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ABSTRACT

This paper contributes to the study of topological symplectic dynamical systems, and

hence to the extension of smooth symplectic dynamical systems. Using the positivity

result of symplectic displacement energy [4], we prove that any generator of a strong

symplectic isotopy uniquely determine the latter. This yields a symplectic analogue

of a result proved by Oh [12], and the converse of the main theorem found in [6].

Also, tools for defining and for studying the topological symplectic dynamical systems

are provided: We construct a right-invariant metric on the group of strong symplectic

homeomorphisms whose restriction to the group of all Hamiltonian homeomorphism is

equivalent to Oh’s metric [12], define the topological analogues of the usual symplectic

displacement energy for non-empty open sets, and we prove that the latter is positive.

Several open conjectures are elaborated.
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RESUMEN

Este art́ıculo contribuye al estudio de los sistemas dinámicos simplécticos topológicos,

y por tanto a la extensión de los sistemas dinámicos simplécticos suaves. Usando el

resultado de la positividad de la enerǵıa de desplazamiento simpléctico [4], demostramos

que cualquier generador de una isotoṕıa simpléctica determina esta última. Esto entrega

un análogo simpléctico de un resultado demostrado por Oh [12], y el inverso del teorema

principal encontrado en [6]. También entregamos herramientas para definir y estudiar

los sistemas dinámicos simplécticos topológicos: construimos una métrica invariante

por derecha en el grupo de homeomorfismos fuertemente simplécticos cuya restricción

al grupo de homeomorfismos Hamiltonianos es equivalente a la métrica de Oh [12],

definimos los análogos topológicos de la enerǵıa de desplazamiento simpléctico usual

para conjuntos no-vaćıos, y demostramos que esta última es positiva. Planteamos varios

problemas abiertos.

Keywords and Phrases: Isotopies, Diffeomorphisms, Homeomorphisms, Displacement energy,

Hofer-like norms, Mass flow, Riemannian metric, Lefschetz type manifolds, Flux geometry.
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1 Introduction

Gromov [10] showed that on a symplectic manifold, the C0−closure of the group of symplectic

diffeomorphisms in the group of diffeomorphisms is either the group of symplectic diffeomorphisms

itself, or the group of volume preserving diffeomorphisms. Eliashberg [9] proved that the symplec-

tic nature of a sequence of symplectic diffeomorphisms survives topological limits. This result is

known as the ”celebrated rigidity” result of Eliashberg, which motivated various remarkable stud-

ies of continuum phenomena in the field of symplectic geometry. Especially, based on this rigidity

result, Oh-Müller [13] defined the group of symplectic homeomorphisms as the C0−closure of the

group of symplectomorphisms in the group of homeomorphisms. They also defined both versions

of C0−Hamiltonian topologies on the space of Hamiltonians paths and used them to define the

group of Hamiltonian homeomorphisms. This group is at the center of the study of topological

Hamiltonian dynamical systems (see Viterbo [19], Buhovsky and Seyfaddini [8, 12]). More recently,

motivated again by the celebrated rigidity result of Eliashberg, Banyaga [2, 3] defined two contexts

of symplectic topologies on the space of symplectic isotopies that generalize the C0−Hamiltonian

topologies. These topology had been used to define a new class of symplectic homeomorphisms

named the ”group strong symplectic homeomorphisms” (see Banyaga [3]), which had been studied

in Banyaga-Tchuiaga [6, 5, 14]. This group could be the right topological analogue of the identity

component in the group of symplectomorphisms. However, for that to be possible, we have to

define, and then study what will be the equivalents (or analogues) of some well known smooth

symplectic objects in the world (or context) of strong symplectic homeomorphisms.

Therefore, one purpose of this paper is to point out further studies of generators for strong sym-

plectic isotopies [6], and then use them to construct a framework in which the flux homomorphism

and the Hofer-like geometry can be extended to some category of continuous maps (see [18]).

