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ABSTRACT

ization procedure is based on a sequence of coor-
formations generated by solutions to homological equations; in the
presence of resonances, such solutions are not unique and one has to make some-
what arbitrary choices for elements in the kernel of relevant homological oper-
ators, different choices producing different higher order effects. The simplest,
and usual, choice is to set these kernel elements to zero; here we discuss how a
different prescription can lead to a further simplification of the resulting normal
form, in a completely algorithmic way.

‘T'he Poincaré-Dulac normal
dinate tran

RESUMEN
Bl procedimiento de normalizacién de Poincaré-Dulac se basa en una suc
de transformaciones de coordenadas generadas por soluciones de las ecuaciones
homoldgicas. En la presencia de resonancis

, esas soluciones no son tnicas y
se hacen elecciones arbitrarias de los elementos en el kernel de relevantes oper-
adores de homologia. Diferentes elecciones producen diferentes efectos de orden
superior. La eleccién ma:
Aqui dis

imple y comtiin es anular los elementos del kernel.
utimos cémo una eleccién diferente puede conducir a una simplificacién
mayor de la forma normal resultante, de una manera completamente algoritmica.

Key words and phrases:  Nonlinear Dynamics; Dynamical Systems; Normal

Forms; Perturbation Theory, Symmetry.
Math. Subj. Class.: 34C20; 34A34, 34C14, 34C15, 34E10.

1Work supported in part by GNFM-INJAM under the project “Simmetria e tecniche di riduzione
per equazioni differenziali®

AT



Giuseppe Gaeta Cuso

Introduction.

Poincaré-Birkhoff normal forms [1, 12, 15] are central to our understanding of non-
linear dynamics in perturbative terms in many ways.

When the normal form of X does not reduce to its linear part Xo, it is well known
that there is some freedom in the normalizing procedure; different choices in this will
produce different normal forms. The choices alluded to here can be thought as a
choice of an element in the (nontrivial) kernel of the homological operator; in the
original Poincaré-Dulac discussion — and in most discussions in later times - this is
ssumed to be just zero for simplicity.

Already Dulac [6] remarked that it is conceivable that a different choice would
produce a somewhat “simpler” normal form, and several authors have been working,
also in recent times, in this direction. We will not attempt at reviewing the different
approaches present in the literature; a short discussion with references is provided
e.g. in [4].

The pres
normal forms

it author has di “further nor ion” of Poincaré-Dulac
as this is a direct extension of Poincaré-Dulac approach based
on higher order homological operators, the corresponding normal forms havé been
christened “Poincaré renormalized forms” (PRF). This approach has later on been
adapted to cases where a Lie algebraic structure is naturally present in the set of
resonant vector fields, i.e. in the normal forms corresponding to a given hncar part
[10}: in this case the name “Lie renormalized forms” (LRF) is used.

The purpose of this note is twofold. On the one hand, we want to provide a brief
but comprehensive overview of this approach and of the results that can be obtained
within it. On the other hand, in many occurrences, in particular (but not only) for
systems of physical significance, we deal with nonlinear dynamical systems with given
symmetry properties; thus we want to discuss how this approach deals with symmetric
systems.

In this note, we deal with dynamics described by a vector field X on a smooth
real n-dimensional manifold M; we want to study this around an equilibrium position
my € M, and reduce to a neighbourhood E of mg in M. As considerations are
merely local, we identify B with an R" space, and introduce cartesian coordinates
(2!, ...,z"); the equilibrium point mq will correspond to the origin of this coordinate
system.

Thus our general frame will be to consider a dynamical system in R™,

1)

where £(0) = 0 and f is expanded around the origin as a power series

Z filz ()

k=0

with fi(ax) = a**1 £ (). We could equivalently consider vector fields X = fi(x)d/0z"
or vector power series Y, fi(2).
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Notice that we will not consider the convergence of the f expansion [5, 16}, so all
the series met here will be formal ones.

Similarly, we will not consider the specific features of hamiltonian systems and of
Birkhoff-Gustavsson normal forms [4); a similar theory also exists in this case, dealing
with simpler objects (hamiltonian functions rather than vector fields).

