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ABSTRACT
I'he stationary differential systems with polynomial right sides are consid-
ered. Necessary and sufficient

conditions are formulated when a given domain is
y and the origin of coordinates is either the focus
or the center. The problem of construction of a stabilizing control in a form of
polynomial is studied

a domain of asymptotic stabi

RESUMEN
Consideramos los sistemas diferenciales estacionarios con lado derecho poli-
nomial ¥ formulamos condiciones nec

arias y suficientes cuando el dominio dado
es de estabilidad asintética y el origen de coordenadas es el foco o el centro.

Ademés se estudia el problema de la construccién de un control estabilizador de
forma polinomial.
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1 Introduction

In the 19 century the great French mathematician Henri Poincaré formulated the
problem of finding stability conditions for differential systems without calculation be-
ing a solution. At the end of the 19" and at the beginning of the 20" centuries
the great Russian mathematician A.M.Lyapunov developed the mathematical stabi-
lization theory for differential systems. For this purpose he developed two methods.
The first one is based on the characteristic numbers of the fundamental matrix. The
second one is based on construction of special functions called Lyapunov’s functions
which have properties similar to distance from a considered point to the origin of
coordinates (it is supposed that the zero solution is stationary). Lyapunov’s methods
received world recognition.
In this paper, differential systems with a right polynomial part f(.) of

(21,2, ...y Tn) ER®

are considered i.e.

f@) = (fi(@), fo(®), s ()"

where e
fow) = E all,..
Udayedu€ly

p € 1:nly, 1y, .1, are non-negative integers and « is the transposition sign, a,(:'.),"__ i
are real-valued numbers, I, is a set of degrees of the polynomial f,(x
To analyze the system

f(x)

a method is suggested that is different from Lyapunov’s methods and based on a
system transformation idea, so that we are able to say something definite about
stability.

From the technical point of view the important problem is finding a domain of
asymptotic stability [1]-[5] and defining behaviour of trajectories of such a system in a
small neighborhood of the origin of coordinates [6]. Conditions are given so that any
domain including the origin of coordinates is one of them. Necessary and sufficient
conditions are found when the origin of coordinates is either the focus or the center.

The s considered when the coefficients “::’.‘l;, ;. depend on t. The sufficient
conditions are given for the problems formulated above.

The

solution i

systems considered are inte

sting because asymptotic stability of the zero
equivalent to the following statement, that any solution of our system
starting from any point of some small region of the origin of coordinates tended to be
zero; this is not correct in general cas

Further, we solve the problem of constructing a stabilizing control in any given
domain of the origin of coordinates for a system

z= f(z,u),

e AN
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where @ € R" is a phase vector , u € R" is a control, f(x,u) = (fi(z,u), fa(z,u),...,
Sula,u))* is a vector polynomial of  and u i.e.

Jylarw) = > A — B AR
Ldadnmymay.my €1,
p€lin, l,la .. ly,my,my,..,m, are non-negative integers, n;"'.),:w‘,_'_mhml_”'m,
are real-valued numbers, [, is a set of degrees of the polynomial f,(x, u). We assume
that the zero vector 0 = (0,0,...,0) € R" is a solution of the system i.e. f(0,0) =0,

The theorem was proved that any domain including the origin of coordinates can
be made a domain of asymptotic stability if we choose a suitable control u(x). The
control u(x) is chosen as a polynomial with degree not higher than degree of the
vector-function f(x,u) as a function of .

The formulated problem about asymptotic stability of a system with a right poly-
nomial part is very important for practical applications in physics and technics and
can be found in the book by V.I.Zubov "The lectures on the control theory”, 1975.
p.60.

2 Domains of asymptotic stability

Let us consider a differential system
o= f(z), (1)
where = = (z1,22,...,&,) € R" and
f(@) = (fu(@), fa(@), o fu ()"

The vector-polynomials f,(.) and their coefficients u{'l 1.1, satisfy the conditions in
the Introduction.

We assume that f(x) # 0 for all @ # 0 in some neighborhood of the origin of
coordinates 0.

We will call the order deg(f,(.)) of the polynomial f,(-) the maximal degree of the
polynomial f,,(.) in the variables a;,j € 1: n, in totality i.e.

deg(fy(w)) = o !,IP‘“F‘(EI (h+b+ .. +1y).

