @ is free for (x, F).

Claim 3.2 1) Ifx € l(,f:’_ and F is a regressive function on x then (X, F) is Ri(a)41-
Jree provided that F is finitary or simple.

2) In addition: if k < k(), A C A* has cardinality < Ri and @t = (u; : 7] € A) satisfies
uy € {0,...,k(%)}, |luy| > k, then we can find (7* : o < Ri), (ba : @ < Ri), (ng <
Ry) such that:

(a) AC {7 :a <Ny}

(b) if o € AX then €y € uga,na <w

Sactually, suffice to have it for £ = k(+)
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(€) 71 (fayna) & {71 1 (arna) : B < @} U {7’ : < a}.

Proof. 1) Follows by part (2) for the case k = k(%),uy = {0,...,k(*)} for every
7eA
2) So we are assuming X € K,f_l(’,‘),F is a regressive function on x,k < k(+), A C AX
has cardinality < R and without loss of generality A is closed under 77 — F(77) N AX.
‘We prove this by induction on k.
Case
Subcase 1A: Ignoring F.

Let (7% : @ < |A]) list A with no repetitions (so @ < [A| = a < R; = Rg). Now
@ < |A] = uge # 0 and let £, = min(uge) < k(*). Hence for each e < |A| we know
that 8 < a = 717 # 7j%, hence for some n = 14,5 < w we have 77 | (Ca,na,5) # 7° |
(€a na,)-

Let no = sup{na,s : f < @), it is < w as @ < w. Now ((la,na) : @ < |A]) is as
required.
Subcase 1B: 77 € A = F(7) is finite.

Let (n® : a < |A[) list A, we choose w; by induction on j < ji(), () < w such
that:

(a) w; C [A] is finite
(b) j € w4y
(¢) if @ € w; then F(*)NA C {7 : B € w;}
(d) wj(y = |A] and wo = 0
(e) w; C wjy1 and j(x) = w = wje) = V{w; : j < j(x)}.
No problem to do this (for clause (c) use “F is regressive, the ordinals well ordered).
Now let (B(j,1) : i < df) list wj1\w; such that: if iy,432 < 47 and 7P e
F(770:12)) then iy < ip; we prove existence by F being regressive. Let (D k< i;')
list U{F(7%) : @ € wjps \wy NA\{F(7) : @ € w;}.
Let aj = B{i3fy) + 5y : 5(1) < j}. Now we choose p¢ for € < a for j < j() as

(1
follows: 5

(@) pag i = vy if i < ig"

(0) Pagsiz-ti = PO if 5 < a3
Lastly, we choose 7q;.i <w for i <if as in case 1A.
Now check.
Subcase 1C: F is simple.
Note that F(77) when defined is determined by 7i(.)(0) and is included in {7 €
A¥py UAX o sup Rang(veee) < mk()(0)}. So let w = {n()(0) : 7 € A} and
u* = uU {sup(u) + 1} and for a € u let Aq = {7j € A : 74(.)(0) = @} and for a € U*

e &)
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let Aca = U{Aq : @ € u}. Now by induction on 8 € u* we choose ((7°, ) : € < ep)
such that it is a required for Ac. For f = min(u) this is trivial and if otp(u N B)
is a limit ordinal this is obvious. So assume o = max(u N 3), we use Subcase 1A on
Ay, and combine them naturally promising £, = k(*) = n, > 1.
Case 2: k=k.+1and [A| =

Let (Ac : € < Ry) be C-increasing continuous with union A, [Ay4| = Re,, Ao = 0,
each A closed enough, mainly:

@ if 1) € A, for i < i(x) <w,p € A and {pe: €< k(x)} C {n: £ < k(x),i <i(*)}
then p € A.

®2 A is closed under 77— F(7) N AX.
Next

© if € < i, 7] € Act1\Ae then uj = {£ € uy: for every or just some n < w for
some 7 € A we have 77 1 (¢,n) = 7 | (¢,n)} has at most one member.

