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ABSTRACT
The functional equation f(x + y) = f(z) = f(y) = gl=,y) has a solution f
that belongs to C°(R) if and only if the symmetric cocycle g belongs to C°(R?).
If the symmetric cocycle g is recursively approximable, there exists a solution [
which is recursively approximable also. If g belongs to C*(R?) then there exists
an integral expression in g for a solution f that belongs to €' (R), and the same
happens for the classes C*, €™ analytic and polynomial

RESUMEN
La ecuacion funcional f(x + y) = f(x) = f(y) = g(z,y) tiene una solucién
f que pertenece a C°(R) si y s6lo si el cociclo simétrico g pertenece a CO(R?).
Si el cociclo simétrico g es aproximable recursivamente, existe una solucién f la
cual también es aproximable recursivamente. Si g pertenece a C'(R?), entonces
existe una expresion integral en g para una solucién f que pertenece a C'(R) y
lo mismo sucede para las clases: C*, C™, analitica, polinomial
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1 Introduction
The existence of a function f(x) satisfying the functional equation:
S +y) = f(2) - fv) = g(z,v)

is identical with the 2-coboundary condition for the function g(x, y), as defined in the
algebraic cohomology of abelian groups. This theory gives in general non-constructive
proofs for the existence of the solution, and studies the obstacles for the functional
equation to be soluble (in the so-called cohomologic non-trivial cases). My goal here
is to study analytic properties of the solution and its expressibility in the real case.
The word conerete used in the title can be also understood as the combination of
continuous and discrete.

In general, let K and L be two abelian groups and let g : Lx L — K be a function.
If there is a function f : L — K verifying the functional equation for all @,y € L then
g(x, y) must verify the following conditions:

- g(x,y) must be symmetric, that

W) = 9(y,x),
g(x, y) must be a 2-cocycle according to the trivial action of L on K, that is:
gla,y) + g(w +y,2) = g(a,y + 2) + g(v, 2).

We observe that if fo : L — K is a particular solution of the functional equation,
then the set of all solutions is {fo + § |8 € Hom (L, K)} = fy + Hom (L, K).

The cocycle condition for y = 0 gives g(x,0) = g(0,2) = g(0,0). One can always
suppose that g(0,0) = 0. Indeed, if f is a solution of the functional equation, then
f(0) = —g(0,0). If g(0,0) # 0 then we replace g(x,y) by g(z,y) — ¢(0,0). The new
equation has exactly the solutions f(x) + ¢(0,0), where f(x) are the solutions for
g(x,y).

The following facts are proved in [3], pg. 231 -
Eilenberg and MacLane, see (2].

Ifg: L x L — K is a symmetric cocycle with g(0,0) = 0 than the set G := K x L
with the operation (u,z) o (v,y) := (u -+ v+ g(x,y).x + y) is an abelian group such
that the abelian groups K, G and L form a short exact sequence:

39. The results go back to

0—-K—-G—=L—0

rding to the embedding ¢ : u € K ~ (u,0) € G and to the projection p : (u,x) €
r & L. In this situation one says that G is an extension of K by L. Two
extensions G and G’ of K by L are called equivalent if there is an isomorphism of
abelian groups ¢ : G — G’ such that ¢ = yu and p'y = p. Let us denote simply
by K x L the trivial extension of K by L, corresponding to the symmetric cocycle
o(xr,y) = 0. The extension @ is equivalent with K x L if and only if there is an
isomorphism ¢ : G — K x L of the form y(u,x) = (u ~ f(x),z) if and only if
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f: L — K satisfies the identity f(x +y) ~ f(x) = f(y) = g(=.y). As proven in (3], in
the coses:

~ L free group, K arbitrary, or

~ K divisible group, L arbitrary,

all extensions of K by L are equivalent with the trivial extension. It follows
directly:

Corollary 1.1 For functions g : ZxZ — K and g : L x L — Q or R with g(0,0) = 0,
the functional equation f(x + y) ~ f(x) = f(y) = g(x,y) has a solution f if and only
if g is a symmetric cocycle.

In particular, there is an f: R — R verifying the functional equation, if and only
if g : R* — R is a symmetric cocycle. If fo : R — R is such a solution, the set of all
solutions is given by the sums fo + 8, where § are solutions for the functional equation
of Cauchy 8(x + y) = 8(x) + 8(y).

Remark 1.2 In the case g: Z x Z — K the solutions have the form:

"tl!l(l.l) n>2

fn)=nf(l)+< ., f=1
S (96, -1) - g(1,-1)) n<0
=1

where f(1) € K is a free parameter, and f(0) = 0. This is true for all discrete
subgroups oZ of R with the only one modification that all integers which are arguments
of [ or g in this formula must be multiplied with o.