We organize the present paper as follows: In Sections 2 and Section 3, we recall some funda-

mental tools needed in the definition of strong symplectic homeomorphisms: The description of

symplectic isotopies that was introduced in [5], and the displacement energy. Section 4 deals with

the definitions of the C0−compact open topology, the origin of strong symplectic homeomorphisms,

and the definition of strong symplectic isotopies with their generators. These tools are used to

show a bijective correspondence between the group of strong symplectic isotopies and the group of

their generators (Theorem 4.4). The Hamiltonian version of this result is well known. This section

also includes Lemma 4.6 which shows that any strong symplectic isotopy which is a 1−parameter

group decomposes as composition of a smooth harmonic flow and a continuous Hamiltonian flow

in the sense of Oh-Müller.

In Section 5, we use the results of Section 4 to introduce a topological version of Hofer-like ge-

ometry: We construct a topological counterpart of the Hofer-like metric for strong symplectic

homeomorphisms, and we prove that its restriction to the group of Hamiltonian homeomorphisms

is equivalent to Oh’s metric [12]. Therefore, the definition of a topological analogue of the usual

symplectic displacement for non-empty sets is given, and we prove that it is positive. Finally, in
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Section 6, we elaborate some conjectures and some examples are given.

2 Preliminaries

Let M be an 2n−dimensional manifold of class C∞. A differential 2−form ω on M is called a

symplectic form if it is closed and non-degenerate. The nondegeneracy of ω, implies that ωn is a

volume form on M. A symplectic manifold is an even dimensional smooth manifold M that admits

a symplectic form ω. From now on, we assume that M is an 2n−dimensional closed symplectic

manifold with a symplectic form ω. We also equip M with a Riemannian metric g.

Note that for technical reasons, we will sometimes assume that the symplectic manifold (M,ω) is

of Lefschetz type. That is, the mapping

ωn−1 : H1(M,R) → H2n−1(M,R),α !→ α∧ωn−1,

is an isomorphism. The category of Lefschetz manifolds includes all Kähler manifolds, such has

oriented surfaces and even dimensional tori.

2.1 Harmonics 1−forms

Let H1(M,R) denote the first de Rham cohomology group (with real coefficients) of M, and let

H1(M,g) denote the space of harmonic 1−forms on M with respect to the Riemannian metric g.

The set H1(M,g) forms a finite dimensional vector space over R which is isomorphic to H1(M,R),

and whose dimension is denoted b1(M), and called the first Betti number of the manifold M

[20]. Taking (hi)1≤i≤b1(M) as a basis of the vector space H1(M,g), we equip H1(M,g) with the

Euclidean norm |.| defined as follows: for all H ∈ H1(M,g) with

H =

b1(M)∑

i=1

λihi,

its norm is defined as

|H| :=

b1(M)∑

i=1

|λi|. (2.1)

We denote by PH1(M,g) the space of all smooth mappings H : [0, 1] → H1(M,g).

3 On the classical symplectic dynamical systems

3.1 Symplectic diffeomorphisms and symplectic isotopies

A diffeomorphism φ : M → M, is called symplectic if it preserves the symplectic form ω, i.e.

φ∗(ω) = ω. We denote by Symp(M,ω), the group of all symplectic diffeomorphisms of (M,ω).
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An isotopy {φt} of a symplectic manifold (M,ω) is said to be symplectic if φt ∈ Symp(M,ω) for

each t, or equivalently, the vector field φ̇t :=
dφt

dt
◦ φ−1

t is symplectic for each t. In particular, a

symplectic isotopy {ψt} is a Hamiltonian isotopy if for each t, the vector field ψ̇t :=
dψt

dt
◦ ψ−1

t

is Hamiltonian, i.e. there exists a smooth function F : [0, 1] × M → R, called generating Hamil-

tonian such that ι(ψ̇t)ω = dFt, for each t. Any Hamiltonian isotopy determines its generating

Hamiltonian up to an additive constant. Throughout this paper we assume that every generating

Hamiltonian F : [0, 1] × M → R is normalized, i.e. we require that
∫

M
Ftω

n = 0 for all t. Let

N ([0, 1] ×M ,R) denote the vector space of all smooth normalized Hamiltonians.

