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ABSTRACT

We consider a mathematical model of the Fermi theory of weak interactions
as patterned according to the well-known current-current coupling of quantum
electrodynamics. We focuss on the example of the decay of the muons into elec-
trons, positrons and neutrinos but other examples are considered in the same
way. We prove that the Hamiltonian describing this model has a ground state
in the fermionic Fock space for a sufficiently small coupling constant. Further-
more we determine the absolutely continuous spectrum of the Hamiltonian and
by commutator estimates we prove that the spectrum is ubsolutel\ contmuous
away from a small neighborhood of the thresholds of the free Hamil For
all these results we do not use any infrared cutoff or infrared regularization even
if fermions with zero mass are involved.
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RESUMEN
Consid: un modelo ico para la teorfa de Fermi de interacciones
débiles como modelo de acuerdo al bien conocido acoplado corriente-corriente de
la electrodindmica quéntica.
Nos focalizamos en un ejemplo del decaimiento de muons en electrones, positro-

nes y neutrinos. Otros ej los son iderados igual Probamos que el
Hamiltoriano descrito por este modelo tiene un ostado I'undamental en el espacio
fermionico de Fock para una de i pequena.

Ademés determi la parte continua del Hamiltoniano y me-
diante estimativas del commutador probamos que el espectro es absolutamente
continuo lejos de vecindades pequeiias de umbrales del Hamiltoniano libre. Para
todos estos resultados no usamos truncamiento infraroja ni regularizacién in-
fraroja incluso si son involucrados fermiones de masa cero.

Key words and phrases:  Fermi Weak interaction, decay of muons, eristence
of ground state, absolutly continuous spectrum
Math. Subj. Class.: 81V15, 81Q10, 81Q15

1 Introduction

In this note we consider a mathematical model of the Fermi theory of weak interac-
tions as patterned according to the well-known current-current coupling of quantum
electrodynamics (see (9, 17]). The weak interaction processes are well described at
low energy by the current-current coupling.

We choose the example of the decay of the muons into electrons, positrons and neu-
trinos. The beta decay of the neutron could be considered too.

The mathematical framework involves a fermionic Fock space for the particles and
the antiparticles and the interaction is described in terms of annihilation and creation
operators together with an L2-kernel with respect to the momenta. The total Hamil-
tonian, which is the sum of the free energy of the particles and the antiparticles and of
the interaction, is a self-adjoint operator in the Fock space. We prove that this Hamil-
tonian has a ground state in the Fock space for a sufficiently small coupling constant.
Furthermore we determine the absolutely continuous spectrum of the Hamiltonian
and by commutator estimates we prove that the spectrum is absolutely continuous
away from a small neighborhood of the thresholds of the free Hamiltonian.

From the mathematical point of view, the interaction is no more invariant by trans-
lation and the singularity of the kernel at the origin is not too strong. In fact the
physical formal kernel is locally bounded at the origin. This means that there is no
infrared problem even if fermions with zero mass are involved in the model in contrast
to the case of QED. Detailed proofs are only given for the Hamiltonian associated
with the decay of muons.

We also describe the mathematical model for the beta dacay of quarks u and d for
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which the results will be the same. We also consider the decay of the massive bosons
W+ and W-.

For the proofs we essentially follow the methods developed in [4] [3] and in [1] for
the existence of the ground state and those developed by [4] and [14] for the study of
the continuous singular spectrum.

Let us finally mention that the same results should hold in Fock spaces associated
to the Dirac equation in Schwarschild, Reisner-Nordstrom and Kerr black holes as
soon as a generalized eigenfunction expansion for the Dirac equation in that context
is known.

2 The model

The decay of the muons involves four species of particles and antiparticles, the muons
= and pt, the electron e~ and the positron e*, the neutrino v, and the antineutrino
e associated to the electron and the neutrino v, and the antineutrino 7, associated
to the muon.

In this article we consider the neutrinos v, and v, together with the antineutrinos
7, and 7, as neutrinos and antineutrinos with different quantum leptonic numbers
(see (9], [12]). Thus, according to the convention described in section 4.1 of [16] and
from the mathematical point of view, in what follows the corresponding creation and
annihilation operators for v, and 7, will anticommute with those for v, and #,. Our
proof does not work if the neutrinos v, and v, are considered as particles of different
species i.e., if the corresponding creation and annihilation operators for v, and 7.
commute with those for v, and 7,.

Concerning our notations from now on the particles and antiparticles 1 will be the
electrons e~ and the positrons et, the particles and antiparticles 2 will be the neutri-
108 Ve, 7., the particles and antiparticles 3 will be the neutrinos v, 7, and, finally,
the particles and antiparticles 4 will be the muons p~ and p*.

