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ABSTRACT

E of the first cig lue for linear second-order elliptic equations in
divergence form are investigated and some qualitative properties in dependence

of the coofficients of the equation are proved. As an application of new formulas
for the first cigenvalue, its asymptotic with respect to the large drift is obtained,

RESUMEN
Se estudia la estimacion del primer autovalor para la ecuacién lineal cliptica
do segundo orden en la forma divergente y se prueban algunas propiedades cual-
itativas con dependencin en los coeficientes de la ecuncidn. Como una aplicacién
de las formulas obtenidas para el primer valor propio, se obtiene su desarrollo
asintotico respecto de grandes desviaciones.
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1 Introduction
Let L be a linear second-order uniformly elliptic operator in divergence form

Uy, +u?(:x:)u) + b (z)uz; + 00 (x)u (1)

in Q, where af(2)&7¢k > p|é|? for every x € Q, € € R", = const > 0. Here Q is a
bounded (l()l]]dlll in R", 0Q € CH1,
3 0 i oA
af (@), af(w) € Whe(Q), b*(x), b°(x) € L(Q), (2)
and under the repeating indices the summation convention is understood.
The paper is concerned with some new formulas for the first eigenvalue A for the
operator L with zero Dirichlet conditions on 9§

Lu = M in Q, -
{ u =0 on d9Q. ®)

The motivation of this study is the validity of the comparison and maximum principle
for L. It is well-known, see (2], that the maximum principle for the operator L holds
if and only if the first eigenvalue A of L with zero Dirichlet data is positive. It is
clear that the positiveness of the first eigenvalue A is not easy checkable condition.
However, there are some qualitative properties of A which are used to find out lower
and upper bounds for the first eigenvalue, see for example [2].

There are a general formulae for A | see for example [2, 7, 12],

A = supinf(Lo/¢) , ¢ € C*(R2) (4)
#>0 T

and there are results which are only sufficient for a wide class of equations. They
are given, for example, in [5, 7, 12, 13] (see also the references there) and guarantee
positiveness of the first eigenvalue and correspondingly the validity of the maximum
principle for (1).

The aim of the paper is to obtain some new formulas for A and to investigate
precise dependence of A on the coefficients uj N a;’, v b

The main results are in Section 3, in Theorem 3.1, wh(’re three equivalent formulas
for the first eigenvalue A for nonsymmetric operators are obtained. They are different
from the well known results and are more convenient for lower and upper estimates
for A in many s. Such estimates are shown in Theorem 3.2. Moreover A is
obtained an extremum of the first eigenvalues of some explicitly given symmetric
operators. This is the reason to present the well-known results for the first eigenvalue
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for symmetric operators, shortly, but from slightly different point of view in Section
2, see [12, 13].

Using the derived expressions for A we study the dependence of A on the coefficients
of L in Propositions 4.1, 4.2 and the behavior of L with respect to the large parameter
in the non symmetric terms, in Proposition 4.3, 4.4 in Section 4. As an application of
the concavity result in Proposition 4.1 are shown in Corollary 4.1 some new sufficient
conditions for comparison principle for quasilinear equations.

2 Preliminary notes and symmetric operators

We start with some notations and definitions. For matrix P = {IDJA-(.‘E)}?"J=“ vector
q = {q;(%)}j=, and function w(a) we'll use the notations:

n n
Pq={Y Pua}j=1, Pa* = Y a;Pikak,
k=1 Jk=1
and gVw = Y5, gjwa,. Let us denote d = (a° +b)/2, a = (A + AY)/2, a = a7},
c=(b—a")/2+0'Q/2 where Q = (A—A')/2, A= {af);’ , and @' means divergence
in columns of @ and ¢ means transposition. The operator L in (1) can be written
downas L = L. = Lo+ N, , Lo = (L + L*)/2 and N, = (L — Lx)/2, correspondingly
L* = L} = Lo + N-. = L_. where operators Ly and N, have the form

Lou = —9(aVu + du) + dVu + 0'u, Neu = (cu?)/u. (5)

So the operator L is represented as a sum of symmetric and skew-symmetric parts, i.e.
(uy Lov) = (Low,v), (4, Nev) = —(New,v) for u,v € H§(R), here (w,w) = [, uwda.
Further the first eigenvalue of the operator L with zero Dirichlet data in the
domain 2 is denoted by A(L; Q) and shortly A(L) if the domain Q is fixed.
It is interesting to write down some well-known operators with positive first eigen-
values - we'll use them partly in the future

Mgu = —9(A*Vu + 2gu)
Myu = -0AVu +2gVu (6)
M(d)u = —9(A*Vu + du) + dVu + ad*u,

where A is a nonsymmetric operator in generally. The operator M, corresponds to
the operator A with coefficients ¢ = d = g, b° = 0. The positiveness of its first
cigenvalue follows from the formula (4) since

A(M,) = sup inf(Myu/u) > Myl = 0.
2 us0 *
Our basic aim is to derive formulas and estimates for the first eigenvalue of the

operator L. in € connecting them with the first eigenvalues of suitably chosen sym-
metric operators. For this purpose let us note that operator L. is invariant under

L /T
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every of the transfer couples

e O %
{A— A+ 8, cm c+85[2}, 5t ==5! ()

Indeed Ncyprs/ou = New — 05 Sjkuy, , since
3 Sjktay, = (5Sk)tz, = (1/1)0k(0;Sjx/2)u.

