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ABSTRACT
We consider a semi-classical Schrédinger operator —h*A + V with a degen-
erate potential V(z,y) = f(x)g(v).
g is assumed to be a homogeneous positive function of m variables and f is a
smcnly positive function of n variables, with a strict minimum. We give sharp
ic behaviour of low ei lues bounded by some power of the parame-
ter h, by improving Born-Oppenheimer approximation.

RESUMEN

Consideramos un operador de Schrédinger semi-clésico —h?A + V con poten-
cial degenerado V(z,y) = f(z)g(y) .
Suponemos que g es una funcién positiva homogénea de m variables y f es una
funcién estrictamente positiva de n variables, con un minimo estricto. Damos
un comportamiento asintético éptimo de autovalores acotados por abajo para | al-
guna potencia del parametro h, di perfecci i de la
de Born - Oppenheimer.
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1 Introduction

In our paper [11] we have considered the Schrédinger operator on
L*(R2 x RY")
Hy, = hD? + K?D2 + f(2)g(v) (L.1)
with g € C(R™\ {0}) homogeneous of degree a >0,
9(ny) = pg(y) >0, VYu>0andVy € R™\{0}. (1.2)

h >0 is a semiclassical parameter we assume to be small.
We have investigated the asymptotic behavior of the number of eigenvalues less
than A of Hj, ,
N b (G = O e (1.3)
Ax(Hn)<A

(tr(P) denotes the trace of the operator P).
If P is a self-adjoint operator on a Hilbert space H , we denote respectively by
sp(P) | spess(P) and spy(P) the spectrum, the essential spectrum and the discret
spectrum of P .

When —co < inf sp(P) < inf spess(P) , we denote by  (Ax(P))kso the
of P, repeated according to their multiplicity:

increasing seq of eigenvalu
spa(P) ()] = o0, inf spess(P)[= {M(P)} - (1.4)

In this paper we are interested in a sharp estimate for some eigenvalues of By .
We make the following assumptions on the other multiplicative part of the potential:

f € C®(R"), Yae N, (|f(z)| +1)7'67 f(2) € L=(R")

0 < f(0) = infaemn f(x) (1.5)
£(0) < liminfl, e f(z) = f(c0) ¥
9*£(0) > 0

9*f(a) denotes the hessian matrix:

2 o
210 = (5 t@)
Ow;Ox; 1<i,j<n
By dividing Hj, by f(0), we can change the parameter h and assume that

fO)=1. (1.6)
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Let us define : i = h? 3+ and change y in yfi; we can use the homogeneity of
g (1.2) to get :
sp (Hu) = h* sp (H"), (1.7)

with A% = D2 + D2 + f()g(y) = K*D? + Q(z,y,Dy) :

Qx,y,Dy) = Dy + f(2)g(v) -

Let us denote the increasing sequence of eigenvalues of Dg + g(y) , (on L3(R™)),

by (13)j>0 -
The associated eigenfunctions will be denoted by (y;); :

Diei(y) + 9)ei(y) = nies(v) .8
(i [ or) = i
and (p;); is a Hilbert base of L3(R™) .

By homogeneity (1.2) the eigenvalues of Q.(y,Dy) = Dz + f(z)g(y) , on
L*(R™) ) , for a fixed z, are given by the sequence (\;(z));>0, Where : X;(z) =
Bl
So as in [11] we get :

ar > [/#Dg + ()] (1.9)
This estimate is sharp as we will see below.
Then using the same kind of estimate as (1.9), one can see that
inf spess (") 2 f?®+(c0) . (1.10)

We are in the Born-Oppenheimer approximation situation described by A. Mar-
tinez in [10] : the "effective ” potential is given by A\ (z) = py f/(+9)(z), the first
cigenvalue of @, and the assumptions on f ensure that this potential admits one
unique and nondegenerate well U = {0}, with minimal value equal to p;. Hence we
can apply theorem 4.1 of [10] and get :

Theorem 1.1 Under the above assumptions, for any arbitrary C > 0, there exists
ho > 0 such that, if 0 < h < hg , the operator (H") admits a finite number of
eigenvalues B (h) in [uy, py +CHh), equal to the number of the eigenvalues e of D2 +
£ < 92f(0) z, = > in [0,+C] such that :