Soif for n = 2 and l;; #0
(@) = lna + oo + hazas,  fo(x) = Ina] + lbawa + laws,

then the order of f;(x) is equal to two and the order of fa(z) is equal to three.
We will call the order of the function f(.) the maximal degree of the polynomials
Jp(®),p € 1 : n, with respect to the variables x;,j € 1: n, i.e.

deg(f(x)) = max deg(fp(x))-
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Consequently, the order of the function f(.) for the example written above is equal
to max 3.

We assume that the definitions of stability and asymptotic stability are known
(see [1-[4)).

Definition 2.1 /1], [2] A domain D,0 € intD, consisting of whole trajectories of the
system (1), is called a domain of asymptotic stability if the limit

[l 2(t, zo, to) | — O Y

as t — oo is fulfilled for any initial point xo € D and any solution x(:), z(to) = o, of
the system (1). In this case we will call the system (1) asymptotic stable in D.

The following problem is important for practical applications.
Problem 2.1 ([1], (2]) It is known that the zero solution of a system
z= Az, (3)
Aln xn),z € R", is ptotic stable if all ei lues of the matriz A have negative

real parts. In this case the system (8) is asymptotic stable in R™.
Consider now a differential system

T= Az + p(z) (4)

where ¢(-) is a vector polynomial with degree not less than two, ¢(0) = 0.

What are the conditions on the coefficients of the vector- polynomial ¢(-) from (4)
for which the system (4) is asymptotic stable in a given domain D,0 € intD, i.e. for
any solution of the system (4) and any initial point xo € D the limit (2) is true?

The considered circle of questions includes the problem about the center and the
focus. This problem is formulated in the following way.

Problem 2.2 Assume that the origin of coordinates (0.0) for the system (3), n =2,
x € R? is the center. Necessary and sufficient conditions for this are that all eigenval-
ues of the matriz A are imaginary. By adding a vector polynomial () (system (4))
the center (0,0) can be the focus. Conditions on the coefficients of the polynomial (-)
are needed to find that the point (0,0) was the center of the differential system (4).

Let us rewrite the system (1) in an equivalent form
z= A(x)z. (5)

The elements a;;(x) of a matrix A(x)[n x n] are continuous polynomial functions of
x. Conversion (4) to (5) is not unique. It can be done in an infinite number of ways.
In fact,
(0] hgla =1 |,
ai;(z) = Z g, v,“uu,‘:,‘..fl S
Ltla ol Sdeg(f)

o AN
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if [; > 1. We have the following correlation for the coefficients

= ";:Tl,.. 11 (6)

(0}
CA1y el

i

for all 2 from some region D,0 € intD.
For instance, let the system (1) have the right part

o, 2
& x{xg + Ty + 21173
f(=) = ( —x) + 3alxy - 21123 )
Then

2

A= Q@ + a3 1+ fya} + Baxyxy
=14+ mazag + yad 8,23 + 87173

where coefficients oy, 3, vi, Ai,1 = 1,2 such that
artph=1, N+ =3,

az+Pf2=2 m+by=-2

The system (4) for the vector function f(:) can be rewritten in the following form
@= Agr + C(z)z (7)

where
a1y + g ﬁ.ri’ + fax 12
Ca) = I
nTE + Y23 0177 + S 72

(o).l
s iy

Since eigenvalues of the matrix Ag are Ay 2 = +i, the point (0,0) is the center for the
linearized system. But it is question for the nonlinear system (7).

We will consider all possible continuous matrices A(x) whose elements are polyno-
mial functions of x. The system (5) is equivalent to the system (1) . We will denote
the set of all such matrices by A.

Let us solve Problem 2.1.

Theorem 2.1 In order that a domain D consisting of whole trajectories of the system
(1) i.e. z(-,x0,t0) € D,xg € D, for all t > to is a domain of asymptotic stability it
i§ necessary and sufficient that there is a matriz A(:) € A of the system (5) in the
domain D whose eigenvalues have negative real parts at any point x € D,z # 0.

Proof. Necessity. Let the domain D be asymptotic stable. Consider any trajec-
tory x(:,xo,t0),z(ty) = xo. There is such a transformation £ = X(z) of R" in a
neighborhood of a point z, = x(t,) that transforms the system (1) to a differential
system

&= B(§)¢ ()

.. e
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where a matrix B has eigenvalues with negative real parts.