1 Normal forms and redundancy of their classifica-
tion

The Poincaré normalization procedure [1, 12, 15] is based on considering a sequence
(m = 1,2,...) of near-identity changes of coordinates

+ hn (%) )

with /i, (aZ) = a™*'h,,(F). We can also consider Lie-Poincaré transformations [13]
(which has several conceptual and computational advantages [2]): we define a vector
field H = hy, d/0x* on R™ and consider the flow under it,

dx/d\ = hp(z) @

which, with #(0) = xo, we denote by z(\) = ®,,(\;z0); then the changes of coordi-
nates are given by

op = () (5)

The two procedures give the same result up to order 2™+,
Under (3) or (5), (2) is changed to a new system (we drop the tilde over = for ease
of notation)

& = z i () (6)

where fi(z) = fi(x) for k < m, and Fn = fmn = Lo(hm) with Lo the homological
operator associated to fo, i.e. Lo(h) : o(x), h(z)} where we use the Lie-Poisson
bracket {p, ¥} := (¢ - V)1» — (¥ - V)p; this corresponds to the commutator of vector
fields having components ¢ and ¢ when expressed in a coordinates.

The action on fi with & > m is different for Poincaré and Lie-Poincaré transfor-
mations; for the latter, we have (with [k/m] the integer part of k/m) (9, 13|

tk/m)
Fom Y S HE(ficm) @)
=0

where the operator H,, is defined as Hu(.) := {hm,.}.
Notice that if Vi denotes vector polynomials homogeneous of degree (k + 1), we
have {.,.} : Vk X Vi = Viegm, so that Lo : Vi — Vi and Hpn : Vi = Vg
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By introducing the projection mo on the range of Lo, and choosing at each step a
Iy solution to the homological equation

Lo(hm) = mofm ®)

(here f, is the one obtained after the previous m — 1 transformations), we can elim-
inate all the nonlinear terms which are not in [Ran(Lo)]* = Ker(£{), and set the
stem in Poincaré-Dulac normal form,

> k(@) ©)

k=0

where go(x) = fo(z) = Az and all the terms gx with k > 1 are resonant ones (see
standard references [1, 12] for details, as well as for the meaning of the adjoint operator
mentioned above).

For ease of discussion, we will consider A to be semisimple, so that we can ~ with
a linear transformation — take it to be diagonal, A = diag()y, ..., An); the resonant
terms are then a sum of resonant monomials |i1, 7): these are vectors having only the
r component different from zero, and equal to

e

gt =i TR e IN (10)

with 4 satisfying a resonant relation of order |u| = 37, pi:
n
(B Z;l,/\, =0 (11)

see usual references [1, 12] for more general A = (Df)(0).

It is obvious from (8) that: (i) we cannot eliminate terms in Ker(£{), which are
indeed the resonant ones; (ii) the hy, is determined up to a 6h,, € Ker(Lo). In par-
ticular, choosing different dh,, will not affect f;,. but will produce different effects on
higher order terms, see (7). Thus, different normal forms can be (formally) conjugated
to the same system (2), and therefore (formally) conjugated among themselves.

We would like therefore to reduce this redundancy in normal forms classification;
this would also have a computational advantage [10], and is thus relevant to obtain
algorithmic — and easily implementable — procedures, as the standard Poincaré one.

2  Poincaré renormalized form

The idea behind the approach I proposed in previous work [9] is to use the freedom
in the choice of dh,, in order to control - i.e. if possible eliminate — higher order
resonant terms.

['should say immediately that the “Poincaré renormalized forms” (PRF) obtained
in this way are, in general, not unique; on the other side, they: i) can represent a con-
siderable simplification over standard normal forms; ii) can be obtained algebraically,
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with the same kind of computations needed for standard normal forms (NF), by a sim-
ple and well defined recursive algorithm. I will now briefly define PRFs and de:
their construction, following [9].

We define higher order homological operators

Lm = {fm,.} (12)

(notice this will be useful only after f,, has stabilized, see below), and the spaces

H® = P2} Ker(L,) and F® = M=o Ker(My) = nf_g [Ran(M;)]* (13)
where M, : H®) — V is the restriction of £, : V — V to H®.

We will operate sequentially for k = 1,2, ... as follows. Suppo\o we have already
u]wmlc(l the transformation at orders up to k-1, and denote by f, 9 the resulting term
fk, we will then operate a sequence of Lie-Poincaré (‘r(\nafommnons with generators
h(") hm,, .,,h“’”. where h( ) H,(,’) = H® N Vj: this condition guarantees, see
(7 ) that the f,,, - and thus (he L,,, ~ with m < k will not be changed and can be
considered as stabilized. The transformation with generator IILDJP will change f,ﬁ")
into

SR = P - oy (2] (14)

7 0, 5 = p y 2
T'he h( )~ which operates the standard normalization at order k - is chosen as solution

to the standard homological equation (8), while the /xA"),, € H(" should be chosen
as solution to the higher order homological equations

My [H2,] = mps P (15)

where 7, is the projection on the range of M,,.