We denote by Iso(M,ω) the group of all symplectic isotopies of (M,ω), and by Symp0(M,ω),

the group of time−1 maps of all symplectic isotopies.

3.2 Description of the classical symplectic isotopies

We now recall the description of symplectic isotopies introduced in [5]. Given any symplectic

isotopy Φ = {φt}, one derives from Hodge’s theory that the closed 1−form ι(φ̇t)ω decomposes in

a unique way as the sum of an exact 1−form dUΦt and a harmonic 1−form HΦt [20]. Denote by

U the normalized Hamiltonian of UΦ = (UΦt ), and by H the smooth family of harmonic 1−forms

HΦ = (HΦt ). In [5], the Cartesian product N ([0, 1] ×M,R)× PH1(M,g) is denoted T(M,ω, g),

and equipped with a group structure which makes the bijection

A : Iso(M,ω) → T(M,ω, g),Φ !→ (U,H) (3.1)

a group isomorphism. Under this identification, any symplectic isotopy Φ is denoted by φ(U,H) to

mean that A maps Φ onto (U,H), and the pair (U,H) is called the “generator” of the symplectic

isotopy Φ. For instance, a symplectic isotopy φ(0,H), is a harmonic isotopy, and a symplectic

isotopy φ(U,0), is a Hamiltonian isotopy.

3.3 Group structure on T(M,ω, g)

The product rule in T(M,ω, g) is given by,

(U,H) ✶ (V,K) = (U+ V ◦φ−1

(U,H) + ∆̃(K,φ−1

(U,H)),H +K). (3.2)

The inverse of (U,H), say (U,H) is given by

(U,H) = (−U ◦ φ(U,H) − ∆̃(H,φ(U,H)),−H). (3.3)

In (3.2) and (3.3) the quantity ∆̃ is defined as follows: for any symplectic isotopy Ψ = {ψt}, and

for any smooth family of closed 1−forms α = (αt), we have

∆̃t(α,Ψ) = ∆t(α,Ψ)−

∫

M
∆t(α,Ψ)ω

n

∫

M
ωn

,
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where

∆t(α,Ψ) :=

∫t

0

αt(ψ̇
s) ◦ψsds,

for all t (see [5]). Also, it is proved in [16, 18] that ∆(α,Ψ) is a 1−cocycle.

3.4 Metric structures on T(M,ω, g)

For all (U,H), (V,K) ∈ T(M,ω, g), set

D
(1,∞)
0

((U,H), (V,K)) =

∫1

0

[|Ht −Kt|+ osc(Ut − Vt)]dt, (3.4)

and

D∞

0 ((U,H), (V,K)) = max
t

[|Ht −Kt|+ osc(Ut − Vt)] , (3.5)

where

osc(f) = max
x

f(x)−min
x

f(x),

for all f ∈ C∞(M,R). Therefore, the L∞−Hofer-like metric and the L(1,∞)−Hofer-like on T(M,ω, g)

are defined respectively as follows:

D(1,∞)((U,H), (V,K)) =
D

(1,∞)
0

((U,H), (V,K)) +D
(1,∞)
0

((U,H), (V,K))

2
, (3.6)

and

D∞((U,H), (V,K)) =
D∞

0
((U,H), (V,K)) +D∞

0
((U,H), (V,K))

2
. (3.7)

(see [2, 5]).

3.5 Displacement energy

Definition 3.1. ([4]) The symplectic displacement energy eS(A) of a non empty set A ⊂ M is:

eS(A) = inf{∥φ∥HL|φ ∈ Symp(M,ω)0,φ(A) ∩A = ∅}.

Theorem 3.2. ([4]) For any non empty open set A ⊂ M, eS(A) is a strict positive number.

Note that in the definition of the displacement energy, the quantity ∥.∥HL stands for the usual

Hofer-like norm defined in [2].