So estimates and properties of the first eigenvalue of L should be preserved under
these changes. Moreover an appropriate extremum over the admissible vectors f’ s
and skew-symmetric matrices S’ s will lead to sharp estimates. The class of such
vectors f and skew-symmetric matrices S is one and the same

F={f,8 € L®(Q);0f,0'S € L®(2)}. ®

As a beginning let us recall the variational formula of the first eigenvalue \(Lg)
for symmetric operator Lg

ML) = ilulfBL.,[U,l)], v € HY(Q), [lvllz2 =1, (9)

where By, [u,v] is the bilinear form for Lo.
In fact (9) is valid if the coefficients of Lg satisfy

a, d, b° € L®(Q). (10)

Let us note that positiveness of A\(Lo) is sufficient for positiveness of A(L.). Indeed,
let ¢ is the first eigenfunction of Le, i.e. Leg = A(Le)d, & € HY(R), [|4]lz2 = 1. Since
By, [u,u] = By, [u,u] for every u € H{(R), then A(Lo) = infy, By, [u,u] < B, [¢,¢] =
A(Le), so

A(Lo) < A(Le)- (11)
In the following proposition we formulate the qualitative properties of A(Lg) which
we'll need further.

Proposition 2.1 Let the coefficients of the operator Lq satisfy (10). Then

(i) AL, is a continuous function of a,d,b° and Q in the L™ norm;

(ii) A, is a monotone increasing function with respect to a,b°, monotone decreas-
ing on the domain inclusions and a concave one with respect to a,d, b°.

The continuous dependence follows from the variational formula (9). The monotonic-
ity of A, with respect to the domain € is well-known even under weaker assumptions.
The concavity of the first eigenvalue with respect to the coefficient b was proved for
general nonsymmetric operators in Proposition 2.1 in [2].

As it is well-known, see for example (7], the infinum in (9) is attained for a positive
function u € H}(2), which in the weak sense solves the equation

Lou = A(Lo)u in Q,u = 0 on 99Q.
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If the coefficients of the operator Ly satisfy smoothness conditions a,d € W1 (Q),
1Y € L*(Q) the "max-min” representation formula, see (4) for the first eigenvalue
A(Lg) holds

A(Lo) = supessinf(Lov/v), v € W2™(Q), v > 0. (12)
see (3], (9] and [10] for more details.

d b
from below by inf, (b° — ad®)u?, recall that a = a~!. Hence inf, (b° — ad?) < A(Lo)
and the invariant change (7): d — d + f, b° — b° + 9f, f € F, leads to

(Lo) < A(Lo)- (13)

The integrand in (9), written as J = (Vu, u) ( i ) ( Y;” can be estimated

Here it is denoted
a(Lo) = supinfa(Lo; f) and o(Lo; f) = b° + 8f — a(d + f)* (14)
i

Note that (13) is valid for the operator Ly with bounded coefficients satisfying
(10) and the imbedding theorems allow us to weaken once more the conditions (10)
as a € L¥(Q), d € L™(Q), 1° € L?(Q). Then o(Lo; f), f € F has the sense of
essentially bounded from bellow function from L/2.

To get the estimate (13) for the first eigenvalue is the idea of Protter [12] which he
developed further for some nonlinear problems. For completeness we’ll add the proof
that actually (13) is an equality:

Proposition 2.2 Let the coefficients of operator Lo satisfy (10). Then
A(Lo) = a(Lo). (15)

Proof. We will use a special choice of f for the operator Ly with smooth coefficients.
Let us assume that a,d € Wh(Q;) b° € L®(Q,) are extended in a wider smooth
domain ; D Q preserving strong ellipticity . For every positive constant § > 0, there
exists a smooth domain Qs, 2 D Qs D @ such that A\(Lo; Q5) > A(Lg) — 8 see Chapter
VI, Theorem 3 in [4]. Let u be the first eigenfunction of Ly in Q. From thc Sobolev’s
imbedding theorems, see Theorem 5, Section 5.6.2 in [7], it follows u € W, o (€21) for
every finite p and hence u € C*(€). Since u > 0 in Q and Lou = A(Lo; Q5)u easy
calculations give us that f = —aVu/u —d € F. Indeed

of = ~8(@aVu + du)/u+ (@(Vu)*)/u® + dVu/u
= MLo; ) + (a(Vu)?) /u® = 1° € L=(Q)

and (Lo; f) = Lou/u = A(Lo; Q) > M(Lo) — 0. This and (13) show that equality
a(Lg) = A(Lg) holds for an operator with smooth coefficients.

To prove this equality (15) for Ly, we choose for every £ > 0 an operator Lo such
that @ > a, (@ — a)~*(d — d)*> < e. Then from Proposition 2.1 and (13) we receive

a(Lo) = A(Lo) = A(Lo) + AM(Lo — Lo) > A(Lo) + o(Lo — Lo)

A )
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> A(Lo) — sup(a — a)~'(d — d)® > A(Lo) — .