In this way we arrive in the end to a system @ = Y 3~ fi(x) in which the renor-
malized terms satisfy Lk) = fi satisfy fi € F(“ F® N V. We define a system to
be in PRF up to order n when this is s l -ie fr€ F‘” ~ for k < n, and the
above discussion shows that any dynamical system (vector field, formal power series)
in R" can be formally brought into PRF up to any desired order n by means of a
formal series of Lie-Poincaré transformations.

Example. Let n = 2 with A = (Df)(0) given by A;; = —¢;; (the standard rotation
matrix), and denote by I the two dimensional identity matrix. The standard NF is
then f(z) = Az + 300, (af + a3)*ax] + brA]z.

If the first nonzero ay is a,,, and the first nonzero by, is b,,, the corresponding PRF
(with r? = a? + 23) is f*(2) = Av + ¥ ax + ¥z + r*yAz, where a = a, and
B,y € R; if v > p, then 5 = 0. The proof is given ~ by explicit computation ~ in [9);
from it also results that no small denominators can appear in the procedure. This
result corresponds to a well known one (14, 8] for hamiltonian systems, but applies
also to non-hamiltonian ones.
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3 Further normalization and symmetries

It is well known that when (1) is symmetric under the linear action of a Lie group
7, the whole normalizing procedure can be made compatible with the symmetry, and
the NF will also be G-symmetric [4, 7, 12].

More precisely, let G act in R™ by a matrix representation Mg: then (1) is G-
equivariant if, for all x € R™ and all g € G,

F(Myz) = M, (=) (1)

[here we are identify T,R™ and T4, R" in the standard way], and the I:IF (9) will also
satisfy the analogue of (16). If we write the NF as & = f(r) = Z:j:o Si(x) (we u}ef
to avoid confusion among different meanings of g), we have then f(Mya) = M, f(z),
and actually 5 i
To(Mgz) = My fi(x) (17)
due to the linearity of the group action.

This result is better recast in terms of Lie algebras, following Broer's approach
[3]. Let us focus on connected Lie groups, and let S be an infinitesimal generator
for G (for ease of discussion I will assume this is semisimple); then tle equivariance
condition (16) reads (as can be seen by choosing M, = I +&S) {f(z), Sz} = 0 or,
introducing the linear operator S := {Sz,.} we have equivalently that f is equivariant
if and only if

[ € Kex(S) (18)
and the equivariance of the NF means that actually?
fr € Ker(Lo) NKer(S) = FO nKer(S) . (19)

T will now show that (19) generalizes to PRF. First of all, (18) implies that fy €
Ker(S), and thus in particular fo(x) = Az must satisfy {Sz, Az} = 0. But for linear
fields we have — from Jacobi identity - that {Sz, Az} = [A, S]a: therefore we must
have [ = 0, from which it also follows [£o,S] = 0.

It follows from this that S : Ker(Lo) — Ker(Lo), and conversely Lo : Ker(S) =
Ker(S). For non semisimple A and S we should consider also adjoint operators, with
similar relations holding true.

Now, suppose we have already set the system in NF, so that (19) applies, and
consider the transformation to PRF. First of all we notice that (19), together with
Jacobi relation, implies that {£,,,S} = 0: indeed,

{Lom, S} (h) = {Fon, {S, 1Y} = {5, {Fons 13} = {{Fims Sz}, b} = —{S(Fin) 1} -

Thus, Ly, L, and S all commute with each other (note [£y,, £,] # 0 in general);
recalling that we actually operate only on h’s which belong to Ker(L), i.e. with

does not coincide with its closure in R™ presents some subtleties, see
his case can occur only for non-compact groups. 1 will not discuss this case

(T
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operators My rather than Ly, it is immediate to see that all the k‘ will also remain

in Ker(£y) N Ker(S), and thus in particular in Ker(S).

Thus we conclude that: for a G-symmetric system - with G acting linearly - not
only the standard NF is G-symmetric, but the PRF is G-symmetric as well.

Notice also that we can choose the generating functions h,, — both in the standard
normalization and in all steps of the renormalization procedure - to be in Ker(S),
and that it is precisely this choice which ensures the G-symmetry of the NF and the
PRE.

We stress that here we have actually considered the Lie algebra of symmetries
rather than the Lie group, thus not taking into account any genuinely discrete sym-
metry. The argument generalizes easily, at least in the present setting of linear group
action, to discrete group actions and discrete symmetries as well.