4 On topological symplectic dynamical systems

4.1 The C0−topology

Let Homeo(M) be the group of all homeomorphisms of M equipped with the C0− compact-open

topology. This is the metric topology induced by the following distance

d0(f, h) = max(dC0(f, h), dC0(f−1, h−1)),



CUBO
19, 2 (2017)

On topological symplectic dynamical systems 55

where dC0(f, h) = supx∈M d(h(x), f(x)). On the space of all continuous paths λ : [0, 1] →

Homeo(M) such that λ(0) = idM, we consider the C0−topology as the metric topology induced

by the metric

d̄(λ, µ) = max
t∈[0,1]

d0(λ(t), µ(t)).

4.2 The origin of strong symplectic isotopies

A result found in [15] (Corollary 3.7-[15], or more generally a result found in [16]) states that:

Let Φi = {φt
i
} be a sequence of symplectic isotopies, Ψ = {ψt} be another symplectic isotopy, and

η : t !→ ηt be a family of maps ηt : M → M, such that the sequence Φi converges uniformly to η

and l∞(Ψ−1
◦Φi) → 0, i → ∞, then

η = Ψ.

Note that if, Ψ generated by (U,H) and Φi generated by (Ui,Hi), then replacing the condition

l∞(Ψ−1
◦Φi) → 0, i → ∞,

by the condition

D∞((U,H), (Ui,Hi)) → 0, i → ∞,

does not break the result of Corollary 3.7-[15, 16]. Therefore, we can then ask the following ques-

tion:

If in Corollary 3.7-[15, 16], the convergence D∞((U,H), (Ui,Hi)) → 0, i → ∞, is replaced by

the condition

D∞((Ui+1,Hi+1), (Ui,Hi)) → 0, i → ∞,

then what can we say about the geometries and the structures of the space of all such paths η?

The seek of a possible answer to the above question motivated the following definition:

Definition 4.1. ([6]) A continuous map ξ : [0, 1] → Homeo(M) with ξ(0) = idM, is called

strong symplectic isotopy if there exists a D∞−Cauchy sequence {(Fi, λi)} ⊂ T(M,ω, g) such that

d̄(φ(Fi,λi), ξ) → 0, i → ∞.

We denote by PSSympeo(M,ω) the space of all strong symplectic isotopies. It is proved in

[6, 14] that PSSympeo(M,ω) is a group. If the manifold is simply connected, then the group

PSSympeo(M,ω) reduces to the group of continuous Hamiltonian flows [12]. The set of time−1

maps of all strong symplectic isotopies coincides with the group of all strong symplectic homeo-

morphisms, denoted here by SSympeo(M,ω) (see [5, 3]).
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4.3 Generators of ssympeotopies

Let N 0([0, 1]×M ,R) denotes the completion of the metric space N ([0, 1]×M ,R) with respect to

the L∞−Hofer norm, and let PH1(M,g)0 denotes the completion of the metric space PH1(M,g)

with respect to the uniform sup norm. Consider the map

J0(M,ω, g) := N 0([0, 1] ×M ,R)× PH1(M,g)0,

and the inclusion map

i0 : T(M,ω, g) → J0(M,ω, g).

This map is uniformly continuous with respect of the topology induced by the metric D∞ on the

space T(M,ω, g), and the natural topology of the complete metric space J0(M,ω, g). Now, let

L(M,ω, g) denotes the image of T(M,ω, g) under i0, and T(M,ω, g)0 be the closure of L(M,ω, g)

inside the complete metric space J0(M,ω, g).

That is, T(M,ω, g)0 consists of pairs (U,H) where the mappings (t, x) !→ Ut(x) and t !→ Ht are

continuous, and for each t, Ht lies in H1(M,g) such that there exists a D∞−Cauchy sequence

(Ui,Hi) ⊂ T(M,ω, g) that converges to (U,H) ∈ J0(M,ω, g). Note that the sequence (Fj, λj) in

definition (4.1) converges necessarily in the complete metric space T(M,ω, g)0. The latter limit is

called the ”generator” of strong symplectic isotopy (see [6]). We will often write (Fi, λi)
L
∞

−−→ (F, λ)

to mean that the sequence (Fi, λi) converges to (F, λ) in the space J0(M,ω, g).