Then for ' — a' and d — d in L™ for ¢ — 0 we get o(Lo) — o(Lg) and
a(Lo) > A(Lo). L}

In fact o(Lg) gives a different expression for the first eigenvalue A(Lg) of a sym-
metric operator Ly. The advantage of the formula (14) in comparison with (12) is
the possibility to find out a lower bound for the first eigenvalue A\(Lg) by means of
an appropriate choice of a vector f in (14) , instead of the choice of a scalar function
in (12).

As a consequence of Propositions 2.1 and 2.2 the following monotonicity result
holds for the first eigenvalue.

Corollary 2.1_Let the cocfficients of Lo, Lo satisfy (10). If a > and b° > 50~ af —
(@—a)~'(f +d —d)? inQ for some f € F, then A(Lo) > A(Ly).

Finally, using Propositions 2.2 and Theorem 3.1 we show bellow that supremum
in (12) is not attaining at a single f € F. More precisely

Corollary 2.2 Let My.q is the operator in (6) with A = a, then

MLo) = sup[A(Mya) + inf o (Lo; f)]. (16)
feF &

In particular, if o(Lo; f) > 0 for some f € F then A(Lg) > 0.

Proof. From Theorem 3.1 it follows A(L.) < A(Lo + ac?). Transferring b° to b° — ac?
we have A\(L. — ac?) < \(Ly) for every ¢ € L®(R). Since

Liya—a(f +d)* = Mypa +8° +0f — a(f +d)* = Myya + o(Lo; f)

and
info(Lo; f) < A(Mya) + il}ff’(Lo;f) < M Mjyyq + a(Lo; f))

= A(Lsya = a(f +d)?) < MLo)
then maximizing these inequalities in f € F we get (16).

Let’s add that although A(Mj4.q) is strictly positive, it tends to 0 for f’s such that
inf, o(Lo; f) tends to A(Lo). [ |

3 Nonsymmetric operators

An equivalent definition of the first eigenvalue of L. as in Proposition 2.2 by means of
(15) is no more possible for general nonsymmetric operators (1). The corresponding
expression for o(L) is more complicated. In this chapter we’ll assume that the
coefficients of L. in Q are sufficiently smooth, to ensure us that the corresponding
first eigenfunction belongs to ClL. ().

o A
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For v € H}(Q), let us define the sets of functions

M(v; Q)—(zéW, 2v?dz < oo},
M*(v;Q) = {h e L ]ﬂah“u*dl < o0},
M (019) = {h € M*( u Q) Na(v) = 0}.

where the condition on the divergence in Ny (v) is in "weak sense”, i.e. _fn(th)vZ(l:v =
0, for every z € M(v,2). The class Mg (v, Q2) - zero functionals on M (v, ©2) is obviously
non-empty. It is easy to prove by induction that h € Mg (v, Q) iff h; = (9xS;kv?)/v?
where S = Sj is bounded skew-symmetric matrix.

For example, let Z = In(¢/v),0 = /@1, where the functions ¢, are the first
eigenfunctions in § of L. and L} respectively. According to the forthcoming Lemma
319 € H}(Q), 2 € L=®(Q) N M(v,Q) and for ¢ € L®(Q) it holds ¢ — (1/2)aVz =
h € Mg(v, ). Moreover if the coefficients of L. are sufficiently smooth then z €
L%(0) N CL(9).

Let us consider all operators L7 derived by L. with a nondegenerate transformation
Liu = e */2Lc(ue*/?) for every z € C%1(Q) which preserve the first eigenvalue of L
ie. AM(Le) = A(LZ). There exists a transformation with the extreme property such
that the new transformed nonsymmetric operator LZ has the same first eigenvalue as
its symmetric part L§ = (LZ + L*)/2. Thus Proposition 2.2 is applicable for Lj as
well for LZ. The nonsymmetry of the operator L. = Lo + N, results from the vector ¢.
We'll start with its representation in order to find a suitable transformation function

Lemma 3.1 For every symmetric positively defined matriz a € Wh*(Q) and for
every ¢ € L®(Q), there exist v € H}, v > 0, z € L™(Q) N M(v,Q), h € M§(v, Q)
such that

c=(aVz)/2 + h. (17)

Proof.  For an arbitrary z € C%'(Q2) we denote Liu = e */2L.(ue*/?) and the
computations show LZ = L§ + fo(V2) + Ni = Lj; + fe(Vz) with h = ¢ - (aV2)/2 and
fe(€) = & — (a€?)/4. The first eigenvalues of L, L%, L*, L** are one and the same
numbers and the corresponding first eigenfunctions are ¢, vs, e=*/2¢, e~#/%1), Hence

MLe) = MLy + fe(Vz)). (18)

Since M(Lg) < A(L.) according to (11) we get

A(Lo + fe(V2)) < A(Le)- (19)

For v = /o, z = In(¢/1) it holds v € H(Q) and z € M(v,Q). Moreover (Lj, +
fe(V2))v = (L} + fe(Vz))v. So Nyv = 0 and (L§ + fe(Vz))v = A(LZ)v. This proves
the lemma and leads to the formulation of the main theorem. n