Let € = (p,s) be the quantum variables of a particle of spin 1/2. Here p € R? is the
momentum, s € {—1/2,1/2} is the spin polarization of particles and antiparticles 1
and 4 and s € {—1,1} is the helicity of particles and antiparticles 2 and 3. We set
¥ = R® x {—1/2,1/2} for the particles and antiparticles 1 and 4 and £,R? x {—1,1}
for particles and antiparticles 2 and 3. We will denote by € the quantum variables of
an antiparticle.

Let us define the Fock space. Set

Q= (q,G,7,7,8,8,t,7) € N®

where g (resp. r,s,t) is the number of particles 1 (resp. 2,3,4) and g (resp. 7,3,%)
is the number of antiparticles 1 (resp. 2,3,4). For i = g,r,s,t and i i
introduce the following sets of variables:

Ei= (1,20 8) Si=E08,....&)

Notice that for the neutrinos and antineutrinos we could use another sets of variables
by adding leptonic quantum numbers to the &'s in order to get an equivalent frame-
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work.

Let us denote by ¥(?)(-) a measurable function of the set of variables =
which is antisymmetric with respect to each set of variables Z; an
which is square integrable:

PR N
separately and

2
1P = [ e, 55| I & ] <
i=(q,r,s,t) i=(q,7,8,8)

where d= ]'[k L déx, d€ = Y, [ d®p and d=; = Hk ld{L, d§ >, [d*p. When
i=0o0ri=0, the corresponding variables do not appear in ¥( )
The space .7-'“7) = {U(@ | | W] < oo} is an Hilbert space and the Fock space is

defined by
F = @qens FQ

where F(© = C. The vacuum  is the state (¥(?))q with (@) = 0 for @ # 0 and
U = 1. Fis an Hilbert space and if ¥ = (I(@)g € F we have

o) =5 1.

QeNs

We can now define the formal annihilation and creation operators bj.¢(§) and b3 (¢)
for each type of particles and antiparticles. We have

(01,+EW) D1y .., €35 Z0iEri Eni E

2.1
VAt TWteD(g,g,. . 65 "

and
(51,- @V D(Egi &1y EgiEni ©2)

VIF ()W @I D(E 6 &y, B B i B

The operators by 4 (€) (resp. bg 4 (€)) are defined similarly by substituting r and #
(resp. t and £) for ¢ and G in an obvious way.

Furthermore, taking into account the anticommutation between b+ and by i, we
have

LI S TR SHH

(b3,+ (O )V (Eq; Eg &

2.3
\/s—+—1'(_])rw\I,(q,q,r.ﬂ,wl,u.t.n(s ( )

and
(b3, (&) ) R Eqi s B o a1 ity Gy (24)

[FrI(=1) T p@anfa sl g 16,6 Eni B D).
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As usual b5 (§) is the formal adjoint of bje(€), for example

(B RN e

1 q+1 4
T (D - gyt ERERERED)

i=1
(2.5)

where * denotes that the ith variable has to be omitted.
The following canonical anticommutation relations hold

{b;,e(), 65,01 (€)} = e 0(€ =€), §=1,2,3,4, e =%
where §(¢ — &) = 8,,40(p — p'),
{b1,e(€):bser(€)} = (b}, (€), b5 (€)} =0, §=1,2,3,4, € =2
{02,0(6), 88 0 (€)} = (53,6, b} o (€)} =0

where b is b or b*.
Note that

(b1, (6), 85 (€] = [B7c(€), B, (€)] =0, j=1,2,3,4, i=1,4and j #i.

Let Fo be the subspace of functions ¥ = (¥(?)q such that ¥(@ is a function in
the Schwartz space and ¥(®) = 0 for all but finitely many Q. The b;(£)’s are
well defined operators on Fo but they are not closable. It is better to introduce the
following operators:

bd) = [ bi(EmEE,

0= [ B0

where ¢ € L*(X) and £ = £, when j = 1,4 and £ = £, when j = 2,3. Both b ((¢)
and b (¢) are bounded operators on F and

(165 () = l1bs.e (D)1l = lIl-

The bj,(¢)’s and the b} (¢)’s satisfy similar anticommutation relations (see [15]).
The free Hamiltonian Hy is given by

HU“Z x /dfwa(ﬁ) ;e (©)bc(€) (26)

J=le=t~

where

Ule) = mhem [Pl
wil8) = wale) = oIl + ] @1

wj(€) =w;(p) = pl, 5=2,3

A



T

42 Laurent Amour, Benoit Grébert and Jean-Claude Guillot L%

and the mass m; and my are strictly positive. We know that m; < my.
Hy is essentially self-adjoint on Fp, we still denote Hy its self-adjoint extension.
The interaction, denoted by Hj is given by

/ AE1drdEodEG (1, Eay 5, E4)
ete
b3, (€1)05 ¢ (€2)03  (€3)ba,e (€4)

i ; [ dendentcadeCrrtenn e
i ¢ (64)bs,e(€3)b2,e (€2)b1,¢ (61)

where G, o (&1,€2,63,€4) is a kernel.