Ex(h) = M(B™) = (112D§+u1f2/<2+“>(m)) + 0o(1?). (1.11)

More precisely Ey.(h) = Ak(ﬁ") has an asymptotic expansion

Bi(h) ~ p + fi(ex + Y aih/?). (112)
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If Ex(h) is asymptotically non degenerated, then there exists a quasimode

@) ~ KIS 20, (), (L13)
320
satisfying
Gy < [[f=mre V@ g (w, y)| < Co
[=mre= ¥ Ray (z,y)|| < C;
Il (ﬁn == fer = Yigiy ak:‘ﬁj/z)
A= e V@A SR, ey P e (@)l < CyRID/2

(1.14)

The formula (1.12) implies

M(AY) = py + B (D2 fO0) =z, z >) + O3,  (L.15)

and when k = 1, one can improve O(/i%2) into O(h2) . The function ¥ is defined by
i () = d(x,0) , where d denotes the Agmon distance related to the degenerate
metric py f2/(2+9)(z)dz2.

2 Lower energies
We are interested now with the lower energies of H" . Let us make the change of

variables
(@ 9) = (& /O @)y) . @1)

The Jacobian of this diffeomorphism is f™/(2+4)(z), so we perform the change of test
functions : u — f~"™/(+20)(3)y | to get a unitary transformation.

Thus we get that o o
sp (") = sp (") (@2

where H" is the self-adjoint operator on L%(R™ x R™) given by
H" = KL*(x,y, Dz, Dy)L(z,y, Dz, Dy) + f*)(2) (D2 +9(v)) ,  (29)

with

L@, DesDy) = D + g l0Dy) = 5191

2+a
We decompose H" in four parts :

A" = R2D? + fC+9) () (D2 +g(v))

2o 2 (V () D2) (D) s
il e (V5@ = f(@)A@)) (WD) — %] :

+ R V(@) Pl(wDy)? + 2]
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Our goal is to prove that the only significant role up to order 2 in & will be played
by the first operator, namely H} = B2D? 4 f2Cta)(z) (D2 +9(v)) -

Let us denote by u ' the eigenvalues of the operator D2 + p; 2+ (z) and
by w;f & the associated normahzed eigenfunctions .

Let us consider the following test functions :

wiu(,9) = Wa@e; )
where the ¢;’s are the eigenfunctions defined in (1.8); we have immediately :
th(“?,k(z,y)) =vhal(z) .
We will need the following lemma :
Lemma 2.1 . For any integer N , there exists a positive constant C depending

only on N such that for any k < N , the eigenfuncti; w;k tisfies the foll
inequalities : for any o € N" | |a| < 2,

I ﬁ;al/z \ngp;‘_,c\” < C @5)
I (%) el < w2 '

with hy = ;% .

Proof.
Let us recall that it is well known, (see [5] ), that

Yk <N, pilvfy =1+ O(fy).
It is clear also that
[ﬁsz + (g — #»lun ]w}ﬁk(x) =0. (2.6)

We shall need the following inequality, that we can derive easily from (2.6) and the
Agmon estimate (see [5]) : Ve €]0,1[,
ef [fZ/(2+a)( = u“u" L62(1~e)‘/’d,,k(z)/n,|w£k(z)|2 i

[ e @) ~ i) i@ de e

where d; . is the Agmon distance associated to the metric [fz/(z'“‘)(z) - p].‘lt/fk] da?
g
Let us prove the lemma for |a| =
A [ [RID- hu@P + (/2@ - i )] do = 0,
ui'vl—1 = O(Ky),, and f2/Ctd)(z)-1 > 0,
we get that A || | Dz ¥ (@)] | < C




Abderemane Morame and Frangoise Truc CuBo
—©,302001)

Furthermore, we use that C~Y|Vf(z)|? < f¥C+d(z) -1 < C|Vf(z)?,
for |z| < €', the exponential decreasing (in ;) of w:"k given by (2.7) and the
boundness of [Tl(.t)]/f(.?:) to get

FVI

@i < o / [PEHa) - 1) [gf(@) do < RO
Now we study the case |a| =

If ¢o €]0,1] is large enough and |z € [Iil/2

co, 2co] , then we have
|=[2/C < fHe e @)=yt < Clal? (28)