Define o(Lo + fe(V2)) = sup, infz o(Lo + fe(Vz);g) and o(Lc) = sup, a(Lo +
fe(V2)).

e A
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Theorem 3.1 Let the nonsymmetric operator L satisfies (2). Then

(a) M(Le) = sup, M(Lo + fo(Vz)) = o(Lc), = € C"}(Q);

(b) A<Lf) = infy (By, [u,u) + B(u?)), u € HY(Q), |[ullrz = 1, where

(Jq Vzudx)? /' e
= e L —h dzx,
Bu?) = sup T o(Va)Puds =inf [ a(c— h)*u
2 € COY(Q) or z € M(u;Q),h € Mg (u; Q);

(c) A(Lc) = infg M(Lo + Mo(S)), S* = =S, is bounded matriz and My(S) is the

symmetric operator defined by

Bagy(s)lu,u] = / a((c — 9'S/2)u — SVu)?dz,
Q

where (9'S); = &Sy
Proof.  (a) Let us mention that the first equality in (a) can be derived directly
from [4]. But nevertheless for completeness the proof is included. it should be: We
proceed as in Section 2, for smoothly extended coefficients in some 5 O €, such that
AM(Le; Q5) > A(Lc) — 6 and use the representation (17) of ¢ in Q5. The corresponding
zand v, z € C%(Q), v € W2P(Q), p < 00 and A(L¢e; Qs)v = (Lo + fe(V2))v in Q
where v > 0. Then from (4) we get A(L¢; Q) < A(Lo + fo(Vz)), so A(L) =6 <
AMLo + fe(Vz2)) < sup, M(Lo + fe(Vz)).
(b) Consider the sequence of inequalities, starting from the proved above

A(Le) < sup A(Lo + fe(V2))

< inf{Bg,[u,u] + sup[(/ CVZIL2(IJI)2// a(Vz)*uldz)}
tk z Q Q

< inf{Bp, [u,u] + Sli[)[(/ cVzuzd;x-)z// a(Vz)*uldz)}
b z Q 1}

< inf{Bp,[u,u] + il’lf/ alc - h)*udx} < By, [u,u) +/ a(c - h)*v?da.
b v Ja Q

Here sup. is over z € C%L(Q) ; sup’, is over z € M(u; Q) ; infy, is over h € Mg (u; )
h - (aVz /2, 2 = In(¢/¥), © = V/$ip (normed), so h € Mg(5; Q). The first
inequality is due to the change of extremums and the majorization of [, fe(kVz Yuldw
over he second inequality is due to the fact that C%1(Q) ¢ M(u;9) ; and the
third inequality follows from

/r(\';)uzd.’r :/ ¢ — h)(Vz)ulde < \// afe— /1]2112(11\// a(Vz)u?ds.
[t} [ a Ja

Sasy computations show that the last expression in the chain above is (), L.¢) =
A(L,) since for the chosen z, ¥ it holds

/n(( h)olde = 5 / u(VE)zfv“,l,r:/C(Vs)%w_rﬂ//u(v.=)'1n’,1,r
Ja 4 Ja a Ja

(T
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= / fo(V2)*0%de = /(a/ﬂch> ~ ¢eV)da + %/ a[(Ve/o) — (Vy/9)|dypda.
it} Q aQ

() The proof is based on the representation of any h € Mg (u; Q) as (9'Su?)/2u?.

Remark 3.1 Recall that ¢ = (b—a)/2+8'Q/2 with Q = (A— A*)/2. The divergence
of @ in the expression of (L) can be avoided. Indeed by the change f — f+QVz/2
we'll get
a(Lc) = sup il;f[ba +0f — a(f +d + QVz/2)* + fe(Vz)],
Sz

where & = (b — a)/2. The same can be done in (c) if we take S + @ instead of .

Using Theorem 3.1 we can prove the next theorem.
Theorem 3.2 The following inequalities hold

MLo) € A(Le) € A(Lo +ac®). (20)

Moreover with ¢o, ¢, ¥, the first eigenfunctions of Lo, L¢, L resp., we have

(i) ML) = AMLo) iff ¢ = ¢o or 1 = 1 in Q, iff c € Mg(v; Q) in Q with v = ¢
orv=¢ orv=1;

(ii) M(Lc) = MLo + ac®) iff ¢ = aVp/2 for some p € C¥Y(Q). In this case
p = In(¢/v).

Remark 3.2 Recall that in (20) ¢ has the form ¢ = ¢ + 8'Q/2 with ¢ = (b — a?)/2,
Q = (A~ A")/2. Moreover, applying Theorem 3.1 (c), the divergence of @ can be
avoided as was mention in the proof. For S = 0 in (c) we get A(Lc) < A(Lo + ac?)
where Lou = —9(A*aAVu + du + caQu) + (d + caQ)Vu + b%u with A = a + Q.