Indeed, rewrite (17) by considering the action A of G on vector fields, where
Ay f is a vector field with components (A, f)(a y’ljt\ly.r; we say that that f is
equivariant if A, f = f for all g € G. Now the role of S is played by A; more precisely,
we should consider, instead of Ker(S), the set C(G) of vector fields such that Ah = h.
The argument goes then along the same lines, showing that C(G)NKer(Lg) is invariant
under the renormalizing transformation, and we can always choose h € C(G) so that,
again, the PRE will be G-symmetric.

4 Lie renormalized forms

Let us now consider a different further normalization scheme. This makes
use of the Lie algebraic structure of Poincaré-Dulac normal forms [3].

consistent

Consider the set of vector fields in R"™ which are in normal form with respect to
the given linear part A, i.e. the set of Y € V such that [X4,Y] = 0. It is obvious
that these form a Lie algebra (the Lie operation being the standard commutator of
vector fields); we denote this algebra by G.

Let us recall a general characterization of vector fields in normal form relevant
in this context [4, 7, 12, 15]. Consider the linear vector field X4; we say that the
differentiable function ¢ : R"® — R is an invariant for X4 if Xa(g) = 0.

Denote by Z*(A) the set of invariants for X, which are meromorphic (that is,
can be expressed as a quotient of algebraic functions) in the x coordinates; denote by
I(A) € I*(A) the set of algebraic invariants for X, and by Zy(A) € Z(A) the set of
algebraic invariants for X4 which are functions homogeneous of degree k + 1 in the o
variables.

Let G = C'(A) be the centralizer of A in the algebra of n dimensional matrices; let
its Lie algebra be spanned by matrices { I K} (we can always ume Ky = I,
and that K, = A for some a, provided A # 0; notice that d < n). We denote
by X(® the vector fields corresponding to these, i.e. given in the = coordinates by
X@ = (Kqx)'8;.

AT
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Then the most general vector field W in G can be written as
d
W = pala)X® (20)
o=l

where i, (x) € I*(A). In other words, G is contained in a finitely generated module
over I*(A).

Notice that the vector field W must be algebraic in the x, and X(®) are linear
in x, so that functions i (2) € Z*(A) having poles of degree d > 2 in @ = 0 cannot
appear in (7). That is, only algebraic functions and functions with simple poles in the
origin® can appear in the actual normal form unfolding: G is not the full G-generated
module over Z*(A).

In several cases it happens that G has a more convenient structure, i.e. the j, in
(7) can actually be taken to be in Z(A), and not just in Z*(A). In this case we say that
all the vector fields in G are quasi-linear, or that we have a quasi-linear normal form.
In particular, this is the case when A admits only one basic invariant (see below).

If the normal form is quasilinear, we have G N Vyyy = T (A) ® G, and the analysis
of the structure of G results to be particularly simple, as we now discuss.

Call X} the algebra spanned by vectors which are written as X = s()X (@ with
s € I*(A); call A, the algebra spanned by vectors as above with s € Z(A) (this is the
module over Z(A) generated by X (). §

As seen before, in general we have Xy @ ... @ A3 € G C Ay @ ... @ A, and in the
(favorable) quasi-linear case we actually have G = A B Xy,

Consider now the commutation relations between elements of the subalgebras Xy
and A’3: it is immediate to check that

[1a(W)X @ 0N X O] = (1a(¥) (Ds/00:) X @ (¥;)) X
= (oa(%) (Fpta/OP1) XD (i) X+ (pa(¥)op(W)) [X(@), XB)]

Notice that when X ) = X4, by definition X (y;) = 0, and [X (@, X)) = 0; thus
the corresponding subalgebra X is always an abelian ideal in G. Note also that, as
obvious from the formula above, the union of subalgebras X, U...UX,, is a subalgebra
in G if and only if {X (@) ... X(@)} span a subalgebra in G.

It can happen that we are able to determine a sequence of subalgebras 7, C G,
each of them being the union of X, subalgebras, such that 5, = G and

(G5l = B

if this terminates in zero we say that G has a quasi-nilpotent structure. Notice that
the factor algebras I', := F,/F, 1 are in general not abelian.