In particular this interaction describes the decay of the muon x into an electron and
two neutrinos 7, and Yy

The total Hamiltonian is then

(28)

H = Hy + gH; (2.9)
where g € R is the coupling constant.
We first show that a self-adjoint operator in F is associated with the total Hamiltonian
H if the kernels G are in L2,
Let (e.,‘,,e s 1' 1,2,. ..} (vesp. {fain Sy $r8=1,2,..}, {ghsigoaiitits
B2y e she s, =1,2,...}) be two basis of Lz(El) (resp L3(%,), LQ(Ez),
L"'( 1)). We assume tlmt the e’s, f s, g's and h's are smooth functions in the Schwartz

space with respect to p.
For every Q = (q,q,7,7,,8,t,1) € N® we now consider vectors in F of the following

form:

U@ =ty | (eqir) oYy (eni, 01, - (e,)
B () Vi a5, (F5,) -5, (S3,) il
bJ +(94 ki) oo 08 4 (94k,)05, —(9-k,) - - - 05 _(9-%,)
o (Pt} o O (g b5 (hg) < B3 (hp)
The indexes are ordered such that iy < ... < ig, i} <... < 1,, and similarly for the

indexes j, k,I. The set {I® | Q € NB) is an orthonormal basis of F (see [15]) and
the set

b1 —(e—3,)

Frin = { finite linear combination of the basis vectors of the form (2.10) }

is dense in F.

As the formal expression of H shows, we have to deal with operators in F built from
the product of creation and annihilation operators.

For H, o (+,+,+) € L*(2) x B2 x 83) the formal operator

/ déydadés He e (€1, €2, €3)b3 e (€3)ba,e (€2)b1,c (€1)
TixTax Ty

. A\
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is defined as a quadratic form on Fgiy X Frint
i dexdeades < ¥ , oo (Er, o, Eo)bc(€)bn.e (2)bn.(61) >
DixE3xEs

By mimicking the proof of Theorem X.44 in [13], we get an operator, denoted by
Ap,er, associated with the form such that A, . is the unique operator in F such that
Frin € D(A¢er) is a core for A¢ e and

Aee =/ dé1d€ad€s He e (1, 62, 63)3,e(€3)ba,e (§2)b1 (1)
B1xEax5s
as a quadratic forms on Fgi, X Frin. Note that the formal operator

/ dE1dEadEaHeo (1, €2, E0)01 o(60)D3 0 (E2)03 o (65)
By xEaxIy

is similarly associated with A¢ , and we have

sie= [ dE1d€ades How (61,2, )08 (61)05,0(€2)15 o(60)
TixTyxEy

as a quadratic forms on Frin X Frin.

The proofs of the following propositions are similar to those in [3]. For sake of com-
pleteness we give here complete proofs.

We have

Proposition 2.1 Suppose that H o (:,+,-) € L*(£1 x B2 x 83). Then A and Age
are bounded operators in F with

[l Acerll = 140 Il < 1 HeerllL2(zy x 52 x22)-

Proof. Let ¥(?) be a vector of the form (2.10). For simplicity we assume that
rgsenaal = {1y ..,q} {i1,...vigt = {1,...,d}, etc...Let us consider Ay _, the
other choices of € and ¢ are treated similarly. A straightforward computation shows
that

,
STD =57 S (<) HTHUH, _era ® f-p ® 94q) 131 xTax )

a=1§=1y=1

9 q r ¥

I1 b;+(e+e)Hb;_(e_:)th(m) II B¢
i=1 i#a =1 = 3 lE;(B

II “(gM)Hba (9- k)Hb“(hmHm (h_)
k=1 k#y k=1 =1 k=1

A
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As the right hand side of (2.11) is a linear combination of orthogonal vectors, we get
q & s
144, T @2 =" 573" |(Hy,- 40 ® f-5 ® 94)*
a=1f=1y=1 (2.12)
SIH - P29
Therefore, in order to prove proposition 2.1, it is enough to show that (2.12) holds for

any finite linear combination of the W(®)’s. This can be done as in the proposition
L}