Proof of Theorem 3.2. The inequalities (20) follow immediately from (11) , Theorem
3.1 (a) and the estimate

fe(Vz) = ¢Vz - a(Vz)?/4 < ac’. (21)

(i) The first statement holds due to the uniqueness of the first eigenfunction up
to multiplication with a constant and the following statement

Leu= Lou iff c€ Mj(wQ), ie. Neu=d(cu?)/u=0. (22)
For instance Ncdo = 0 iff Lo = Logo = Moo iff ¢ = ¢o and
B[00, 0] = Br,[¢, 8] = Biy[bo, o] = Br.[¢,¢] = MLo) = ML)

for normed ¢, ¢g. ’,
(ii) Suppose that ¢ is a-potential vector i.e. ¢ = aVp/2, p € C*'(Q). Then since
fe(Vp) = a(Vp)?/4 = ac?, Theorem 3.1 (a) gives

MZe) = AlLo + £o(Vp)) = A(Lo + ac?). (23)

.
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The right hand side of (20) together with (23) leads to equality. Moreover, the
representation (17) of ¢ shows that correspondingly h = aV(p— 2)/2. But there exists
v >0, v € H}(Q) such that f;, h(Vg)v?dax = 0, in particular for ¢ = p — z € M(v;Q),
so |[V(p—2)| =0 ae. in Q.

Let now A(Lc) = M(Lo + ac?) and ¢ is the first eigenfunction of Lo + ac?. We'll
go back to the proof of Theorem 3.1 and denote by z5 the corresponding component
in an extended domain 25 D €, so for small § > 0

ALe) = 6 < MLo + fe(V2s)) = ix:fB,_”.,,/‘ (Vzs)[030)

< Br,le: ¢ +/fc (Vzs)pda = A(Lo + ac®) / le — a(V25)%/2)%pdx

Under the assumption above [, afe — a(Vz5)?/2]*p%dx < § and for every smooth
w,@ C Q it holds [, afe - a(Vz5)?/2)%dx < §/m* m = inf,, ¢ > 0. So Vzs — 2ac in
L*(w). According to the generalized Poincare inequality, see [11] there exist constants
K such that zs — K5 — z in L}, (w). Note that these constants depend only on
appriori and arbitrary fixed open set wo # 0 if for all smooth domains in question
w D @g. Hence 2ac = Vz ae. in Q.

Remark 3.3 In the case ¢ is a-potential vector, Vz = (V¢ /@) — (Vip/1)) is bounded
in Q, where ¢, 1) are the first eigenfunction’s of L, L} respectively, ¢ = 1) = 0 on 9.

An open question is to characterize the conditions guaranteeing when A(L) coin-
cides with a strictly interior point of the interval (A(Lg), A(Lo + ac?)) i.e. A(Lc) =
A(Lg + g) for some 0 < g < ac®. However, by means of a family of equations having
one and the same "maximal operator” Ly +ac? the following example illustrates that
the first eigenvalue A(L.) covers the whole interval.

Example 3.1 Consider @ = By C R?, Ly = —-A, p = |z|, p* + ¢* = 1 and let
¢ = (pI + ¢S)z, with S = fll [1] = ‘IJ (l) ) Since ¢ = g + h with
9 = px = V(pp?)/2, then A(Lc) < MLo + ac?) < A(Lg + p?) and from (18) A(L.) =
MLy + p°p*) = MLo + p?p?), with h = ¢Sz. If ¢ is the first eigenfunction of
Lo + p*p® then ¢ = ¢(p) and Nypg(p) = 2¢'hVp + ¢0h, hVp = qSz(x/p) = 0
Oh = qdiv(wz,—21) = 0. So h € Mg(¢;Q) and from Theorem 3.2 (i) the equality
A(Le) = MLo + p*p?).

4 Properties of the first eigenvalue

In this section we'll give some applications of Theorems 3.1, 3.2 in order to obtain
some qualitative properties of the first eigenvalue of L.
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4.1 Dependance of \(L.) on the coefficients

Let us start with the following concavity result.

Proposition 4.1 Let L) be operators with one and the same symmetric matriz
a, d®, ® ) a5 coefficients and N(L®)) are their's first eigenvalues, k = 0,1,
Denote L®) = (1 = s)L© + sL() then

(1= $)MLO) + ML) < MLE) + 5(1 - s)a(e - c@)?). (24)

Proof.  The proposition follows from the concavity of A\(L. — ac®) = sup, A(Ly —
a(c — aVz/2)?) in the coefficients d and %, see Proposition 2.1. Indeed, for € > 0
there exist f("'), 2 such that for k = ()01}

T = g0 4 GF®) — a(fB) 4 g2 — a(c® — V202
> ML®) — actk)2y — ¢,

The expressions in (25) are linear in 5°®) and concave in f*), d®), %) 7>(*), Denote
by ¢ = (1 = 5)g'? + sg for vectors g*), k = 0,1 and by T'®) the expression as
(25) with terms g) instead of g, Then we'll have

T® > (1 = 5)TO® + 57D > (1 = s)ALO = ac®?) + sA(LD - acV?) — €.
It proves the concavity of A\(L. — ac?) i.e.
ALO — ac®2) 4 sALD — ac®?) < A(L®) — acl9)?), (26)

We change 5°®) to b%®) 4 ac®)2 and then add (1 — s)ac®? + sacV)? to the operator
L) — ac')? on the right hand side of (26) . Thus the sum becomes s(1 — s)a(c() —
c)? and (24) is proved.