Proof: According to the cited theory, for any symmetric cocycle g : Z x Z — K
there exist solutions. Two solutions differ up to an additive homomorphism of Z,
(n ~ kn). Fix a value for f(1). We compute a solution fo with fo(1) = 0. By adding
the equalities fo(1+ 1)~ fo(i) = fo(1) = g(i, 1) for i = 1 to n—1 one gets the expression
for n > 0. On the other hand f(0) = 0 and f(~1) = —[(l) - g(-1,1) = -g(=1,1).

This value is substituted in the similar sum nf(-1) + ‘_ q(i ~1). So, if some

solution exists, it must be equal with the given expression, mnl on the other hand we
know that there exists a solution.

Example: Let g : Z x Z — Z be given by g(x,y) = xy. This function is a
symmetric cocycle. A solution f: Z — Z is given by f(n) = 'L‘L;LD. These are the
triangular numbers, extended over the whole Z. Now let 9; R x R — R given again
by g(x,u) = xy. All functions f : R — R given by f(x) = % + ax are solutions.

2 Class C°

Theorem 2.1 The functional equation f(x + y) — f(x) - f(v) = g(x,y) has a con-
tinuous solution f : R — R if and only if the symmetric cocycle g : R* — R is a
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continuous function. In this case for all xg # 0 fived the following is true: for all’
a € R there exists exactly one continuous solution f: R — R such that f(xg) = a.

Proof: If f is continuous, then also g. Suppose that g is a continuous symmetric
cocycle, without restricting the generality with g(0,0) = 0. Construct the short exact
sequence of topological groups:

0-R—-G—=R—0.

Here is G = R x R with the euclidian topology and again (u,z) o (v,y) := (u+ v+
g(x,y),x + y). G is not only an abelian group, but a topological group: the inverse
(u,z)~ " (—u = g(x, —x), —x) is also a continuous application. The embedding
tiu e K~ (u,0) € G and the projection p : (u,x) € G ~ x € L are homomorphisms
of topological groups. According to a fundamental theorem of Markoff (see [d]) a
topological group is isomorphic with some euclidian group (R™, 4,0) if and only if it
is abelian, Hausdorff, locally compact, connected and the only one compact subgroup
is {0}. Let (u,x) # (0,0) be an element of G. If z # 0 then my(< (u,x) >) = zZ,
which is unbounded. If 2 = 0 then m(< (%,0) >) = uZ which is also unbounded. So
@ hasn't any nontrivial compact subgroup and hence there exists an isomorphism of
topological groups ¢ : G — R,

Claim: ¢i(R) is a vector-line.

Indeed, ¢i(Qr) = Qupu(x). If the closed subgroup we(R) contains R-linearly inde-
pendent elements yy and yy, then it would contain the set of all rational combinations
Qui + Quz and its closure, so it would be the whole R?, which is a contradiction. So
2t(R) is the topological closure of Qgi(1), which is a real vector-line.

One can suppose that u(R) # {0} x R; if not, we substitute ¢ with 7, where 7 is
a small rotation. Consider the application 4 : R — R given by é(x) := pp~'(0,2). &
is a homomorphism of topological groups, so is additive and continuous. This means
that § is a continuous solution for the functional equation of Cauchy d(z + y) =
8(x) + 8(y) over R. Hence there is an a € R such that §(x) = ar, and a # 0 because
¢ ({0} x R) ¢ kern p.

We construct an application 6 : R* — R? satisfying the following conditions:

O(pu(R)) =R x {0} ; Bpu(1) = (1,0) ; 0 '|opxr = (T ~ ‘1';).

This is done by the linear application # such that 8(p(1)) = (1,0) and 6(0, 1) = (0,a).
# is an isomorphism of topological groups.

Call ¢ Op, U := Y and p' = py Then «'(u) = (u,0) and p'(u,z) =
x; in particular p't' = 0. It follows that ¢ is an isomorphism between the exact
short sequences of topological groups (R,+,G,p,R) and (R,«,R? p, R) ; so there is
a continuous function f : R — R such that for all (u,x) € R? it holds y(u,z) =
(u & f(x),x). According to the results quoted in the Introduction, the continuous
function f verifies the functional equation.

Now let us take an x9 # 0 € R. Any solution has the form f(zx) + §(x) and is
continuous if and only if the additive homomorphism 4(x) is continuous if and only
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if §(z) = bx for some b € R. But b = "—'{-_E‘—‘l is the only one able to satisfy the given
condition.

For a formal definition of recursively approximable functions, see [5). All recur-
sively approximable functions are continuous, but they build a strict subset of the
continuous functions.

Theorem 2.2 If the continuous symmetric cocycle g : R* — R is recursively ap-
prozimable, then there are continuous solutions f : R — R which are also recursively
approzimable.

Proof: Let f: R — R be any solution of the functional equation. As we know,
[ = fo + 8, where f; is a continuous solution and § an additive homomorphism of R,
It follows that f|q = fo|q + ax|q for some a € R. This means that f|g: Q — R is
always continuous. On the other hand, continuous solutions defined over Q or over
R are uniquely determined by a value in some xq # 0, for example by f(1). Let oZ
be a eyclic subgroup of R. Considering the similar functional equation corresponding
10 g |azx oz and the form for the solution given in the Remark 1.2 written in integer
multiples of a, we see that these discrete solutions are also uniquely determined by

J(0).