3.4 of [3]. We omit the details.
We now investigate operators in F associated with the interaction Hj. Let us
introduce the operators number of each particle:

No= 3 [dionee) =123 (213)

Each N, is self-adjoint in F and Fyy, is a core for it.
For G, (- ) € L*(21 x 3 x £y x £) the formal operators

[‘ o déydéadésd€aGe,e (1, 62,63, 64)b] (€1)D3 o (62)b5 ¢ (€3)bae(6a)

and
/ gy dédEyd€aGle (€1, 62, Es, E0)b]  (E4)ba,e (63)b2,e (§2)1,c(€1)
£y XEaxSaxEy

are defined as a quadratic form on Fri, X Frin. Again by mimicking the proof of
Theorem X.44 in [13], we get an operator, denoted by Be,e, associated with the form
such that B, . is the unique operator in F such that Frin C D(Ac,¢) is a core for
B, and

B¢ =/ 5 dé1drdEsdbaGee (€1, €2, Ea, €a)bi o (61)03,0(€2)b3, (63)bac(64)
EyxEaxEyx Iy

and

B = e o 1T (6, Eor B, B0 (E0)b.c(€)m,0(E2)0(61)
By xEaxE;xBy

as quadratic forms on Fin X Frin.
We then have

Proposition 2.2 Suppose that G () € L*(Z) x B2 X T2 X ). Then D(Be),
D(B; ) > D(N;"*) and

1/2,
1B ¥l £ |Geerllza(e, xzaxzaxzy INa ¥l (2.14)

s1/2
1B ¥l S 1GeerllLa (s, xmaxzax ey Vs vl

o

for W € D(N}?).

. AT
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Proof. We only investigate By _. The proof for the other cases is quite similar. Set
Q= (q,q,r,7,5,5t,0) and Q' = (¢+1,q,7,7+1,5+1,5,t —1,f). Let ¥@ and ¥(?")
be two vectors in Fr, N F@ and Fiy,, N FQ) respectively.

We have

¥, ¥ @) = [ e désdedey

B1xLaxBVax Ty ) (2.15)
(G+,-(€1‘Ezv53y €a)ba, ¢ (€8)b2,— (E2)b 4 (€) W@, b4.$(§‘)“"°))

and by the Fubini theorem, we get

@@, B v @[ = | [ dea (b 609,

' ) (2.16)

[ T e s @) @)
E1xE3xE;

By the Cauchy-Schwarz i lity and proposition 2.1, we obtain

I(W(Q’)'B*‘_q,(m)r <
2
( / b+ (E) T Q| ( / dExd§2d€J|G+,—(E|,E2-Ea-E4)|2)l/2) [RACRI S
o D1 xBaxBa (2 17)

Applying again the Cauchy-Schwarz inequality and by the definition of bs4.(€4) we
finally get

g 2 v q
(¥9), By, ¥ Q)| < UGy - PIFDUETD|? = |G - PN @ 222,
Since By, -0 € FQ) we deduce
@y 20 V2@ 1215112
|(@, By - )| < G - IPIN X @

for every & € F,,,. Now, since ® € Fyiy, is dense in F, the last inequality still holds
for every ® € F and every @ € N®, Therefore we have

1By - ¥ D|? < |G - PN 22D
which yields
1B TP < G - PN (2.18)
for every W € Fy,,,. Since Fiyy is a core for N‘”2 and By _ is closable (see Theorem
X.44 in [13]) we have D(N‘l“) C D(By,-) and the inequality (2.18) is still true for
every W € D(N:/z). | |

)
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Set
Vs = /L oy, GG (61,65,60)
U361 (€0)bae(E0), o
vie= [ dedade Gl 6.6

Te(€1)5er (62)bac (€4),
where GJ,, € L2(£; x 83 x £1), j = 2,3. VJ"', j = 2,3, are defined as quadratic forms
on Frin % Frin. As above we then have
Proposition 2.3 Suppose that G?, € L*(S) x £ x ), j = 2,3. Then D(V;t')‘
D(V,"") =) D(N;/z) and

IV W < NG lzaaxmaxn NG/,

Sl ; 13 (2.20)
V0| < 1Geerlleamxzaxen 1N ¥l

for W € D(N}'?) and j = 2,3.

The proof of proposition 2.3 is exactly the same as the one of proposition 2.2.

The following theorem shows that the formal total Hamiltonian is associated with
a self-adjoint operator in J, still denoted by H, if the interaction kernels are in L*.

Theorem 2.4 Suppose that Gee(+y+,+,+) € L*(8) x £3 x £y x £y) for € # ¢'. Then
H = Hy + gH; is a self-adjoint operator in F for every g € R with domain D(Ho).