Example 4.1 Let us apply the Proposition 4.1 to two operators (1) with one and
the same A. Namely the coefficients of L(® are d(© = ¢© = p/(1 - s), 1°©) = 0
while the coefficients of L) are dV) = —cM) = a%/2s, 5°1) = 0, s € (0,1). These
operators are the “positive” operators My, My in (6) with p = b/(2 - 2s), ¢ = a®/2s.
Then L = L) is the operator (1) with 6°) = s(1 — s)a(p + ¢)* = a(a®/k + kb)?/4,
where k = +./s/(1 — s) € (—o0,+00). So the non-negativeness of the matrix Jy =
ARLY

( OJk b ) leads to A(L) > 0.

With the invariant changes (7) of the coefficients of L = L) in (1) we get the
A A+ S k(b+ f+0'S/2) il O
matrix J = (@@ + f — 8'8/2)/k W+ of and the conclusion is formu-

lated below.

Corollary 4.1 If J+J' > 0 for some choice of vector f € F, skew-symmetric matriz
S €F, and k € R, then A\(L) > 0.
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Let us describe Dirichlet problem for the quasilinear operator
M(u) = —0A(z,u, Vu) + b(z,u, Vu) in Q. (27)
Define the operator in (1) with coefficients
= fy 58 (z, R)dt, a3(x) = [3 %t (x, Re)dt,
(28)

j(,‘ gg @, Ry)dt, 0(x) = [} 2B(x, Ry)dt
where Ry = (v(z) +t(u(z) — v(x)), Vu(z) + t(Vu(z) — Vu(z))), and u,v € C*(Q) are
weak sub- and super- solutions of the Dirichlet problem for (27). With f = f(x,u),
S = S(x,u) applying Corollary 4.1 we get a sufficient condition for the comparison
principle. In this form it unifies and slightly generalizes the condition in [9].

Using Theorems 3.1, 3.2 we'll show some partial results about the monotonicity
of A(L) with respect to the matrix a. There is no such monotonicity in general and
to illustrate this we start with an example.

Example 4.2 Consider in Q the operators Ly = —A, Ly = —TQ_A, |7|_< 1 and
let ¢ = (k0. ,0), where k = const. Denote L. = Lo + Ney, Le = Lo + Ne
Lye=Lo+ Ny operntoxs with a-potential and a- potennal ¢ correspondingly. Hence
ALe) = MEo + k2) = A(Lo) + k2, MIc) = MEo + k2/72) = T2A(Lo) + k2/1%
MLyre) = MEo + 7k2/7%) = 72A(Lo) + k2, Then A(Lc) > A(Lre) but A(Le) < A(Le)
if k2 > A\(Lo)72. Moreover A(Lc) = A(Lo — Lo) + MLrc).
The following proposition concerns the general situation about monotonicity with
respect to a.
Proposition 4.2 Let the operators Ly, Ly in (5) have coefficients a,d,b° and a, d,0°
respectively, such that T%a < @ < a for some 7, || < 1. Then with ¢,¢ € L®() it
holds
AlLe) 2 MEo = L) #+ MLz = (@~ 7%a) (e~ 7¢)?). (29)
Proof. From Theorem 3.1 (a) and Theorem 3.2 we receive
MEe) = ALo + fo(rV2)) = A(Lo — Eo) + MEo + £o(7V2)). (30)
and
fe(rVz) = &Vz — 4(Vz)* /4 = (& = 7¢)Vz + (@ — 72a)(Vz)? /4
> fa(Vz) — (@ — 7%a) (€ - c)?.
n

With supremum in z we obtain the assertion.

Remark 4.1 Under (29) varying c, @ several relations between A(Lc) and A(Le) can

be obtained.
- 1f @ = 7, the Example 4.2 for A(L) and \(L.) shows that the equality in (29)

is possible;
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-1f & = aac/T then (29) becomes A(L¢) > A(Lo— Lg) +A(I;nor/, —aaac® /1% +ac?)
and for a-potential ¢ then :mr/-r is a-potential. So, when Ly — Lj in the sense of
coefficients (a — a,6° — b°,d — d) the two sides of the meqlmht\ (29) coincide;

-1 ¢ and for instance A(Lo — Lo) > (1—7)%(a—72a)~'¢® then A(L¢) > A(Le).

Corollary 4.2 The first eigenvalue (L) continuously depends in L™ norm on the
coefficients of L.

Proof.  Proceeding as in Section 3 the given operator L. can be approximated with
smooth operator L. if the coefficients are such that 7%a < @ < a for some 7, |7| < 1
and @ — a,é— ¢, (a—a)~*(d—-d)? = 0, (@—72a)"*(¢—7¢)® — 0 in L™ norm, with
T increasing to 1.

The next example shows that the first eigenvalue can increase only due to the
nonsymmetric part of A (determined by ¢ ) for the operator L.