[Why" So assume toward contradiction that n € Acyy and £(1) # £(2) belong to
u,, Hence by the definition of u) there are ! u2 € A; and 7,72 < w such that
71 (Er,m) € B [ (b,ma) and 71 (&1,m) = 52 1 {€a,7a). Now m < k() = for
some i € {1,2},m < & = 7y is (7 1 (6, ni))m = m € {pe : p € Ae. Hence
{ne: € < k(*)} € {pe: € < k(x) and p € Ac}. So by ®; we have 7j € A, so we are
done.|

Apply the induction hypothesis to Acy1\Ae for each € and get (7%, le,amn, ) :
@ < a(e)) such that 779 1 (€5, ne,a) ¢ {717 1 (€e,5,me,8) : B < ).

Let ay = Z{a(e) : € < |A|) and a = B{a(¢) : ¢ < €} + B,a < a(e) let n*

7P la = e g, Na = Mep. Le. we combine but for Aqy1\A: we use (ug\uy : 7 €
Aci1\Ae), s0 Jup\ug| > k —1 = k. n
Definition 3.3 For a bi ial parameter x we define Gy, the class of abelian

groups derived from x as follows: G € Gy if there is a simple (or finitary) regressive
F on A* and G is generated by {yyn : 7 € A, n < w}U{zy: 7 € A% Zk(s)) freely except

Ran (M)yan+1 = Yan + 05 nzan + YAznt<mn> 1 m < k(*)}
where
© (a) byn€Z

(b) zpn is a linear combination of {z; : 7 € F(7)\A*} U {ysn : 7] € F(7) N A*
and (Ym < k(+))(7 1 (m,n)) € F(7)}.

Claim 3.4 If x € K,ff) and G € Gy (i.e. G is an abelian group derived from x),
then G is Ry(a)41-free.

Proof. We use claim 3.2. So let H be a subgroup of G of cardinality < Ry(,). We
can find A such that
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(*) (a) A C A* has cardinality < Ng(.)

(b)  every equation which Xa = {Zg1<mn>,Unn : m < k(*),n < w, ] € A}
satisfies in G, is implied by the equations in Ty = U{Bj;, : 7 € A}
(¢) HCGh=(Tgemn>Yin 1€ Amk(+),n <w)g.

So it sufices to prove that G, is a free (abelian) group.

Let the sequence ((7j%,¢q) : @ < a(*)) be as proved to exist in 3.2. Let U = {a <
a(*) : 7* € AyU{a(x)} and for & € U let X0 = {x301<mn> : B € aNU,m < k(x) and
n <w}and X} = XQU{77? : B € a\U}. So for each o € U there is fiq = (¢ i € € vy)
such that: €, € va C {0,...,k(*)},nae < w and X2, \X2 = {zg<en> : £ € v, and
n € [na,e,w)}

For a < a(x) let Gaa = ({ypp,n,%s : B € UNa and 7 € Xj})g,. Clearly
(Gra : a0 < af*)) is purely increasing continuous with union Gy, and Gy 0 = {0}.
So it suffices to prove that Ga a41/Gaq is free. If a ¢ U the quotient is trivial by a
free group, and if o € U we can use £, € v, to prove that is free giving a basis. N

Conclusion 3.5 For every k(*) < w there is an Ny(.)4;-free abelian group G of
cardinality A = Jy(,)4, such that Hom(G, Z) = {0}.

Proof. We use x and (hy : 7] € A%) from 2.1(3), and we shall choose G € Gx. So G
is N (s)41-free by 3.4.

Let § = {((ai, ) : i < i1)"((b5, 75,my) 0 5 < ) t i1 < w, a4 € Ly s € N¥y,y and
g1 < w,b; € Z,v; € A*,n; < w} (actually § = A’ék(_) suffice noting 7; = (vje 1 £ <
k(%)))-

So |S| = Ax(s) and let p be such that:

@ p= (" a <))

(b) plists S

(c) p* = ((af,if") + 4 < ia) (b, 54 n§) : J < Ja) s0 BFF = (vity : € S K(*))
(d) sup Rnng(n‘“.k(_)) < @, sup Rmxg(u]“fk(_)) <t <, 9

Now to apply Definition 3.3 we have to choose z, (for Definition 3.3) as S{afzy, :
i <ia}+ E{bfyseng 1§ < Ja} and zq = z,, () for 77 € AX then for 7 € AX we
choose (byn : n < w) € “Z such that:

® there is no function h from {z;}U{ygn : n < w}U{zgiemm> : m < k(*),n < w}
into Z satisfying

@ (a) h(zp)#0and

(b)  h(xzpiemms) = hy(G 1 (m,n)) for m < k(*),n < w

e @ AW
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(¢) for every n

(*)n  nlh(ypn+1) = h(ynn) + bgnh(zn) + Z{(zgr<mn>): m < k(x)}.