Proof. Recall that Hy with domain Fyin is essentially self-adjoint. By proposition
2.2 we have, for every ¥ € Fin,

| H | < 2 (Z IIG«rnu) (e ]

e’

and we get for every ¢ > 0,

1
HU|| <2 Gee 2||Ng¥|| + —=|1¥|| ) .
TATES (; I ,||u> (Ve + = 1)
Furthermore, since wq(p) > my, we have
1
NG < L o).
Thus
1 1
I <2 (Z G ||u> (VTR + )
e’

which means that H; is relatively bounded with respect to Hy with zero relative
bound and the theorem follows from the Kato-Rellich theorem.

o @AY
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3 The results
Our main result states that H has a ground state for g sufficiently small. We have

Theorem 3.1 Suppose that for € # €, Gee (v, +,+) € L*(21, 52,52, %;) and

3

Geo(€1,62,63,€0)°
i i s 'ﬂ)%“”d«d&dm& <o @.1)

where & = (pj,s;), p; € R®, j =1,2,3,4 and where B(0,1) = {(p, p2, p3, p4) € R1?
J

i lpil? <1}
Then there exists go > 0 such that H has an unique ground state for |g| < go
Furthermore o(H) = o4(H) = [inf o (H), +00).

Notice that Theorem 3.1 is true for sharp cutoffs, i.e., when G- = xa, A > 0, with

xa(P1,p2,p3,pa) = 1 if [pj| <A, §=1,2,3,4

= 0 otherwise. 8:2)

This means that the ground state exists without infrared regularization even if parti-
cles with zero mass are involved.

The statement concerning the absolutely continuous spectrum of H follows easily from
the existence of asymptotic Fock representations of the CAR. Precisely, for f € L2(R%)
we define the operators

Bieo(f) = e HemtHotf (f)ettHoe=ttH,  j=1,2,3,4 €=+
Then for f € C5°(R*) and ¥ € F the strong limits of b’ e .o (f) exist:

: l'g‘w Yie(f)9 = e (F)¥-
The bj‘ +(f)'s satisfy the CAR and if ¢ is the ground state of H, we have, for f €
G5 (R),

Vs (£)d=0.

The fact that o(H) = uc(H) = [inf o (H), +00) follows by mimicking [10].
Now the next theorem concerns the absolutely continuous spectrum of H. We define
S as the set of threshold of Hy:

S = {km, +Imy | k,1 € N}. (3.3)

Theorem 3.2 Suppose that for € # €, G (-, +,+) € L*(E) x £z x By x £1) satisfy
(3.1) and that for i = 1,2,3,4, p; - V), Gee and p}A,,Gee are all in L*(Z) x 5y x
¥y x 8y). Then there exists a constant C > 0 such that, for g sufficiently small, the
spectrum of H in R\ (S + [-C/g, C\/g)) is absolutely continuous.

T
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4 Proof of theorem 3.1
Let H; . be the operator obtained from (2.8) by substituting
G (€1,62,€3,64) = L{(py,pa.pa pa)lipa2e. psl2al) Gee (§1, €2, &3, €4)
for G, where o is a strictly positive parameter. We then define
H, = Ho + gHj 0.

H, is a self adjoint operator in F with domain D(H,) = D(H,) for any g € R and
any o > 0.
Set

Hy=3 / WO ()bic () + ) / wa(6)b3c(€)bac(€)dE. (1)

We consider H} as a self-adjoint operator in the Fock space F; associated with the
particles and antiparticles 1 and 4. We then have o(H}) = {0} U [m;, 400) because
my < my.

For 0 < A\ < my let P(\) be the spectral projection of H§ in Fy corresponding
to (=00, A] and let Py,,,, be the orthogonal projection on the vacuum state of the
neutrinos and antineutrinos 2 and 3. We consider Py, as a projection in the Fock
space F, associated with the neutrinos and antineutrinos 2 and 3. Note that F =
F1 @ Fy. Asin [3] and [4] theorem 3.1 is the consequence of the following theorem:

Theorem 4.1 There exists go > 0 such that for every g satisfying |g| < go the
following properties hold:

(i) For every ¢ € D(Hy) we have Hyyp — Hyp as o — 0.
(i) For every o € (0,1), H, has a normalized ground state ¢,.
(iii) We have for every o € (0,1]
() P(A) ® Py $o) 2 1 = 8g(A)
where 8,(X) tends to zero when g tends to zero and 0 < 8,(\) < 1 for |g| < go.

Proof. We first estimate E, = info(H,), o € (0,1]. One proves that £, < 0 as in
lemma 4.3 of [3].