Indeed, for any point a(ty,p,t),t1 > fo there is a linear transformation T,
defined in a small neighborhood of the point x(ty, zq. 1) and that is the linear part of
the transformation X (.) in this neighborhood, so that the system (1) is transformed
by this transformation to the differential system (8) and the vector

@y =% (ty, 30, to)

is transformed to a vector y
&1 =€ (t1, 20, 0).
Any differential equation can be defined by its current of tangent vectors. If we choose
rmptotic stable linear d al system like the system (3) current of tangent
vectors of which is close to the nt of tangent vectors of our system locally for each
point x of the domain D, then eigenvalues of a matrix of this asymptotic stable linear
differential system will have negative real parts. Consequently, the above mentioned
transformation X () exists.
As soon as the system (8) is transformed to the system

5= T=EB(6) T
under the linear transformation
E=Tpu

in a neighborhood of the point &, and all locally linear transformations of the system
(1) have the form (5), then a matrix A(-) € A exists for which

Ala(ts,w0)) = T5 BT, ©)

and eigenvalues of the matrix A

Since the transformations 7,
A(.) is also continuous with
Sufficiency. Let the

t1)) are equal to eigenvalues of the matrix B.
and 77! are continuous with respect to , the matrix
pect to x € D
(1) admit such a sformation to the form (5) that all
eigenvalues of a ma have negative real parts for all 2 € D, a # 0. We prove
that the domain D is a region of asymptotic stability.

Fist we remark that in general case not any solution of the system (1)

w(t, 2o, t0), w(to) = 20

can be represented in the form
Kz dr
a(t) = el AENT (10)
where the integration is taken along the integral curve z(.).
Instead of (10) we will use sequential approximations {z;(t)} of the system (1) on

a segment [to, t] having the form

ap(t) = eAE-DE= =gy () (11)

( AW



mmj Construction of a stabilizing control and ... 19

where {t;} is a subdivision set of the segment [to, t] and
Tipy = M@=ty 50 (k- 1). (12)
If we substitute (12) into (11), then we get
2x(t) = e @D (=th1) AR -2 (1= th2) o AGE0) (a=t0) . (13)

Since A(a) —

@y — (7) A(x(t)), where @(.) is a solution of (5), we have

ty =T
ap(r) = z(7) (14)
uniformly on 7 € [to,t] as k — oo and
max ieuk | ti = ti-1 [—x 0.

It is obvious that all matrices A(2;),i € 0 : (k — 1), have eigenvalues with negative
real-valued parts for enough big k.

Denote by Ay(x;) all eigenvalues of the matrices A(xz;),i € 1:n,j € 0: k- L.
Then a number C > 0 exists that

u(,v‘\lt\»l)l'—fb-I)e/\l-ﬂ—-ﬂ)(’rk—I""A--a)mel\(zu)(ll—lu)l.u” < Ct"\m“"")"ﬂloﬂ

where
A(t) = lim max Re \i(x;).
k=00 ek —1, gt
vieliin

Since A(t) < 0 for any t > to,
A(t)(t = to) < 0.
Let
—a < \(t)(t = to) <0,a > 0.
This relation means that the trajectory a:(:) can not go to a stationary point or be a

stationary orbit. Indeed, if the trajectory x(.) has a stationary point or is a stationary
orbit then

'l_lglo A(t)(t = to) = —oo0.
Consequently,
Il = (t, 20, to) [|— 0

as t — oo. We obtain the contradiction. Thus, the origin of coordinates can be only
a stationary point. The sufficiency and the theorem are proved. O

Remark 2.1 It follows from the Necessity of Theorem 2.1 that there is one-to- one
correspondence between matrices A(x) € A of the system (5) and locally linear trans-
Jormations T: of the system (1) defined in a neighborhood of the point x(see (9)).
Indeed, there is a matriz A(.) for any transformation T, and, on the contrary, there
is own coordinate system for any matriz A(xz) € A, in which the equation (9) is true.

N e
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Corollary 2.1 . It follows from the Necessity of Theorem 2.1 that degree on x of any
element of a matriz A(x) that we denote by a;;(x),j € 1 : n, that is a polynomial of
x, does not exceed degree of the vector-function f(-).

Proof The sum of a;;(x) over j is equal to zero for those elements that do not

belong to fi(-). And on the contrary, the sum of the coefficients ny)h,“_ 1, over j
is not zero for those elements that are the terms of f(:). It follows from here that
choosing n",‘)

i , from the system (6) we can only consider elements of the vector-
[)Ol}'llolllin(f

(]

Corollary 2.2 . For asymptotic stability of a solution x(.,xo,to), ®(to) = o, of the
differential equation (1) it is sufficient that there was 6(to,€) > 0 for any to,e > 0
that for || zp ||< &

I 2(t, o, to) [[— O

ast — oo.