Example 4.3 Let Q C R?, G € C*(Q), AG = 0 and matrix A = ( —lG ? . So
Lu = —Au + Gyyug, — Gy Uy, where H is Cauchy-Riemann conjugate to G and

20 = (Gayy ~Gz,) = (Hzy, Hy,). Then
ML) = A(=A + |[VH[?/4) = A(=A + |VG[*/4) > M(-A) + %inuvcﬂ

If G = a? — a3, correspondingly H = 2xyap, we get A(L) > A(=A) + p?, where
p = dist(€2, (0,0)). Hence A(L) — co when p — oo.
4.2 Dependance of A\(Ly.) on T

We'll study the behavior of the first eigenvalue A(Lp.) of the operator Ly, = Lo+ Ny
for fixed ¢ with respect to a large parameter T'.

Proposition 4.3 Let the operator Ly, satisfies (1), (2). Then XN(Lgc) is a concave
monotone nondecreasing function of T and
(i) MLre) is bounded iff there exists u € H} () such that ¢ € Mg (u; ). Moreover
Ac = lim A(Lqc) = inf Br,[v,v], where V ={v:ce M;(v;Q)},
T—00 VeV

(ii) if M(Lpc) = const on some interval (To, Ty) then N(Lp.) = M(Lo) for all T
and ¢ € Mg (¢o: ) where ¢q is the first eigenfunction of Lo;
(iii) there exists limp—,o0(N(Lpc)/T?) = K. € [0,infz ac?] and for a-potential ¢ it
holds K. = inf, ac?.
Proof. Recall Theorem 3.1 (b) and since frc(v?) = T28c(v?) then
MLre) = inf{Br, [v,v] + T26:(v%)}, (81)

and it is non-decreasing and concave in T2

L AT
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(i) If for some u € HY(Q), ¢ € Mg(u; ) then in (31) we can choose v = u and
has cin [ya(c = h)*u?de. So MLre) < Br,[u,u] and A; = limp—.o A(Lpe) <
infuev Br,[v,v].

Let now A(Lp.) be bounded and ¢ is normalized first eigenfunction of L.
Then for ¢ € H}(Q)

ALze)(py ¢re) = By, d1e] + T/n c(drcVe — pVre)de. (32)

If ¢ = dre in (32) we get A > A(Lre) = Br,[d7e, d1] = ko ffl |Vre|*de — ky, for
finite numbers ko, ky > 0. So there exists ¢ € H} () and a subsequence {¢7.} such
that o7, — ¢ and V¢, — V¢ weakly in L2(Q), 6 > 0, ||¢]|.2 = 1. Dividing (32) by
T and letting T — oo we come to

[ 6%~ o¥ids = Jim FONEre) (601 = Bulpbrd) =0, (39
o =80

since (p, é1c) — (p,¢) and By, [p, érc] — Bi, (e ¢]. With ¢ = z¢, 2 € CO(Q)
equality (33) can be written down as [, ¢(Vz)¢?de = 0, ie. ¢ € Mg(¢;Q) and
according to the first step A, < By, (¢, ¢]. Since there exists limp_. By, [d7¢, drc] =
Ac, then

0< lim / aV(¢re — ¢)%dz = lim By, [ére — ¢, dre — ¢
T Jo T—oo
= Jim (Br, (¢, dre) = 2BLy [0, d1c] + BLo[¢,0) = Ac — Bi,[4, ¢] < 0.
So érc — ¢ in the norm of H}(Q) and A = By, [0, ¢].
(ii) Recall that in Theorem 3.1 (b) the extremums are attmned at v = oy,

2 =In(¢/v), h = ¢—aVz/2 and the corresponding function 8c(v?) = 1fn aVz2v?da.
Let vy, 21, hy correspond to Ly, then

2
AML1yc) = Bry[vr,v] + %/ a(Tye— ’11)2171(l1, +(1— —2)/ a(Tye - /11)217 da
i Ja

5 1
> lhl.lli?(B,‘“[Ir, v] + /” a(Toe — h)*v?dx} + ]( T_,)/ )Vvide.

Since the infinum in the right hand side is equal to A(Lm,) = A(Lz,) then

Joa(V ,)"xvlex =0, 50 21 = In(¢p,/¥r,) = const. Applying Theorem 3.2 we

get o1, = constypy, = constdo, hence A(Lr,c) = A(Lo) and A(Lpc) = A(Lo) for
[0,T3)

n y e AMLro)=A(La) :
ult for 7' > T} is a consequence of the concavity, i.e. Lo ALo) 45

nonincreasing in 7' and nonnegative since A(Lzc) = A(Ly). So

0 < MLre) = ALo) MLtic) = A(Lo)

=0.
& T = 77
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(iit) The same inequality as above shows that there exist finite K. where

ALe) 1 Alre = A(Lo) o o
S=m———oul

e

K. = lim
oo
We have

Mg i S
7 < ZTQBL“I'U,'U! + /n a(e — h)*vidz

for v € HY(Q), h € Mg(v; Q). So Ke < [ a(e — h)*v?dz, choose h = 0 in w and
h=cin Q\w, then h € Mg (v; Q) for every v € H}(w) and

K. < supac? for every w C Q. (34)
2EW
Minimizing (34) in w € @ we reach the conclusion. |

Remark 4.2 In view of (i) the representation (b) in Theorem 3.1 can be written
down as
A(Le) = inf An(afe ~ mEthe | M)
f )
and Ay (g) = limp—.co ALy + g). Note that