Recall that there exist a constant C' > 0 such that for every n > 0 and for every
o€ (0,1)

il
[ H1ov]l < C(V/all Hovl + ﬁ”‘ﬁ")» ¥ € D(Ho)- (4.2)
Therefore it follows from the Kato-Rellich theorem that
= lelGis .«
B, < (4.3)
Ve < 7= lome

e AW
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when [g|\/nC < 1.
(i) follows from the following inequality and from the Lebesgue’s theorem:

ICH — Ha)l < 2C19l(3 G — G llca) (/i Hol + —=[191)-
2 NG

(ii) is proved as in [4] or in [3] (theorem 4.10). We omit the details. Thus we have
Hyo = Bsdy with ||¢o|| = 1.
Writing Hodo = Ho¢a — gHr,0¢0 we get using (4.2) and (4.3)

[ Hodoll < (1Bel +lgl-=)(1 — ylglC)
a (14)
%)(1 — VAlalC)(2 ~ lglyiC)

for every o € (0,1] and for \/7]g|C < 1.
It remains to prove (iii). Note that (ili) is equivalent to

<ol

((PN* @ Pa,,, +18 Pq,,,, )80, ¢a) < 55(X) (4.5)
for every o € (0,1].
Note that
0 =(P(\)* @ Payo)(Ha ~ Eo)bo (4.6)
=P(\)*(Hs ® 1 — E;) ® Payaudo + 9(P(N)* @ Pa,.)Hr oo "
Remarking that P(A\)*H} > my P(\)* and using E, < 0, we get
(PO)* © Pt ) < ~ L (POY © Por Hi o0,0).
Furthermore it follows from (4.2) that there exists a constant C > 0 such that
(PO © Pay Hiotha 60)| < C
and thus
(PO ® Payybar90) < Cf,i]'l (4.7)
On the other hand one easily verifies that there exists a constant C > 0 such that
1P s ll < N0l + 1N 06 ) (8)

for every o € (0,1] where we recall that Nj = 3, fb;,({)b,_.({)df.
The proof of (iii) then follows from (4.5), (4.7), (4.8) and the following lemma

Lemma 4.2 There exists a constant C > 0 such that

: 2
|]N)“éaﬂ’ <gCc (Z / l.g‘_‘(é'l':fl‘zwd&d&d&d&) | Hodo || (4.9)

et

for j = 2,3 and for every o € (0,1].

Py e
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Proof. Recall that,
{b2c(), 5(€))} = {b2(€), b3 (')} = 0 (4.10)

according to our convention. It follows from the CAR and (4.10) that we have the
following pull-through formula:

0= (Hy — By +wj(€)b(€)bo + Vi (€)de, =23

where for € # €

Vae(a)= /dfldgadfllagu(fhgvECI-fd)b;d(51)”5:'(53)‘74(’(54)
(.11)
Vs<o(e)= /dﬁldﬁzd&ny(ﬁlvﬁzxf.fa)b;((fl)biu(52)b4<(€4)~

We have 5
by e(€)bo = —9(Hy — Eq +w5(€) ™V (€)bo-

By proposition 2.3 we get

o€l < —E— ( / IGuu(ﬁn@.fa.f-:)l’dend&ad&) IHogol?  (42)

w2l

and
2
(€160 < oy ([ 16 o6 €0PdEades) gl (819

Note that

O G R AN X (@14)

The lemma then follows from (4.12), (4.13) and (4.14) and theorem 3.2 is proved.
Note that the uniqueness (up to a phase) of the ground state follows as in (1] and
[10]. Thus theorem 3.1 is proved. L}

Let us remark that the proof of lemma 4.2 is rather formal but, by mimicking [10],
one easily gets a rigorous proof. We omit the details.

5 Proof of theorem 3.2

In order to prove the absence of continuous singular spectrum away from the thresh-
olds of Hy, we use the Mourre’s method which originates from [11]. Actually this
method has been applied successfuly to QED models (see for instance [4, 5, 7, 8, 2]).
To this end, we estimate from below the commutator of H with an anti-selfadjoint
operator A = —A*, Our choice for A is the sum of the second quantization of di-
lation generator on each particle and antiparticle space. Namely, denoting a; =

T
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(s * Vi, + Vy, - p;), the generator of dilation in the particle j acting on L(R?), we
set

4
A=>">"dlye(ay) (5.1)

o=k j=1

where giving an operator a on L*(R®), the operator dT';,(a) : F — F is defined by

rye(a) = [ déh () abs(6) 6:2)

Note that iA is essentially self-adjoint on .7:{.,. It remains to compute (A, H]. We
begin with the remark that the second ors, i.e., for
given operators a, a’ on the one particle space L*(R?) and given f € L2(1R3) such
that af and a* f belong to L*(R?), we have for j = 1,2,3,4 and € =