Proof. As soon as eigenvalues of the matrix A(:) have negative real parts in any
neighborhood of the origin of coordinates from which any solution tends to zero-
vector , then for any k we have from (13) that

Il () <]l 20 |< &
and in limit on k
Il w(t, w0, to) 1</l wo [|<

i.e. all solutions are in an & -neighborhood of the origin of coordinates. The latter
means stability. The Corollary. is proved. [

3 To problem about the center and the focus

The following problem is interesting from technical point of a view: to recognize focus
or center ie. to give some conditions when trajectories turn around and go to the
origin of coordinates or remain closed.

From the start we will give definitions of the focus and the center. Beforehand
we define trajectories turning infinitely often around some ray with the initial point
0e R

Definition 3.1 Let us say that a trajectory x(t,xo,to) turns around a ray | € R"
with the initial point 0 € W" infinitely often if radius vector r(t) = a(t to) forms
with the ray I an angle p(t) taking all values from a segment [y, @) infinite number
of times.

Definition 3.2 We will call the point 0 € R™ the focus of the system (1) if

1) the point 0 is asymptotic stable ;

2) any solution x(t,xo,to) of the system (1) turns around a ray | € R with the
initial point 0 € N" infinite number of times.
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Definition 3.3 We will call the point 0 the center of the system (1) if

1) the point 0 is stable ;

2) all solutions x(t,x0,to) of the system (1) remain in some neighborhood of the
point 0 and are closed loops.

Definition 3.4 We will call the point 0 € R™ the node of the system (1) if

1) the point 0 is asymptotic stable ;

2) there are not a ray L € R™ with the initial point 0 € R™ and a solution x(t, xo, to)
of the system (1) turning around the ray | infinite number of times.

Theorem 3.1 In order that the point 0 € R" is the focus of the system (1) with a
right polynomial part f(.), f(x) # 0 for x # 0 it is necessary and sufficient that

1. There is such a continuous matriz A(:) € A of the system (5) that all its eigen-
values at any point x,x # 0, from some neighborhood D of the origin of coordi-
nates, consisting from whole trajectories, have negative real parts and non-zero
imaginary parts.

i)

. There is no matriz A(-) € A of the system (5) with negative real-valued eigen-
values at all points © € D,x # 0.

Proof. Necessity. Let the point 0 be the focus for the system (1). There is such
a transformation € = X () so that the system (1) can be rewritten in a neighborhood
of some point zy,x; # 0, in the form

&= B(6)E

where B(£) is a matrix whose eigenvalues have negative real parts and nonzero imag-
inary parts.

Consider any trajectory x(:, xo,to), 2(to) = xo. Then for any point z; € x(t, o, to),
@y # 0, there is a transformation 7}, in a neighborhood of the point z; that the system
(1) can be rewritten in the form indicated above.

If trajectories of the system (1) do not turn around any ray [ € R" with the
initial point 0 € R" infinite number of times then such system can be transformed
by some continuous transformation that corresponds to some matrix A(:) € A that
is a matrix of the system (5) whose eigenvalues are negative real-valued numbers at
all points = € D (theorem 2.1). The latter is impossible according to condition 2 of
the theorem.

Sufficiency. Let the conditions 1,2 of the theorem be true. Prove that the point
0 is the focus of the system (1).

Any solution z(-, 7o, to), 2(to) = wo, is a limit of some sequence xx(t) on k — oo
obtained from (13). According to the conditions all matrices A(x;),j € 1 : k, have
eigenvalues Ay(x;),j € 1: k1 € 1 : n with negative real-valued parts a;(-) and nonzero
imaginary parts bi(-) : \i(x) = ai(z) + iby(x),i® = =1, [ € 1: n, that are nonzero at
any point = € D. It follows from here that the point 0 is either the focus or the node.