Therefore there exists Cy > 1 such that CT![z[*> < djx(z) < Cilzf?,
and then 3
|e|? < hiCedin@hs (2.9)
Then the inequality: C~'|z| < |Vf(z)| < Cla|, with (2.8) , (2.9) and (2.7)
entail that
n
Jeizconz2 G 19 (@) Pda
S KO J [0 e) il byl (o) o
S BOJ [0 @) - ] W@ da
< Ko,

It remains to estimate 1i2||D“w (z)|| with |a] =
We use that —h7AYY, (@) = (- fz/(““’( )+ w5t "A]1ﬁ" @k
and that we have ])IOVGd that [|(—f@+e)(x )+[L l/]'k] ;,k(I [[S=Rfj @R
so IDSYl (@) < C/fy if lal =2.
We will need the following result.

Proposition 2.2 Let V(y) € C®°(R™) such that

35 >0,Co > 0st. —Co+yl*/Co < V(y) < Collyl* +1) @10)
VaeN™, (1+[y2)e-1eD268V(y) e L=(R™). |

If u(y) € L*(R™) and D2u(y) + V(y)u(y) € SR™),
then u € S(R™). ( (]R"') is the Schwartz space).

The proof comes from the fact that there exists a parametrix of Df + V(y) in
some class of pseudodifferential operator: see for the more general case in (7], or for
this special case in Shubin book (17].
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Theorem 2.3 .
Under the assumptions (1.2) and (1.5), for any fized integer N > 0, there exists
a positive constant ho(N) verifying : for any h €]0,ho(N)|, for any k < N and any
Jj <N such that
py < pfC+ (o),

there exists an eigenvalue \jr € spa (I?") such that

BN = oY (ﬁ2D2+,u £+ (g) ) | < KC. (2.11)
Consequently, when k =1, we have
= [+ P HEIOPDN | < e (2.12)
Proof.
The first part of the theorem will follow if we prove that :
I — B (o) | = IE" = i)yl = OF).

Let us consider a function x € C°°(R) such that

x(t) =1 if |t|<1/2 and

X() =0 if [t >1.

Then (Dj +g(¥))(1 - x(ly))e;(y) € S(R™),
and Proposition 2.2 shows that (1 — x([y]))¢;(¥) € S(R™).
As Dip;(y) = (u; — 9(y))9;(y) , we get that

Vk €N, (1+u)*lle;@)* + Dyp; @) +Dje; )] € L'®R™).  (213)

The quantity (ﬁ" - I?f)(u;k(x, y)) is, by (2.4) , composed of 3 parts. According
to Lemma 2.1 and the estimate (2.13), the two last parts are bounded in L?-norm by
120, (1 <C).

To obtain a bound for the first part, we integrate by parts to get that

V() A2 2 |Vf($)| " IVf@) 5
II 7@ Dol C (||Dz k” x| (@) PRl + D20l % =52 7 Wil
and then we use again Lemma 2.1. Thus : || f(:;) Dyl < C
According to estimate (2.13) we have finally || ((:;) D (yDy)ul,| < C.

3  Middle energies
We are going to refine the preceding results when a > 2 and f(oo) = 0. It is possible

then to get sharp localization near the j;’s for much higher values of j’s. More
precisely we prove :
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Theorem 3.1 . We assume (1.5) with f(co) = oo, (1.2) with a 2 2 and with
g € C*R™).

Let us consider j such that p; < h=2%;
then for any integer N , there exists a constant C depending only on N such that,
for any k < N | there exists an eigenvalue \jk € Spa (H") wverifying

[k = Mo (D2 + s /) (@)) | < Cush?. (@1)

Consequently, when k =1, we have

2 1/2
= [+ n IR | < cut. @)

Proof :
Let us define the class of symbols S(p'(y,n)) , s € R, with p(y,n) =
[nl* +9(v) +1.

a(v,m) € SE'(y,m) iff g(y,m) € C(R™ xR™)
and for any a and f € N™,
p*wn)(Inl + D)7yl + )P\ D5Dg(wm) € L=(R™) .
For such a symbol g(y,n) € S(p*(y,n) , we define the operator @ on S(R™) :

22 el f()dzd

Q) = @ [

Ram
We will say that Q € OPS(p*(y,n)) -
It is well known, (see [7]) that (D; +9(y))* € OPS(p*(y,m)) -
As a > 2, we get that yD, € OPS(p(y,n)) , and then that yDy (D2 +
9(v))~' € OPS(1).
Therefore yD, (D2 +g(y))™" and (yD,)*(Dj +g(y))~* are bounded operator
on L*(R™), and we get as a consequence the following bound :
15 Dyl + 152l @D 05l < C- (33)
As in the proof of Theorem 2.3, using (3.3) instead of (2.13), we get easily that
(A" - Byl < ClR2uy + B3S%) < CRpy

and then Theorem 3.1 follows.