Definition 4.2. ([6]) The setGSSympeo(M,ω, g) is defined as the space of all the pairs (ξ, (U,H))

where ξ is a strong symplectic isotopy generated (U,H).

Group structure on the space GSSympeo(M,ω, g)

For all (ξ, (F, λ)), (µ, (V, θ)) ∈ GSSympeo(M,ω, g), their product is given by,

(ξ, (F, λ)) ∗ (µ, (V, θ)) = (ξ ◦ µ, (F+ V ◦ ξ−1 + ∆0(θ, ξ−1), λ+ θ)),

and the inverse of the element (ξ, (F, λ)) is given by,

(ξ, (F, λ)) = (ξ−1, (−F ◦ ξ − ∆0(λ, ξ),−λ)),

with

∆0(θ, ξ−1) := lim
L∞

(∆̃(θi,φ−1

(Fi,λi)), (4.1)

∆0(λ, ξ) := lim
L∞

(∆̃(λi,φ(Fi,λi)), (4.2)

where (Fi, λi), and (Vi, θi) are two arbitrary sequences in T(M,ω, g) such that

(Fi, λi)
L
∞

−−→ (F, λ), φ(Fi,λi)
d̄
−→ ξ,

and

(Vi, θi)
L
∞

−−→ (V, θ), φ(Vi,θi)
d̄
−→ µ,
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with ∆̃t(λ
i,φ−1

(Fi,λi)
) the normalized function of ∆t(λ

i,φ−1

(Fi,λi)
).

This set is known as a topological group with respect to the symplectic topology [6]: The sym-

plectic topology on the space GSSympeo(M,ω, g) is defined to be the subspace topology induced

by the inclusion of the latter in the complete topological space P(Homeo(M), id)× T(M,ω, g)0.

Question (a)

Let (Mi,ωi) be two closed symplectic manifolds equipped with two Riemannian metrics gi, for

i = 1, 2. If the group T(M1,ω1, g1)0 is isomorphic to the group T(M2,ω2, g2)0, then what can we

say about: The manifolds M1 and M2? The symplectic structures ω1 and ω2? The Riemannian

structures g1 and g2?

The following uniqueness results show that there is a bijective correspondence between the

group of strong symplectic isotopies and that of their generators.

Theorem 4.3. ([6]) Let (M,ω) be a Lefschetz closed symplectic manifold. Any strong symplectic

isotopy determines a unique generator.

In the presence of a positive symplectic displacement energy from Banyaga-Hurtubise-Spaeth

[4], we point out the following converse of Theorem 4.3, which in the same time gives the symplectic

analogue of a result prove by Oh [12].

Theorem 4.4. Any generator corresponds to a unique strong symplectic isotopy, i.e. if (γ, (U,H)), (ξ, (U,H)) ∈

GSSympeo(M,ω, g), then we must have γ = ξ.

Proof. Let (γ, (U,H)) and (ξ, (U,H)) be two elements of GSSympeo(M,ω, g). By definition

of the group GSSympeo(M,ω, g), there exist two sequences of symplectic isotopies φ(Ui,Hi) and

φ(Vi,Ki) such that:

φ(Ui,Hi)
d̄
−→ ξ, (Ui, Hi)

L
∞

−−→ (U,H),

and

φ(Vi,Ki)
d̄
−→ γ, (Vi, Ki)

L
∞

−−→ (U,H).

Assume that γ ≠ ξ, i.e. there exists s0 ∈]0, 1] such that γ(s0) ≠ ξ(s0). Since the map γ−1(s0)◦ξ(s0)

belongs to Homeo(M), then we derive from the identity γ−1(s0) ◦ ξ(s0) ≠ id, that there exists of

a closed ball B which is entirely moved by γ−1(s0) ◦ ξ(s0). From the compactness of B, and the

uniform convergence of the sequence φ−1

(Ui,Hi)
◦ φ(Vi,Ki) to γ−1

◦ ξ, we derive that

(φ−s0
(Ui,Hi)

◦ φs0
(Vi,Ki)

)(B) ∩ (B) = ∅, (4.3)
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for all sufficiently large i. Relation (4.3) implies that,