. e
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We will prove that under the condition 2 all trajectories turn around a ray [ € R"
with the initial point 0 € R" infinite number of times. If it is not true, then there is
such a transformation which corresponds to a matrix A(-) € A whose eigenvalues are
negative real-valued numbers for @ € D, # 0. This contradicts the condition 2. The
sufficiency and the theorem are proved. [

Corollary 3.1 If instead of the condition 2 of Theorem 3.1 we require that there is
a matriz A(.) € A of the system (5) with eigenvalues \;(x), i € 1 : n, described in
condition 1 for which

Im \i(z) >a, a>0

or
Im \(z) <a, a<0,

where Im A (.) denotes an imaginary part of Ax(.), for x € D,z # 0, then all trajec-
tories turn around a ray | € N with the initial point 0 € R™ infinite number of times.

Proof. From the representation of any solution of the system (1) as a limit of a
sequence {x;(.)} from (13) it follows that a solution z(:,zg,to) has a finite number
of turns around any ray | € R" with the initial point 0 € R" if and only if for any

1€ 1:n the sum
Z ImAi(xj—1)(t; —tj-1),

JELK

where z;(.) was defined in (13), or in the limit on k — oo the integral

0o
Im \i(x(7))dr
to

is convergent. But under the condition of Corollary 3.1 this integral is divergent. The
corollary is proved. O

Mathematicians were concerned about the problem of recognition of center ore
focus for a long time. The theorem given below for two dimensional system with a
right polynomial part has the point 0 = (0,0) as the center.

Theorem 3.2 In order that the point 0 = (0,0) be the center for the two-dimensional
system (1) it is necessary and sufficient that there was a matriz A(.) € A of the
system (5) whose eigenvalues are non-zero imaginary numbers in a neighborhood S
of the origin of coordinates, consisting from whole trajectories, where f(x) # 0 for
z#0,z€S.

Proof. Necessity. Let the point 0 = (0,0) be the center of the system (1). Prove
that the condition of the theorem is true.

Take such a small neighborhood S of the origin of coordinates where all trajectories
starting in S are closed loops. Consider any trajectory z(-, xg, ), (tg) = . Take a
point

xy = a(ty, To,to)-

T
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There is such a transformation 7% in a small enough neighborhood of the point
ay,@; # 0, that the system (1) can be rewritten in the form

€= Be)E

and the matrix B(.) has imaginary eigenvalues for all £ € S. As was proved above
(Theorem 2.1, the Proof of the Necessity) the matrix B(:) corresponds to some matrix
A(:) that like the matrix B() has imaginary eigenvalues. The necessity is proved.

Sufficiency. Let the condition of the theorem be true. Prove that the point
0= (0,0) is the center.

As soon as any transformation 7}, is defined in a small neighborhood of the point
@, then the above statement is not sufficient for the point 0 = (0,0) to be the center.
The point 0 = (0,0) may happen to be the focus convergent (nonconvergent) with
a finite number of turns around any ray [ € R" with the initial point 0. But it is
impossible because from the limit of the sequence (13) we conclude that for any k

[l k() I1=1 o || -

From (14) it follows that solution @(:, o, o) can not go to the origin of coordinates.
A set of closed and not closed loops could occur. From the representation of
integral curve x(-,xg,to) in the forms (13) and (14) it follows that there is not a
matrix A(-) € A with imaginary eigenvalues at all points of a small neighborhood of
the origin of coordinates. The latter contradicts the condition of the theorem.
There is another case when for all i € 1 : n the sum

Z ImAs(@j-1)(t5 = tj-1)

JELK

or in the limit on k — oo the integral
00
/ Im Ng(z(7))dT
to

has a finite value where A;(:), i € 1 : n, are eigenvalues of a matrix A(-) € A, In this
case trajectory x(-,xg,tg) goes to some stationary point & € S, & # 0. It means that
f(&) = 0. This contradicts the condition of the theorem. Consequently, the point
(0,0) is the center. The sufficiency and the theorem are proved. O

Corollary 3.2 If a matriz A(.) € A of the system (5) exists with imaginary eigen-
values N\i(x) for all x € S where S is a neighborhood of the origin of coordinates 0,
consisting from whole trajectories, and

Im \i(x) >0
or

Im A\i(x) <0

Jor allz € S,z # 0, and i € 1 : n, then the point 0 is the center of the n-dimensional
system (1).

()
.
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Proof. Indeed, if the conditions of Corollary 3.2 hold, then the conditions of Theorem
3.2 hold as well. O

Corollary 3.2 does not require that f(x) # 0 for all z # 0 from some neighborhood
of the origin of coordinates.