[dDe(a) dl",( @) = dl'se([a,a")}¥
[dTje(a), b3 ()] = bj.(af)¥ (5.3)
[dTje(a), bje(N)]Y = —bje(a® F)v,
and also for 4,5 = 1,2,3,4 and ¢, ¢’ = + with (j,€) # (i,€):
[dT'je(a), dTier (a')]p = O
[dTje(a), bl (f)]¥ = 0 (5.4)
[dr'je(a), bier (F)]1 = 0

for every ¢ € Fap.
Recall that

4
Ho=3 3 dlye(w;)

e=k j=1

and a straightforward calculus leads to

W = __”2
[A,Holw-(éﬂ,(( m)+drzx(|P|)+dFJ.(|P|)+dr4«( m) )

(55)
for 1 € Fn.
Let us remark that [A, Ho) is relatively bounded with respect to Ho.

Proposition 5.1 Let A be a closed subset of R such that ANS = 0 and set f =
dist(A,S) > 0. Then

Ea(Ho)[A, Ho|Ea(Ho) > BEa(Ho)

where Ex(Ho) denotes the spectral projection of Hy for the interval A.

. T




R W

52 Laurent Amour, Benoit Grébert and Jean-Claude Guillot ,%

Proof. Using (5.5), we have for a given state W@ & F(@) such that Fa (Ho)¥(Q =
W@,

2 a =2
(A, Hol¥Q(E,,...,5) = _171,>_+ e MEEY
R e

"
+Z|I72j|+2|132;|

+ ZIIJ.«,I+ZIP3;|

j=1

t 0 t =2
S SRR s _”__)\p(a)(

» —— Z ibon )
d=1 1},,1+1n4 J= p,)+m4

(5.6)
The free energy of such state Q) is given by
Ho¥ 9, ..., Ep) = Z\/P1,+'"1+Z\/P1,+"‘l
Z P2y -+ z B2
o (5.7)
Z [ps| -+ E |73
j=1
+ Z VP A mid -+ Z Bay +m3 ) EE;,...,Er)
J=1 i=1
with
9
z \/7’1; * ’”H‘z \/”l: +mi+ Z|Pz;| it ZIPM
i=1
(58)

+Z|I’JJ| +Z|ﬁ.’u| -l-z VP +m}+z\/fr’}, +mi €A.
J=1 Jml i=1 J=1

e 2"
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We decompose HoW?) as follows

HoW(E,,..., =) = [(q + @)y + (t+ Dy
q a4
+ D (/PR md = ma) + YO (/B +mi —my)
j=1 i=1
2 "
+ 3 [pasl+ D Il

=1 3=
El L
+ 50 Ipasl+ D 1ol
J=1 J=1
t i
+ Z( Py +mi —ma) -+ > (y/5h; +mi - mq)]\P‘Q’(Eq, ooy Ep)
j=1 =1

(5.9)

By (5.9) we get according to the definition of #

q a
z(,/pfj +md —my) + Z(‘/ﬁ?] +m} —m,)
=1 =1
r P a i
+ 3 Ipasl + 3 IBasl+ D Ipasl + D [ (5.10)
=1 j=1 =1 =1

t 11
+ 30 /pRy +md = ma) + (/B +mi—ma) > 8
=1 =1

for (p1, pa, ps, pa) satisfying (5.8).
Therefore using

2 2
= (VP2 +m? - ".)m
vp?+m? (5.11)

> Vprtm?—m

we conclude the proof. n

T, e
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We now estimate the commutator (A, Hy]. By (2.8), (5.3), (5.4) and since aj = —a;
we have

4
.1y =( 0 [ ddendéadeu(a,Guc) 6 60,60,64)
efe j=1

b, (61)05, ¢ (62)b53 (§3) b1, (§4)
q
+ DY [ dederdeadei TG G 6o ar)

e j=1

(€0t ()b, (€2)b1,c(60) ) ¥

(5.12)

for 1 € Fy,. Therefore, if we assume that a;G. € L? for each j = 1,2,3,4 and for
each € # ¢, we deduce as in the proof of theorem 2.4 that [A, H;] is Hy relatively
bounded and in particular there exist ¢ > 0 such that

Ea(Ho)|A, Hi)Ea(Ho) > —cEa(Ho). (5.13)
We deduce

Proposition 5.2 Assume that a;Ge. € L? for each j = 1,2,3,4 and for each € # ¢.
There exists ¢ > 0 such that if A is a closed interval of R verifying AN S = () then

Ea(H)(A, H|Ea(H) > (g - %)Ea(ﬁ)

where E5(H) denotes the spectral projection of H for the interval A and 3 = dist(A, S) >
0 is suficiently small.