“Let us briefly mention an example where indeed meromorphic functions of the invariants enter in
the normal form unfolding, Consider systems in R with coordinates (z,y, ); let the linear part be
given by the diagonal matrix A = diag(~1,1,2), so that X = —zdx +ydy +20:. This has two basic
invariants, given by ¥, = ay and Wy = We take as X (@) the vectors X() = z8;, X = 49,
and X9 = z0.. It is immediate to check that (W3/W;)X®) = 428, and (W2/9¥1)X @ = 220, are
polynomial and resonant with X 4.

(T
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By the above remark, G can have a quasi-nilpotent structure only if G is nilpotent.
The chain of subalgebras 7, € G can then be read off the descending central series
@), of G; recall that the factor algebras v, = G,/G ., for this are abelian. The
subalgebras I, introduced above are therefore moduli over Z(A) generated by abelian
subalgebras v, of G.

Assume now G is quasi-nilpotent. In this case we can first work with generators
in I'; and simplify terms in Iy (e.g. by following the PRF algorithm within the
set I'y; this allows to work with more familiar projection and homological equations
than if setting the problem in a completely Lie algebraic framework), then consider
generators in Iy and simplify the corresponding terms being guaranteed that I'y terms
are not changed, and so on.

Notice that in this case we are - roughly speaking - just using the nilpotent
structure of (the finite dimensional group) G, rather than the one of (the infinite
dimensional algebra) G.

Needless to say, this approach is particularly convenient when the I', are generated
by a single element of ;. The situation depicted above is met in applications:
it applies to any nontrivial two-dimensional case. More generally, it always applies
when there is only one basic invariant.

Bxample Let us consider a system in R? (we use coordinates z, y, 2) with linear part
given by

0 -1 0
A= 1l 0 0
0 0 -1
It is easy to see that this has only one basic invariant W := (2% + y%). As any

meromorphic function of I is either algebraic or has a pole of degree d > 2 in the
origin, we deduce that the most general vector field in normal form with respect to
this linear part is

o0
W = Xa + ) laxXi +bYa+ciZa] (21)
k=1

where (with k > 0) X} := W¥ +y0y), Yi 1= WX (—yd; + 28,), Zj 1= Wk (20,).
This form can also be easily deduced by explicit computation applying the defini-
tion of resonant vector field. Obviously, X, = Y — Zg. We denote by ji, v, 0 the first
k > 1 such that ay, by, cx are nonzero.
The X, Yy, Z, satisfy the commutation relations

X, X, 2(m = k) Xkem » [Yir Y] =0, [Zky Zm] =0
[Xiey Y] = 2mYictm  [Xky Zm) = 2MZiym o [Yis Zm] = 0

(22)

Denoting by X, Y, Z the algebras spanned by the X, the Yy and the Zx, we have
that ¢ = X' @& Y@ 2, and that Y & 2 is an abelian ideal in G. We can thus apply the
LRF procedure discussed above.

N N
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We first operate on A, with generators also in & (thus Hy = apXy); in this way
we can eliminate all terms except the X, and the Xy, ones, as implied by (22). In
doing this we modify terms in Y & Z.

Having performed this first step, we pass to consider the )’ and Z terms, operating
with generators Hy = Yy + w2 € Y @ Z. It is clear from (22) that we can
eliminate all terms with & > p, but no lowest order ones. Thus we end up with
Xa+a, X, + @3, X5, + bYy + Y k_, @k Zy; the hat on constants mean
that these are not the same as in the initial form (21), and obviously a sum with lower
limit greater than the higher limit should just be meant as zero.

As shown by this example, the computations required for the determination of the
general LRF are actually very simple.

5]

5 Lie further normalization and symmetries

The Lie renormalization scheme is designed to take full advantage of the Lie algebra

structure of Poincaré-Dulac normal forms, and it should be no surprise that taking
into account symmetries of the problem results specially simple in this scheme.

Indeed, if the system is symmetric under a Lie symmetry group S with Lie algebra
S generated by vector fields ¥; (i = 1,...,7), this means that [X,)’,] = 0 for all
i =1,...,7; hence that X is in the centralizer of S. We are specially interested in the
case where the Y; ar car vector fields and S is a group of matrices acting in R".

In this case, the full LRF construction is immediately generalized, with now G =
C(A)N C(S). That is, we just intersect the centralizer of A with the centralizer of
the symmetry group S. Correspondingly, we have to consider Z* (A, S) and Z(A, S) €
Z*(A, S); that is, common invariants for A and S.

If G has generators X (), then the LRF will be

d

W o= > pafz) X (23)

a=1
where now jiq (%) € Z*(A, S); thus G is still contained in a finitely generated module,
now over Z*(A, S).

Received: March 2005. Revised: Jan 2006.
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