B.g. for each p € “2 we can try bf, = p(n) and assume toward contradiction that
for each p € “2 there is h, as above. Hence for some ¢ € Z\{0} the set {p € “2 :
hy(z5) = e} is uncountable. So we can find p; # p; such that h,, = ¢ = hy, ()
and py [ (le] +7) = p2 | (le| + 7). So for some n > |c| + 7,p1 [ n = p2 | n and
p1(n) # pa(n). Now consider the equation (), for hz, and hj,, subtract them and
get (p1(n) — pa(n))c is divisible by n!, clear contradiction.

So G € Gx is well defined and is Ny(.)41-free by 3.4. Suppose h € Hom(G,Z) is
non-zero, so for some a < Ai(.), h(zq) # 0 (actually as G'=({zp:7€ A’ék(.)})a isa
subgroup such that G/G" is divisible necessarily h | G* is not zero hence in 2.1(2) for
some 7 € A%, ) we have h(zp) # 0. Let y = {7} and so by the choice of (hy : 7] € A)
for some 7j € AX,7(2)(0) = @ and we have hy = h [ {Zg1cmn> : m < k(¥),n < w}.
By ® we clearly get a contradiction.

Remark We can give more details as in the proof of 2.3.

Conclusion 3.6 °rm For every n < m < w there is a purely increasing sequence
(Ga : @ < wy + 1) of abelian groups, Go,Gp/Gq are free for a < f < w, and
Gu,41/Gu, isRy-free and for some h € Hom(Gy,Z) has no extension in Hom(Gu, +1,Z).

Proof. Let G,z be as in 2.2. So also G/Zz is N,-free. Let G, = ({z})¢ for
aSwy, Gy, 41 =G.

4 Appendix 1

Notation 4.1 If 7° € AY, and 7 = 7j* | {€ < k(*) : £ # m} and v = 5, then let
@, i= Tpe. (See proof of 1.12).

Proof of 1.8. Let U C “S be countable (and infinite) and define Gy, like G restricting
ourselves to 7, € U; by the Léwenheim-Skolem argument it suffices to prove that G,
is a free abelian group. List A N*M+1U without repetitions as (7 : t < t* < w), and
choose s; < w by induction on ¢ < w such that [r < t& ), [ k(*) =i [ k() = 0 =
{Nekey 1€ €€ [s6,0)} N D pey [€: L E [sr,0)}]

Let.

Y1 = {Zmge i m < k(x), 7 € KON and v € “>2}

Y= {:,,.‘,,4., : m = k(*),7 € KU and for no t < t* do we have

7= L) v € {rey [ €5 56 §l<u)}

L /T
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Y3 = {ysn : t <t* and n € [s,w)}. Now

(*¥)1 Y1 UY2UY3U {2} generates Gy;.

[Why? Let G’ be the subgroup of G, which ¥ UY, U Y3 generates. First we prove
by induction on n < w that for 7 € U and v € ™S we have Tr(o) v € G If
Tk(e),v € Y2 this is clear; otherwise, by the definition of Y3 for some £ < w (in fact
=n) and t < w such that £ > s, we have 7j = 7, [ k(*),v = () | £.
Now

(@) Yaee41Yn,, arein Yz C G’
(b) T gt (i<k(v)sizm),v belong to Y € G if m < k(#).

Hence by the equation &y ,, in Definition 1.6, clearly Tx(.) 4., € G'. So as ¥} C G' C
Gy, all the generators of the form x5, with each 7 € U are in G'.