Proof. Let A’ be the closed interval such that A = A’ 4+ [—3/2,3/2] and assume
that 0 < 3 < 1. Using the Helffer-Sjostrand Functional Calculus (see for instance
[6]), we find that

NBa(H)(1 - Bar (Ho))| < 5

for some constant ¢; > 0 independent of A, g and f3.
Therefore, using that (A, H] is H bounded (see the proof of theorem 3.2 just below),

Ea(H)(A, H\Ba(H) > Ea(H)Ear(Ho)(A, H)Ea:(Ho)Ea(H) — c,%EA(H) (5.14)

for some constant c; > 0.
On the other hand, from proposition 5.1 and (5.13), we have

Eae (HoIA, H|Bar(Ho) > (5 ~ ca9) Ex (Ho) (5.15)

T .
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for some constant ¢y > 0.
Inserting (5.15) in (5.14) we get

Ea(H)[A,H|Es(H) > (5 ~ cag) Ba(H)Ea (o) Ea (H) ~ xS Ea ()
> (§ - ca0)(1 - BB (H) - S Ea ()
> (5 - e

for some ¢ > 0 independent of A, g and f3. | |

Proof of theorem 3.2 Theorem 3.2 is a consequence of proposition 5.2 and the
Mourre theory. Actually it only remains to verify the applicability of this theory.
This means that we have to verify that (A, H] and [A, [A, H]] are H bounded. From
(5.5) we deduce that [A, Ho| is Hy bounded. For the second commutator a simple
caleulus gives

p'mi
.. ol = [ S (rrombrs) + o + (o)

e (et k) o

for ¥ € Fyy. Thus (A, [A, Ho)] is Hy bounded.

We have already noted that [A, H;] is Ho bounded as soon as a,G, € L? for each
7 =1,2,3,4 and for each € # ¢’. The computation of the commutator of A with the
expression of [A, Hy] given by (5.12) shows that [A, [A, H;]| is Hy bounded as soon
a8 a;a;G € L? for each j = 1,2,3,4 and for each € # €. These conditions on G
are satisfied when p; - V,, G and p?A,, G are all in L3(Z; x £, x £ x ;) for
i=1,23,4and e #¢€.

As in [2] lemma 4.4, one easily checks the other Mourre hypothesis.

6 Other examples

The main other examples of the Fermi-weak interactions are the beta decay of the
neutron and of the quarks u and d. Let us consider the decay of the quark d. This
decay involves four species of particles and antiparticles: the quarks u and d and their
antiparticles @ and d, the electron e~ and the positron e, the neutrino v, and its
antineutrino #, (see (17, 9]). The Fock space is the fermionic Fock space associated
to these four species of particles and the interaction is given by

Hy =/d£|d£zd{sd£4 J (€1, €, 63, €4) b] 4 (62)b3 - (€2)b5 4 (§3)ba 4 (€4)

(6.1)
+ /dfldfzd&d& J (61,62, 3, &) b3 4 (§4)b3 4 (§3)b2,— (§2)b1 4. (61).

P, e
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Here the particles and antiparticles 1 are the electrons and the positrons, the particles
and antiparticles 2 are the neutrinos v, and 7, the particles and antiparticles 3 are
the quarks v and @ and, finally, the particles and antiparticles 4 are the quarks d and

Obviously theorems 3.1 and 3.2 remains valid for the associated Hamiltonian under
appropriate conditions on the kernel J.

We can also consider the decay of the massive bosons W# into electrons, positrons
and neutrinos v, and 7, (see [17, 9]). The Fock space is the tensor product of the
fermionic Fock space associated to the electrons, the positrons and the neutrinos v,
and 7, and of the bosonic Fock space associated to a massive boson of spin 1. The
interaction is then given by

Hy = Z/dﬁxdﬁzd&; Keer(61,62,6) b1 e (61)65 e (§2)as,e(83)

Fe ©2)
+ 3 [ derdeades Kool a6 i ()b (@b (6r):
ete!

Here the particles and antiparticles 1 are the electrons and the positrons, the particles
and antiparticles 2 are the neutrinos v, and 7, and a4 (£3) (resp. a—(€3)) is the
annihilation operator for the meson W= (resp. W).

Once again theorems 3.1 and 3.2 remains valid for the associated Hamiltonian under
appropriate conditions on the kernels K ..

One could also give a mathematical model for the decay of the massive boson Z°.

Received: Nov. 2006. Revised: Dec. 2006.
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