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ABSTRACT
In this paper, some definite applications of the theory of reproducing kernels
to the Tikhonov regularization representing the extremal functions in the regu-
larization are established.

RESUMEN
En este articulo se establecen algunas aplicaciones definidas de la teoria de
micleos reproductores a la regularizacién de Tikhonov que representan las fun-
ciones extremales en la regularizacién,
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1 Introduction

Let E be an arbitrary set, and let Hy be a reproducing kernel Hilbert space (RKHS)
admitting the reproducing kernel K (p,q) on E. For any Hilbert space H we consider
a bounded linear operator L from Hy into H. We shall consider the best approximate
problem

i - 1
/g;,fx IlLf - dlln (1)

for a vector d in H. Then, we have

Proposition 1.1 (/1,9]) For a vector d in H, there erists a function fin Hy such
that

Jinf ILf ~ di = |LF - @

if and only if, for the RKHS H). admitting the reproducing kernel defined by
k(p,q) = (L"LK(-q), L"LK(-,p)) (3)
L'd € Hy. ()

Furthermore, if the best approximation f satisfying (2) exists, then there exists a
unique extremal function fq with the minimum norm in Hy, and the function fq is
expressible in the form

fa(p) = (L*d, L°LK(-,p))u,, on E. (5)

In Proposition 1.1, note that
(L*d)(p) = (L°d, K(-, p))uyc = (d. LK(-,p))n; (6)

that is, L*d is expressible in terms of the known d,L,K(p.q) and H. fq in (5) is
the Moore-Penrose generalized inverse solution Lid of the equation Lf = d. There-
fore, Proposition 1.1 gives a necessary and sufficient condition for the existence of the
Moore-Penrose generalized inverse. See [3,13] for the details. Proposition 1.1 is rigid
and is not practical in practical applications, because, practical data contain noises
or errors and the criteria (4) is not suitable. So, we shall consider the Tikhonov
regularization and we shall establish a good relation between the Tikhonov regular-
ization and the theory of reproducing kernels. For the Tikhonov regularization, see,
for example, [2,3].

In this paper, we, in particular, establish the important error estimates Theorem
3.1 and Theorem 5.1 and an important general discretization Theorem 6.1 with the
related error estimate. The author now thinks that the application of the theory
of reproducing kernels to the Tikhonov regularization is completed, in a sense, in a
general theory.
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2 Spectral theory

In order to discuss operator equations for general bounded linear operators L, fol-
lowing (2] we shall fix the well-established theory among spectral theory, the Moore-
Penrose generalized inverse and the Tikhonoy regularization. See [3] for the corre-
sponding results for compact operators L.

Let {Ex} be a spectral family for the self-adjoint operator L*L. If L*L is contin-
uously invertible, then

(@ D) / ~dEy.

In this case, the Moore-Penrose generalized inverse (5) can be represented by the
Gaussian normal equation
1 .
Jalp) = [ FaBAL"d. @

If R(L) is non-closed and d ¢ D(L!), i.e. if the equation Lf = d is ill-posed, then
the integral in (7) does not exist, Then, we shall define

)= / ’\indE,\L‘d. ®)

By construction, the operator on the right-hand side of (8) acting on d is contin-
uous, so that, for noisy data d® with [|d — d®|j» < d, we can bound the error between
Jad,o and

Jdalp) = \—rdE\L d? ©)

as follows:

Proposition 2.1 (/2], pages 71-7.9) For any d € D(L'),

11% L‘L I L d= hm)jd‘" = fa. (10)
Lurthermore,
I12fae = Lfgallr <6 (11)
and P
[l = &l < T (12)

Proposition 2.2 ([2], pages 117-118) For any d € D(L) with ||d — d®||y < 6, the
Junction f§ , defined by (9) is the unique minimizer of the Tikhonov functional

ik {ll I + 11 = LiIl5}- (13)
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If a = a(d) is such that
lim a(d) =0
50
and
v A0
e =
then

lim £ o = fa = L'(d). (14)

3 Representation of the extremal functions in
Tikhonov regularization
Our main purpose here is to give an effective representation of the extremal functions
fd,a Or fg.o in the Tikhonov regularization, since the representation by spectral theory
is abstract, in many practical problems.
We set 1
Kp(ypia) = ml\ (\p)-
Then, by introducing the inner product, for any fixed positive a > 0

(f, 9 Hx (L) = (s 9y + (Lf, Lg)n, (15)

we shall construct the Hilbert space Hy(L;a) comprising functions of Hy. This
space, of course, admits a reproducing kernel. Furthermore, we obtain, directly

Proposition 3.1 ([13,14]) The extremal function fqq(p) in the Tikhonov regular-
ization
inf 3 d - Lfll3 16
/é';h‘{"”fuu,\ + Fll5} (16)
is represented in terms of the kernel Ki(p,q;a) as follows:

faa(p) = (d, LKL(pia))y (17)

where the kernel K1(p,q; ) is the reproducing kernel for the Hilbert space Hyc(Lj )
and it is determined as the unique solution K(p,q; ) of the equation:

K(p,q;a) + %(Ll;',,.Ll\',,);{ = ll\'(p. q) (18)
c a

with ¥ N

K,=K(,q;a) € Hx for q€E, (19)

and

Ky =K(,p)€ Hx for p€E.
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In (17), when d contains errors or noises, we need its error estimate. For this, we
can obtain the general result:

Theorem 3.1 In (17), we obtain the estimate

faa@)] < %\/K(%l’)“dll‘n-

Proof.
From (15), we have

[faa® = I L*d, K(.,p) x|

ol + L*L
1 . -
S gzt dlax VK p)-
As we see from the spectoral theory, since
1 1
e = e
al + L*L al + LL*
we have the inequality

1 o) s % 1 o 1
o Sl = (L T nl+LL'd),_,K

ekl 1
3 (LL ol + LD 'nl+LL'd)7t

1 1
< feo———d —d
= ||LL al + LL* |7~r al + LL* ”H
1
< ldliwez lidllz
([3), pp. 71-73), and so, we obtain the desived result. n

For many concrete applications of these general theorems, see, for example, [4-
8,10-12].