4 An application
We consider a Schrodinger operator on L2(RY) with d >2,

P = —h?A + V(2) (4.1)
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with a real and regular potential V(z) satisfying

V e Co(RY; [0, +oof)
liminf);| e V(2z) > 0 (4.2)
T = V-1({0}) is a regular hypersurface.

By hypersurface, we mean a submanifold of codimension 1 . Moreover we assume
that T' is connected and that there exist m € N* and Cp > 0 such that for any
z verifying d(z, T') < C‘O_l

05 '™ (z, T) < Vi(z) < Cod?™(z, T) (43)

(d(E,F) denotes the euclidian distance between E and F).
We choose an orientation on T’ and a unit normal vector N(s)
on each s € T, and then, we can define the function on T,

2m
f(s) = ﬁ(N(s)gs—) V(s Vs € D (4.4)

Then by (4.2) and (4.6), f(s) > 0, Vs e TI.
Finally we assume that the function f achieves its minimum on T' on a finite
number of discrete points:

Do = fTH({mo}) = {1, se}, if mo = min f(s), (4.5)
and the hessian of f at each point s; € Yo is non degenerated:
Im > 0 st
%(d((df; w)) ; w)(s;) = mlw(s;)|?, Yw € TT, Vs; € So. (4.6)
If g = (gi) is the riemannian metric on T, then [w(s)| = (g(w(s),w(s)))*/?.

The hessian of f ateach s; € %o, is the symmetric operator on Ty, I", Hess(f)s; ,
associated to the two-bilinear form defined on Ts;T' by :

@) € (TP > @ d D) ; D)), (47

V(@5,@) € (T st (@(s)s;) = (v,w).
Hess(f)s, has d—1 non negative eigenvalues

Ps) S oo S plia(si),  (pilsy) > 0).

In local coordinates, those eigenvalues are the ones of the symmetric matrix

il 9
1o, (qu) Esg), (Cla) = (ondseprcos )
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The eigenvalues pf(s;) do not depend on the choice of coordinates. We denote

Trt(Hess(f(s; Z pe(s;) - (4.8)

We denote by (y;);>1 the increasing sequence of the eigenvalues of the operator
2

- d—q + t>™ on L2(R),

d
and by (p;(t) );51 the associated orthonormal Hilbert base of eigenfunctions.

Theorem 4.1 Under the above assumptions, for any N € N* | there exist hy €
10,1) and Co > O such that, if p; << h=4m/(M+1)EmM+3)

and if a € N4-! and la| £ N,

then Vse € To, Iy, € spa(P*) sit.

Al

s p2m/(m+1) [ (m“)ﬂ: o hl/(m+1)u]1/2 A‘(D‘)H
=

h’/f“/z"‘c

3 1
with A¢(a) = ;’—m [2a0p(se) + Trt(Hess(f(se)))] -

(ap(se) = arpa(se) + ... a-1pa-1(s¢) )

Proof:
Let Oy ¢ R? be an open neighbourhood of s; € £y, such that there exists

¢ € C®(0p; R) satisfying
o =T N Oy = {2€00; ¢(2) =0} ; (4.9)
|Vé(2)] =1, Yz € Op. ’

After changing @, into a smaller neighbourhood if necessary, we can find 7 €
C®(0p ; R*1) such that 7(s;) = 0 and Yz € Og,

V() Ne(2) = 0, Vi=1,...;d—1

rank{Vr(2),...,V74-1(2)} = d—1. (e

Then (z,y) = (z1,...,24-1,¥) = (T1,...,Ta-1,¢) are local coordinates in Op
such that

= 17 Ducuggay O (1 7402,) + 6120, (B120) ()

V = g f(z,y) with f e C®(V);