Now for each ¢ < w we prove that all the generators yp, » are in G'. If n > s, then
clearly vy, » € Y3 C G'. So it suffices to prove this for n < s, by downward induction
on n; for n = s, by an earlier sentence, for n < s; by ;. The other generators are
in this subgroup so we are done.]

(*)2 Y1UY2UY3U {z} generates Gy, freely.
[Why? Translate the equations, see more in [5, §5].]

Proof of 1.10 0), 1) Obvious.

2),3),4) Follows.

5) Let (ne : £ < m(+)) list u,Up = U U (u\{ne}) 50 Guu = Gyt -+ + Gy First,
Gu,u € Guuu follows by the definitions. Second, we deal with proving Gy, Cpr Guuu-:
So assume z* € G,a* € Z and a*2* belongs to Gy, + ...+ Gu,, ., so it has the form
S0z 1emines 1 < i(*)} + B{cjygmy tJ < 3(*)} +az with i(x) < w,j(*) <w
and a*,b;,¢; € Z and u.,v’/‘,ﬁj are suitable sequences of members of Uyy, Uiy, Ur(j)
respectively where £(i), k(j) < m(x). We continue as in [5].

6) Easy.

7) Clearly Uy Uv = Uy Uu hence Gu,uu € Guyuw = Guyuu hence Gy + Guyuu is a
subgroup of Gu,u + Gy,uu, so the first quotient makes sense.

Hence (Gu,u + Guyuu)/(Guu + Gu,uu) is isomorphic to Gu,uu/(Guyun N (Guu +
Guyuu))- Now Gy, v € Guyuw = Guauw € Guu+Gu,,u and Guy v € Gup = Guuu =
Guu € Gy + Guy . Together Gy, o is included in their intersection, i.e.

Gu,uu N (Guu + Guyuu) include Gy, ,, and using part (1) both has the same
divisible hull inside G*. But as Gy, , is a pure subgroup of G by part (5) hence of
Gu,ue- So necessarily Gy,uu N (Guu + Guy u) = Gu, w, 50 as Guyuu = Guuw we are
done.

8) See [5). L}

Proof of 1.12 1) We prove this by induction on |U[; without loss of generality
|u| = k as also k" = |u| satisfies the requirements.
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Case 1: U is countable.
So let {v : £ < k} list u be with no repetitions, now if k = 0, i.e. u = () then
vuu = Gu = Gy, so the conclusion is trivial. Hence we assume u # 0, and let

we i=u\{v; } for £ < k.

Let (7 : t < t* < w) list with no repetitions the set Ay, := {7 € AXn )+ (UUw):
for no £ < k does 7 € *®)*1(U Uwg)}. Now comes a crucial point: let t < t*, for
each € < k for some 7y ¢ < k(x) we have n;,,, = v; by the definition of Ay, so
[{re,e : € < k}| = k < k(*) + 1 hence for some m, < k(*) we have £ < k = ry¢ # m,
50 for each £ < k the sequence 7, [ (k(x) + 1\{m.}) is not from {{p, : s < k(x) and
8 #my) : py € “(UUug) for every s < k(+) such that s # m,}.

For each t < t* we define J(t) = {m < k(*) : {ms : s < k(x)&s # m} is
included in U U ug for no £ < k}. So m, € J(t) C {0,...,k(+)} and m € J(t) =
i | {5 < k(x) 1§ # m} ¢ KON U U ) for every £ < k. For m < k(x) let
om =1 | {5 < k(%) : j # m} and 7} := 7 ,,,. Now we can choose s, < w by
induction on ¢ such that

(¥) if t1 < t,m < k() and 7, 1 = 7, then gem [ se € {ne,m [€: € <w}.

Let Y* = {Zm,5 € Guuu : Tmj & Guuw, for € < k}U {ypn € Guuu : ¥gn & Guuu,
for £ < k}.
Let

Yi= {omge €Y": for not < t* do we have m = m, & = ij;}.