Remark 3.1 The theorem can be proved for any n-even-dimensional spaces. It is
not difficult to see that for n dimensional spaces with n odd, n = 2k + 1,k is a natural
number, the system (1) can not have the origin of coordinates as the center. Indeed,
there is no imaginary number among eigenvalues of any matriz A(:) for odd n.

Remark 3.2 Let us consider the differential system

= f(x,t) (15)
where T = (z1,T2,...,Tn) € R" and

f@,t) = (fu(@,t), f2(,8), ooy fu(,1))".

The vector-function f,(.) is a polynomial of x i.e.

i ()= DD T ot (1) e

lilage €1y

p € 1:nly,ly, .1, are non-negative integers, u;:"),z. .1, (t) are continuous real-valued
functions and * is the transposition sign, I, is a finite set of indexes of the polynomial
fpl.). We will assume that f(x,t) # 0 for all x # 0 in some neighborhood of the origin
of coordinates 0 and t > ty.

In this case we will denote by \i(x,t),i € 1 : n, eigenvalues of a matriz A(.) € A
of the system 5. If we demand that all cited above statements about eigenvalues
Ai(z.t).i € 1:n, are true for all t > to then we obtain sufficient conditions for the
cited above theorems and corollaries.

Problem 3.1 For the system
= f(x,t) (16)

where f(.,.) is a polynomial of x and t it is required to find some conditions when the
system (16) is asymptotic stable in a domain D,0 € intD.

The ideas stated above do not apply to the system (16) because the terms of
f(.,.) can be unbounded along some solution (-, zg, to) in D. If we require the terms
of f(.,.) to be bounded along trajectories of the system (16) and that || (t,z0, to) ||
goes to zero uniformly on a as t — oo, then this system can be transformed to an
equivalent stationary system. This idea will be (Io\oloprd in following articles.

fame A\
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4 Stabilizing control

Let us go to question of finding a stabilizing control.
Let us consider the differential system

o= f(x,u) (17)

where @ = (x1,22,...,4,) € R" is a phase vector, u = (uy,uz ) € R is a
control, f(z,u) = (fi(x,u), fa(@,u), ..., fu(z,u))* is a vector-polinimial of x and u
with constant real-valued coefficients, i.e.

g (P) hpls  plugmigma o my
fola,u) = z e AT T ULy 1 Ap T Tnie Tt Gl B

by laduymy,m €l

pELlin, Iyl .. ly,my,my,..,m, are non-negative integers and a,(i’l)
are real-valued numbers, I, is a finite set of indexes of the polynomial fy(.).

Let us assume that the zero-vector 0 = (0,0, ...,0) € R" is a solution of the system
(17) for u =0 € R".

My

Definition 4.1 The control u(x) = (uy(x), ua(x), ..., ur(x)) € R” is called stabilizing
in a domain D € R", 0 € intD, for the system (17) if any solution of (17) x(t) =
a(t, o, to, u(x(t))) satisfies the limit

Il @ty 2o, to, u) ||~ 0 (18)
ast — 00, z(to) =x9 € D.

As mentioned above condition (18) is sufficient for the system (17) to be asymptotic
stable in D, i.e. the zero solution of the system (17) is asymptotic stable and the limit
(18) is true for any initial point a(to) = xo € D.

Problem 4.1 It is required to find such a stabilizing control u = u(x) in a given
domain D,0 € intD,x € D that for any solution x(t,xq,to,u),x(t) = xo of the
system (17) the correlation (18) was true.

For the linear system

Ax + Bu, (19)

where Bln % r| is a matrix of amplification coefficients, a stabilizing control u € R"
can be chosen in the form u = Ca so that (18) is true.

Theorem 4.1 [1]./{]. If the rank of the system
B AB, A%B, ., A~'B
is equal to n then we can always construct a stabilizing control in R" in the form
u = Cgz,

where C|r x n) is some matriz,

AT
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Since the matrix B is defined by technical essence of a system, we can choose it by
ourselves constructing this system. Therefore the condition of the theorem can be
always satisfied.

The theorem was written for comparison with the results below.

Our goal is to construct a stabilizing control u(x) that a domain D were a domain
of asymptotic stability. In common case it is not always can be done. But if we
change the system (17) a little bit the problem can be solved. Instead of equation
(17) we will consider the equation

fl,u) + p(u) (20)

where ¢(-) is a vector-polynomial ¢(u) = (¢1(u), @2(u), ..., en(u))
bigger than degree of the function f(z) as a function of z = (x, u),

with degree not

) ir
wplu) = Z bf:’.”._“". uy uy .y

1420 in €My
where p € 1: n and bf:’_)m"l‘-' are constant real-valued numbers, iy, 12, ..., 1, are non-
negative integers, M, is a finite set of indexes of the polynomial ,(.).