Vo is an open neighbourhood of zero in RY
7 (x,u) = §'(x,0) € C®(Voi R), [g]"* = det (39(z,9)) > 0.
z = (zy,..., x4-1) are local coordinates on Ty

and the metric g = (gi;) on I is given by

l»’"l(‘r))g._,gml = G(z), with (G(z))™ = (5”(:,0))15‘.1.9_1 i
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If we C3(Op) then
Phy = Phu  with
o u = [§]"/%w and (4.12)
Ph = —p? Pi<ijgd-1 0 (§40:,) — 1262 + V + h*Vo,

for some Vo € C®(Vo; R).
Let us write

V(z,y) = v""f(@) + "™ fi(2) + ¥*™fa(z.v) : (4.13)

f@) = f(z,0) and fo € C®(Vy).
We perform the change of variable (2.1) and the related unitary transformation,

(@)= (@) = (@ AR @)y Bty = Sty
to get that
& Phy = é"u with
QF = Qf + mf(w) + hPRo + +hAR; 4 2R (4.14)
Qb = W Ticijca—1 02 (990s) + f/HD(@) (~h?0F + ™)
and Ry = ta(z,t)(0: f(x)0:)0; + b(w, t)td,+

D bij (1), f (2)0z, (2)(t0:)* + c(x,1) |
]
R= Z Oz, (a.‘](z,t)azl) , all coefficients are regular in a neighbourhood of
1€4,j<d—1
the zero in R? .
Let p; be as in the theorem 4.1. We define h; = h‘/("“”)/p;/2 3
Let O be a bounded open neighbourhood of zero in R?-! such that O C
OoN {(z,0); z€ R},
We consider the Dirichlet operator on  L2(0p) , Hy? :

HyY = -1 3 8, (*@0s) + /"), (4.15)
1<k, 6<d—1

It is well known, (see for example (2] or [5], that for any a € N9=! satisfying the
assumptions of the theorem 4.1, one has:

Nk € sp(Hp') st Mg — (/™ + hAe)| < BC
Aj(a) is defined in theorem 4.1 in relation with our s, € g .
C is a constant depending only on N . We will denote by U';'_’"(r) any associated
cigenfunction with a L2-norm equal to 1. Let yo € C™(R) such that

xo(t)=1 if |t|<1/2 and x(t)=0 if |¢|>1.
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We define the following function :

ha(@t) = hYCmxo (/) (2) [y (D) — WHDER @)

uj o

with
B (@it) = fi (@) S A )y (ARGt
where ¢; € S(R) is solution of :
—ddi() + (" = w)di(t) = P,
and ¢ €0,1] is a small enough constant, but independent of h and j.
¢; exists because u; is a non-degenerated eigenvalue and the related eigenfunction
¢; (see 1.8) verifies [ t?™*1p2(t) dt = 0, since it is a real even or odd function.
Using the similar estimates as in chapter 3 , one can get easily that

ll,_l”faw’J"Lﬂ(m) o M,-_2|I(53<)2‘PJ”L2(R) <C

and Vk € N, 3G > 0 st u;*"*"|tkp;llam) < Ck -

It is well known that there exists ¢; > 0 s.t. o

lus — el = e, V€ # 5, then the inverse of vl - AT s
L*(R)-bounded by 1/e; , (on the orthogonal of ¢; ) . So in the same way as in
chapter 3, we get also that

15 O ey - 5000 sl ey < ©

and Yk € N, 3G, > 0 st py =02k 0 < G

As in the proof of Theorem 3.1, we get easily that

Q" — Mo alxollzl/eo)uph (@ )llzxon < 2™ +/2mc

and

| Ixolal/eo)uyia (@ Dlzaog) = 1| = O HDLEDER) — o),

So the theorem 4.1 follows easily.

Remark 4.2 If in Theorem 4.1 we assume that j is also bounded by N , then, as
in [6], we can get a full asymptotic expansion

+00
/\9[" = th/(nN-l)chtk“hk/(mq»l) 3
k=0
and for the related eigenfunction, a quasimode of the form

400
Who(z,t) ~ r(’l)f_'/'(’)/"”“"“’Xﬂ(t/ea) Z hk/(zm-z)aﬂk“(I)d,)k(t/hl/(mﬂ)) A
k=0

Received: June 2006. Revised: Oct 2006.




n.i'“&'ﬁn Accuracy on eigenvalues for a Schrodinger operator ... 13
References

[1] S. Dozias, Clustering for the spectrum of h-pseudodifferential operators with
periodic flow on an energy surface. J. Funct. Anal. 145,(1997),296-311.