Y= {zZmpw €Y": Tmy ¢ Y1 but for no t <t* do we have
m=my & =17 & fm [ Avangm}

Ya= {Upn:Upn €Y* and n € [s;,w) for the ¢ < ¢* such that 7 = 7,}.
Now the desired conclusion follows from
(M1 {y+Guu i y € Y1 UY2 U Ys} generates Guuu/Guu

(*)2 {y+ Gu.u:y € Y1UYaUYs} generates Guuu/Gu,u freely.

Proof of (+);. It suffices to check that all the generators of Gyuy belong to
Gy =t (Y1 UY2UY3UGuu)a.

First consider = @y 4, where n € ¥+ (U Uu),m < k(x) and v € "S for
some n < w. If z € Y* then = € Gy,y, for some £ < k but Gyuy, € Guu € Gy,
§0 we are done, hence assume z € Y*. If 2 € Y; UY, U Y3 we are done so assume
*#Y1UY,UYs. Asx ¢ Y for some t < t* we have m = m&ij = 7. Asz ¢ Y3,
clearly for some t as above we have 1 m, [ s < v an,,,. Hence by Definition 1.6 the
tduation &y ., from Definition 1.6 holds, now vy, n,¥s,.ns1 € Gpy,- So in order to
teduce from the equation that @ = a1, n> belongs to Gyuy, it suffices to show
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that Ty 1<in> € Gy, for each j < k(x),j # m,. But each such Ty 1<in> belong
to Gy, as it belongs to Yy U Y,.
[Why? Otherwise necessarily for some r < t* we have j = my., ;. 3 = Tirm, and fjpm, |
Sp A1 [ n<Anpym, SO 1 2 s, and as said above n > s;. Clearly r # t as m, = j # m,,
now as i, . = i, and 7 # i (as t # ) clearly nem, # 7rm,. Also =(r <) by
(*) above applied with 7, t here standing for t,¢ there as 7, [ Sy Q5 [ n AN m, .
Lastly for if ¢ < r, again () applied with ¢, here standing for t;,¢ there as n > m,
gives contradiction.]
So indeed z € Gfy,,-

Second consider y = yyn € Guuu, if y ¢ Y™ then y € Gy,u € Gy, S0 assume
y € Y". If y € Y3 we are done, so assume y ¢ Y3, so for some t,7 = 7, and n < s,. We
prove by downward induction on s < s; that y, s € Gy, this clearly suffices. For
s = s, we have y; . € Y3 C Gyy,,,; and if 5,441 € Gy, use the equation Xy, , from
1.6, in the equation y4 441 € Gy, and the z’s appearing in the equation belong to
Sbu" by the earlier part of the proof (of (*);) so necessarily yy s € Gy, 50 We are

one.

Proof of (x), We rewrite the equations in the new variables recalling that Guyy is
generated by the relevant variables freely except the equations of & , from Definition
1.6. After rewriting, all the equations disappear.

Case 2: U is uncountable.

As Ry < |U| < Ryuy—k, necessarily k < k(x).

Let U = {p, : @ < u} where p = |U|, list U with no repetitions. Now for each
a < |U|let Uy := {ps: B < a} and if @ < [U| then uq = uU {pa}. Now

of sub-

®1 ((Guu + Gu,uu)/Gup : @ < |U]) is an i ing continuous seq
groups of Guuu/Gu,u.
[Why? By 1.10(6).]

®2 Gu,u + Gueuu/Guu is free.
[Why? This is (Guu + Gopuu)/Guu = (Guyu + Gu)/Gu,u which by 1.10(8) is
isomorphic to G\ /Gy, which is free by Case 1.

Hence it suffices to prove that for each o < |U| the group (Gu,u + Gu,, uu)/(Guu+
Gu,uu) is free. But easily

@3 this group is isomorphic to Gu,uu, /GU, ua.-
[Why? By 1.10(7) with Uy, Ua41, U, pa, u here standing for Uy, Uz, U, , u there.

®s GU,uu./Gu, u, I8 free.
[Why? By the induction hypothesis, as Ro + |Us| < |U| < Rg(a)— (k1) and
il = &+ 1 < k(s).
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2) If k(x) = 0 just use 1.8, so assume k(*) > 1. Now the proof is similar to (but easier
than) the proof of case (2) inside the proof of part (1) above.
n
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