In practice it is possible to construct ¢(-) because we choose a control u(-) by
ourselves.

We will look for a stabilizing control u = u(x) in a form of polynomial in x.

Theorem 4.2 For any domain D,0 € intD, vector-polynomials u(.) and ¢(.) can be
chosen such that

1) D is a region of asymptotic stability for the differential system (20);

2) degree of u(x) does not exceed degree of vector-polynomial f(x,u) as a function of

5
3) degree of () is not bigger than degree of f(.) as a function of
z = (z,u).

Proof. We will prove that a vector polynomial u(x) can always be chosen satisfying
the following conditions
1) degree of u(r) does not exceed degree of the vector-polynomial f(x, u) as a function
of x;
2) u(x) is a stabilizing control for (20) in the domain D.

We will use the results obtained before (Theorem 2.1).

Let us substitute in (20) control u = u(x) in a form of vector-function of z. The
system (20) is rewritten as

z= f(x) (21)
= A(z)z.

We can write conditions for the matrix A(x) to have eigenvalues with negative real
parts.

e A
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There is no difficulty caleulating degrees of functions f(r, u) and ¢(u) as functions
of @ after substituting u = u(x).

Let us denote by [, and [, degrees of the function f(x,u) in the variables x and u
correspondently. Then after substituting u = u(x) degree of the function f(.,.) as a
function of x is not bigger than l, + [, and degree of the function ¢(.) as a function
of & is not bigger than [, (I, + (,). It is easy to see that

Lo+ Lol < Ll + L)

Having chosen the function ¢(:), the coefficients of the vector polynomial f(:l:)
can be chosen so that the matrix A(x) has eigenvalues with negative real parts. The
theorem is proved. (]

In an analogous way it can be proved the following theorem.

Theorem 4.3 For the differential system (20) with even n vector-polynomials u(-)
and @(+) can be chosen such that

1) the origin of coordinates 0 is the center for the system (20);

2) degree of u(x) does not exceed degree f(x,u) as a function of x

3) degree of p(.) is not bigger than degree of f(.) as a function of z = (x,u).

This theorem can be used in physics of plasma specially for stabilization of plasma
in reactor.

Remark 4.1 In the case when the coefficients u,l ),‘ depend on t the

coefficients h"" ., will depend on t as well. We can try to find these coefficients

that the mmhlmm of the theorems of the previous section were true for all t > ty.

ma,..my

5 One aspect of application

We will study for instance how to choose a control u(:) so that a given domain D
consisting from whole trajectories of a differential system were a region of asymptotic
stability. For that we have to solve the following optimization problem.

Let us substitute a vector-control u(-) in a form of polynomial of = with degree m
not bigger than degree of the vector-polynomial f(, u) as a function of @ in equation
(20) and rewrite (20) in the form (21). Denote vigon\‘uluvs of a matrix A(:) in (21)

by ,\,(:,n.,.d::'.”v _,”,lz:z"’“._‘_v,v) where a; and d!"

matrix A(-) and the vector-function u(-) correspondingly, lrf:’.’”. iy PEL:n, arethe
coefficients of the vector-function (.). Then our problem is reduced to the following
optimization problem: to find out such continuous functions a,;(x),1,j € 1 :n, & € D
and the numbers :l::)_," NN

iz i, are the coefficients of the

, P € 1:n, that the following correlation

Re \j(x, agy(x), dY

1182,

)<0 (22)

was true for all x € D,x # 0, where a;;(x),i,j € 1 : n, are connected with each
other by linear equations for each # € D,x # 0, by other words, we should solve the

T
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following problem

e inf sup inf Re ,\j(.r.n,).(lfz].,h S0 bfr.),-)“_”.-' ) <0
d shelin gie liin e

i202,in 0
b opelin ®ED \ B'(0)

Vd > Owhere BF(0) = {z € X" ||| z ||< d},6— is any sufficient small number for
which D > B} (0).
is obvious that the inequal (22) can be replaced by an equivalent system of
inequalities f cients of characteristic polynomial of the matrix A(.). To solve
this system it is easier than to find eigenvalues of the matrix A(.).

Received: Dec 2005. Revised: May 2006.
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