(2] B. HELFFER, Introduction to the icls | analysis for the Schrodinger
operator and applications. Springer lecture Notes in Math., N° 1336 (1988).

(3] B. HELFFER, D. ROBERT, Propriétés asymptotiques du spectre d’opérateurs
pseudo-différentiels sur R®, Comm. in P.D.E., 7(7),(1982),795-882.

(4] B. HELFFER, D. ROBERT, Comportement semi-classique du spectre des
hamiltoniens quantiques hypoelliptiques. Annales ENS Pise IV, 9,(3),(1982),
405-431.

(5] B. HELFFER, J. SIOESTRAND, Multiple wells in the semi-classical limit. I.
Comm. in P.D.E., 9, (4), (1984), p.337-408.

(6] B. HELFFER, J. SIOESTRAND, Puits multipl ique semi-cli
VI. Ann. Institut H. Poincaré, Phys. Theor 46 ,(4),(1987), 353-372.

(7] L. HORMANDER, The Weyl calculus of pseudo-differential operators. Comm.
Pure Appl. Math., 32, (1979), 359-443.

(8] V. Ivril, Microlocal analysis and precise spectral asymptotic. Springer,
Berlin 1998.

[9] D. Knuar-Duy, A semi-classical trace formula for Schroedinger operators
in the case of critical energy level. J. Funct. Anal., 146,(2),(1997), 299-351.

[10] A. MARTINEZ, Développement asymptotiques et effet tunnel dans
Uapprozimation de Born-Oppenheimer. Ann. Inst. Henri Poincaré, Vol.
49,(3),(1989), 239-257.

[11] A. Moramg, F. TRuc, Semiclassical Ei lue Asy ics for a
Schréodinger Operator with Degenerate Potential. Asymptonc Anal 22(1),
(2000), 39-49.

[12] D. RoBERT, Comportement asymptotique des valeurs propres d’opérateurs
du type de Schridinger & potentiel dégénéré. J. Math. Pures et Appl.,
61,(1982), 275-300.

[13] G. V. ROZENBLIUM, Asymptotics of the eigenvalues of the Schrodinger op-
erator. Math. USSR Sbornik, (Eng. trans.), 22,(3),(1974), 349-371.

[14] B. SivoN, Nonclassical l ptotics. J. of Funct. Analysis,
53,(1983), 84-98.

[15] B. SiMoN, Semi-classical analysis of low lying eigenvalues I. Ann. Inst. H.
Poincaré, 38, (1983), 205-307.

AT




q

14 Abderemane Morame and Frangoise Truc '%

(16] M. Z. SOLOM\’AK Asymptotics of the spectrum of the Schrédinger operator
with g P ial. Math. USSR Sbornik, (Eng. trans.),
55,(1),(1986), 19-37.

[17] M.A. SHUBIN, Pseudodifferential operators and spectral theory. Springer-
/erlag, Berlin 1987.

(18] F. Truc, Semi-classical ptotics for tic bottles. Asymp. Analysis,
15,(1997), 385-395.




	Cubo a mathematical journal 2007 v9 nª2_0009
	Cubo a mathematical journal 2007 v9 nª2_0010
	Cubo a mathematical journal 2007 v9 nª2_0011
	Cubo a mathematical journal 2007 v9 nª2_0012
	Cubo a mathematical journal 2007 v9 nª2_0013
	Cubo a mathematical journal 2007 v9 nª2_0014
	Cubo a mathematical journal 2007 v9 nª2_0015
	Cubo a mathematical journal 2007 v9 nª2_0016
	Cubo a mathematical journal 2007 v9 nª2_0017
	Cubo a mathematical journal 2007 v9 nª2_0018
	Cubo a mathematical journal 2007 v9 nª2_0019
	Cubo a mathematical journal 2007 v9 nª2_0020
	Cubo a mathematical journal 2007 v9 nª2_0021
	Cubo a mathematical journal 2007 v9 nª2_0022