Ay = sup N(Lo -+ hVz) = sup A(Lnys — af?).
2 J

Indeed, from Theorem 3.1 (a) with the change z — z/T € C%(Q) we have

sup (Lo + hVz) 2 sup N(Lo + fra(Vz/T))
z z

1
= MEpn) 2 MLo + hVz) = — supa(Vz)?
4aT? L
and

MLnsy — af?) = sup N(Lo + hVz — a(f - aVz/2)?) < sup M(Lo + hVz),
SupM(Liys — af?) > sup ALy — af?)
J f=aVz
= sup A(Lnyy +a(h+ f)? - ah? — af?) > sup A(Lg + hVz).
J=aVsz B

Here (18) is used in the sense that if g is a-potential then A(Lc) = A(Le—g + ac® -
afc - g)*).

Remark 4.3 For the operator M'pew = —Au + TeVu, dive = 0 in (1] it was shown
that A\(Dp.) is bounded iff there exists w € H} (), w # 0 such that ¢Vw = 0 a.e. in
Q. It was proved in (8] that K, = inf, Bc(u?) and K. > 0 iff there exists z € C%!(Q)
such that ¢Vz > 0 in ©, a sufficient condition was proved in [6].
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We'll give an analogue of Proposition 4.3 in the selfadjoint case. If ¢ is a-potential
then A(Lz.) = A(Lg + T”%ac?) so it is necessery some information about the behavior
of A(Lg + T?g) with respect to g.

Proposition 4.4 Let the operator Lo satisfies (2) and g € L>(Q). Then N(Lo+1%g)
is a concave function of T? and nondecreasing if g > 0 and
(i) for g > 0, A(Lg + T?g) is bounded iff the set Gy = {x € Q : g(z) = 0} has a
positive measure. In this case limp—.oo N(Lo + T%g) = A(Lo; Go).
(ii) for every g € L>(Q) it holds
A(Lo +T?g)
T2

lim = infg.
—00 =

Proof. (i) If meas(Go) > 0, the monotony in sets gives A(Ly + T2g) < A(Lg +

T?%9; Go) = A(Lo; Go). Let M(Lg + T?%g) is bounded and ¢z is the normed first eigen-
function of Ly + 7g, then with some positive and finite constants ko, ky it holds

Mo+ T2) = Buylor. 1) + 1 [ gdtdn > ko [ (VorPde— by +72 [ atia.
1] Q a

Then there exists ¢ € H} (), ||4|| = 1, ¢ > 0 and a subsequence {¢7} such that for
T —

2 -
b1 — ¢ in L2, Vb — Vb weakly , / gdda < ﬁ%m—“ =0,
aQ
S0 [ 9¢%dx =0 and g = 0 in {w € Q: ¢ > 0}, obviously measGy > 0. Further,
ML+ T2)(6,61) = Br[6.6r] + T* | gosrdn = Bu, [0,6r]
]

and hence

¥ 2 ., £ e .
li w/\(L" +T%g) = Br,[6, ¢] > x.elllf'r([n.,)B""[l" u] = A(Lo; Go).

T—c
(ii) It holds A(Lo + T?g) > A(Lo) + T?infq g and

MLo +T2g) < MLo + T?g;w) < AM(Lo;w) + T supg
w

for w C Q. So
MLo + T%g)
infg < lim ————= < inf supg = infg.
e =imans 2 ~ wech _,' 9=14e
n
The following representation of K. as a consequence of Proposition 4.3 can be
derived.
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Corollary 4.3 K, has the representation
K= ii]f(A(Lc) = A(Lo))- (35)

where infinum is over all operators Lo with arbitrary d, b° and the same a and with
L, corresponding to Ly, L. = Lo + N,

Proof. From the concavity in 7 in Proposition 4.3

A(Lre) = M(Lo)

K, = ipf ST < MLe) - MEo)

and from Remark 4.3, K. = inf, fc(u?), v € H}(Q) and ||ul| = 1. So K, doesn’t
depend on the coefficients d, b° in Ly and the inequality in (35) from above is obtained.
Further, we'll choose d and 0° = ad?, then

A(Lo) = inf By, [u,u] = il'}f/ a(aVu + ud)’dz > 0
u L

and according to Theorem 3.1, with u € H}(Q) and [lu|| = 1, h € Mg (u; ) A(Le) <
B [u,u] + Be(u?) < Br,[u,u) + [ (e — h)?u?dz. So

ALe) — MLo) < MLe) £ / a(aVu + ud)?dz + / alc — h)*ulde. (36)
1t} 1}

From the formula for K, in Remark 4.3, for € > 0, there exist u € H3(%), u > 0 and
h € Mg (u; ) such that [ a(c - h)?u*dx < K. + e. There as well exists . > 0 such
that [y, a(Vu)*de <e. With v = max(u,8;) > d. > 0 and d = —aVv/v the left
hand side of (36) with such d and the same u, h becomes

/ a(Vu)?da +/ a(c — h)*u?dz < K. + 2.
0<us<se Q

which proves the rest inequality in (35) from below. [ ]

Received: April 2006. Revised: March 2007.
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