4 New algorithm

In several concrete examples, we consider as the reproducing kernel Hilbert space H
the Sobolev Hilbert spaces on the whole spaces which admit concrete reproducing
kernels and as the Hilbert space M the Hilbert spaces Ly on the whole spaces. Then
the related reproducing kernels Ky (p,¢;a) and the extremal functions fq,o can be
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determined concretely in terms of the Fourier integrals from the general equation
(18). See, [4-8,10-12]. Here, we shall propose a new algorithm to solve numerically
the equation (18) which is, in general, an integral equation of Fredholm of the second
kind. Our algorithm will give a new type discretization whose effectivity was proved
by examples ([8]), since to solve the equation (18) is decisively important to obtain
the concrete representation (17).

We take a complete orthonormal system {e; }52, of the Hilbert space H .

For fixed {A;}52,(\; > 0), we consider the general extremal problem for (16)

&
o, v 2
Jin 2 all I, + ;wd — Liej)ul* p. (20)

That is,
lld = L3

is replaced by

S Al(dyeg)m — (Lf, eg)ul
J=1

Then, we shall give an algorithm constructing the reproducing kernel Koy, (p,g) of

the Hilbert space HK,,“\) with the norm square

0
allf e + o AIES e)ml* (21)
j=1
Here, of course, we assume that (21) converges for {\;}72,(A; > 0). However, in a
practical application, of course, we consider only finite terms in (21) and by finite
terms we can give a good approximation of (21).
We shall start with the first step. The reproducing kernel K™ (p, ) of the Hilbert
space with the norm square

1
all i, + D AL es)ml? (22)
j=1

is given by
M(er, LK) (LKL, e1)n

KW (p,q) = KO(p,q) - ;
1+ M(L(er, LK), e1)m

(23)

for
KO (p,q) = %1\’('“”_

For the second step, the reproducing kernel K*)(p, g) of the Hilbert space with the
norm square
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all Il + D0 Nl e5)ml? (24)
J=1
is given by

Na(ea, LG ) w( LK ea)

K (p,q) = KN (p,q) - S :
Lt Aa(E(ea, LKS ) €2)

(25)

by using the reproducing kernel K(V(p,q). In this way, we can obtain the desired
representation of Koz, (pyq) = K®)(p,q) . Then, we obtain

Proposition 4.1 For any d € H, the extremal function fo xa in the extremal prob-
lem (20) is given by

Jana(®) = D0 Aj(dyes (e, Lias, (+p)rs (26)

J=1

where we assume that (21) converges on E.

We consider a general extremal problem in (20) by considering a general weight
A;}. This means that for a larger \;,, the speed of the convergence
) i

(Lfy e ) = (dyejo)nm
is higher. This technique is a very important for practical applications. For examples,
see (6,8].
5 Error estimate
In the representation of (26), when the data (d,e;)» contain errors or noises, we

need its error estimate. For this we obtain the good result, which is corresponding to
Theorem 3.1:

Theorem 5.1 In (26), we obtain the estimate
|faxna(@)]
2 1/2

a Z Ajl(d, e; ) VK(p,p). (27)

j=1
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6 Discrete point data case

As a very general algorithm, we shall consider the discrete point data case such that:
In (20), we shall consider the corresponding problem:

o
inf @ A - b2 3, 28,
/it { alfliz +Zl 15 (2;) = bs| (28)
for fixed discrete points {p;}; of the set E and for given values {b;};. Then, the
corresponding kernels for (23) and (25) are given similarly

_ MEO@p) KO (p1,9)

29
1+ MEO(py, p1) )

KD (p,qi{m}) = KO (p,q)

and

A2 K (p, pa; {1 KM (g, 223 {p1}) (30)
14+ A KM (p2, p2; {p1}) o

In this way, we obtain the reproducing kernel K, , (p, q: {p;}) and the corresponding
results:

K3 (p,q;{p1,p2}) = KO(p, ¢ {m1})

Theorem 6.1 For any {b;}, the extremal function f, x (s,) in the extremal problem
(28) is given by

o

Jan (o) (B) = D0 AibsKan, (i {ps})s (31)

j=1
where we assume that (31) converges on E. Furthermore, we obtain the estimate
[ fan, (5,3 ()]
1/2

<= (Xomn| VEGH. @2)
j=1

The most prototype application of the general theory of this paper is a simple
construction of the Moore-Penrose generalized inverse for any matrix:

A Construction of a Natural Inverse of Any Matrix by Using the Theory
of Reproducing Kernels by K. Iwamura, T. Matsuura and S. Saitoh (PAJMS Vol.
1 no: 2 (December 2005)).
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