Lemma 2.3 Let g: R x R — R be a symmetric cocycle and f, : aZ — R a solution
of the functional equation written for the symmetric cocycle glazxaz. Then there is
a unique function fg : §Z — R satisfying the functional equation for the symmetric
cocyele g|gz« gz such that fy , = fa.

Proof of the Lemma: According to the Remark 1.2, the function f, is uniquely
determined by the value f,(a) and Iy by the value fg(§). But fg, is a solution
for the same problem as fo. Hence, the only thing to do is to choose fy(§) such
that fy(a) = f(a). By solving the equation fu(a) — 2f4(3) = gla, §) one gets the
s fol@) - (0, 3)

a,  fala) - gla, §
i \:(2) - 3 .
n

So, what we have to do, is to construct the sequence of discrete functions fy,
fg. /,, /",. ..., with the property that all fr.‘n la-sz = f’&. They are all
restrictions of the continuous solution f: R — R determined by f(1) = fi(1), which
has to be taken a recursive real. The union of all these domains are the dyadic
numbers, which are dense in R, and the union of all graphs is dense in the graph of
J. So f can be recursively approximated.

3 Class ("' and more

Lemma 3.1 Let g : R? — R be a symmetric cocycle of class C*. Then the following
identities hold:

. e
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. L g(x,0) = g(0, z) = g(0,0).
2. (Ghg)(u,v) = (Bag)(v, u).
3. (Ba9)(x,v) = (829)(x + 1,0) ~ (ag)(v, 0).
4- (hg)(x,y) = (019)(0, = + y) - (819)(0, ).

Proof: Point 1 has been proved in the introduction. Point 2 follows by symmetry.
Point 4 follows from 2 and 3. To prove 3, consider the following reformulations for
the cocycle-axiom, for z # 0:

9wy + 2) = g(a,y) = gz + y.2) - 9(v.2)

9=y +2) -9y _ 9@+w2) -9 +v.0) o9:2) =90

z z

Make now z — 0 and recall that g € C'. It follows:
(920)(,y) = (920) (= + v.0) ~ (B29)(v. 0)-
n
Theorem 3.2 The functional equation f(x+y) - f(x)~ fly) = g(x,y) has a solution

f:R — R of class C" if and only if the symmetric cocycle g : R* — R is also of class
C'. In this case the function given by:

=/(r'};g)(uv0) du,
0

is a solution. Consequently, if g ls a symmetric cocycle of class C*, C*, real-analytic
or poly ial, then the functi tion has solut [ of the same kind.

Proof: Let again g be a symmetric cocycle of class C! with g(0,0) = 0. Take
f to be the function given in the statement and consider the function: h(z,y) =
flx+y) = flx) = f(y). Of course, h is a symmetric cocycle, and a function of class
C'. By applying Lemma 3.1 several times, one computes:

(81h)(z,v) = (B2g)(z +y,0) = (Bag)(x,0) = (819)(0,x +y) — (819)(0,7) = (B19)(x,¥)

(B2h) (2, y) = (92g) (& + ¥, 0) — (B29) (4, 0) = (B29)(x, y)

Let now I(x,y) = (h — g)(x,y) € C'. Because (8y/)(x,y) = 0 and (8,!)(x,y) = 0,
the function I(z, y) must be constant. But (0,0) = 0, so h(x,y) = g(z,y). n

Again if the symmetric cocycle g of class C* (or €™, and s0 on...) is recursively
approximable, the the solutions f of the corresponding class are recursively approx-
imable too. The proof of the Theorem 2.2 works in all these cases.

e AW



T NN

nmu Conerete algebraic col logy for the group (R, 4) ... 45

Roceived: April 2006. Revised: May 2006.

References

(1] J. AczeL, Vorlesung iber Funktionalgleich und ihre A 1
Birkhauser Verlag, Basel und Stuttgart, 1961.

(2] S. EILENBERG, S. MACLANE, Group extensions and homology. The Annals
of Mathematics, 43, 757 - 831, 1942,

8] L. Fuens, Abelian groups. Pergamon Press, Oxford 1967,

[]  A. MARKOFF, Uber endlich-dimensionale Veltorraume. The Annals of
Mathematics, Ser. 2, 36, 2, 464 - 506, 1935.

(6] K. Wemravcn, Computable analysis. Springer Verlag, 2000.




	Cubo a mathematical journal 2007 v9 nª3_0047
	Cubo a mathematical journal 2007 v9 nª3_0048
	Cubo a mathematical journal 2007 v9 nª3_0049
	Cubo a mathematical journal 2007 v9 nª3_0050
	Cubo a mathematical journal 2007 v9 nª3_0051
	Cubo a mathematical journal 2007 v9 nª3_0052
	Cubo a mathematical journal 2007 v9 nª3_0053