0<eS(B) ≤ l∞(φ−1

(Ui,Hi)
◦ φ(Vi,Ki)), (4.4)

for all sufficiently large i, where eS is the symplectic displacement energy from Banyaga-Hurtubise-

Spaeth [4], and l∞(.) represents the L∞−length functional for symplectic isotopies [2]. On the other

hand, compute

l∞(φ−1

(Ui,Hi)
◦ φ(Vi,Ki)) = max

t
osc(−Ui ◦ φ(Ui,Hi) + Vi ◦ φ(Ui,Hi) + ∆̃t(Ki −Hi,φ(Ui,Hi)))

+max
t

|Ht
i − Kt

i |

≤ max
t

|Ht
i − Kt

i |+max
t

osc(∆̃t(Ki −Hi,φ(Ui,Hi)))

+max
t

osc(−Ui ◦ φ(Ui,Hi) +Ui ◦ φ(Ui+1,Hi+1))

+max
t

osc(−Ui ◦ φ(Ui+1,Hi+1) +U ◦ φ(Ui+1,Hi+1))

+max
t

osc(−U ◦φ(Ui+1,Hi+1) + Vi ◦ φ(Ui+1,Hi+1))

+max
t

osc(−Vi ◦ φ(Ui+1,Hi+1) + Vi ◦ φ(Ui,Hi)).

So, to prove that the right-hand side of the above estimates tends to zero when i goes at infinity,

we only need to prove that

max
t

osc(∆̃t(Ki −Hi,φ(Ui,Hi))) → 0, i → ∞.

This follows from a straightforward application of Lemma 3.4 found in [5], or also from the in-

equality (2.15) found in Section 2.5 of [15] (or [16] for further generalization). This contradicts the

positivity of the symplectic displacement energy in (4.4). This achieves the proof.!

Based on Theorem 4.3 and Theorem 4.4, we will denote any strong symplectic isotopy λ by

λ(U,H) to mean that it is generated by (U,H), or equivalently, to mean that λ(U,H) is the limit of

a sequence of symplectic isotopies φ(Ui,Hi) with respect to the metric (d̄ +D∞), i.e.

λ(U,H) = lim
C0+L∞

(φ(Ui,Hi)).

The following result shows that any strong symplectic isotopy which is a 1−parameter group

decomposes as composition of a smooth harmonic flow and a continuous Hamiltonian flow.

Theorem 4.5. Let β = (βt)t∈[0,1] be a strong symplectic isotopy. Assume that β = (βt)t∈[0,1] is

a 1−parameter group i.e:

βt+s = βt ◦ βs,

∀s, t ∈ [0, 1] such that (s + t) lies in [0, 1]. Then, its generator (F, λ) is time-independent, λ is a

smooth harmonic 1−form, and F is a continuous function.
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Proof. Let β(F,λ) be a strong symplectic isotopy. Assume that

βt+s

(F,λ) = β
t
(F,λ) ◦ β

s
(F,λ),

∀s, t ∈ [0, 1] such that (s + t) lies in [0, 1]. This, implies that, for all s, t ∈ [0, 1] such that (s + t)

lies in [0, 1], we have

βt
(F,λ) = β

s+t

(F,λ) ◦ (β
s
(F,λ))

−1.

We may prove that λt = λs, and Ft(x) = Fs(x) for all t, s ∈ [0, 1], and for all x ∈ M. By definition

of the path β(F,λ), we have

β(F,λ) = lim
C0+L∞

(φ(Fi,λi)),

where φ(Fi,λi) is a sequence of symplectic isotopies. Then, one can check that for each fixed

s ∈ [0, 1], the sequence of symplectic maps defined by

Ψi
s(t) := φ

(t+s)
(Fi,λi)

◦ (φs
(Fi,λi)

)−1,

for all t such that (t + s) belongs to [0, 1], converges uniformly to β(F,λ).

Now, for each i compute the derivative (in t) of the path t !→ Ψi
s(t), and derive from the chain rule

that at each time t, the tangent vector to the path t !→ Ψi
s(t) coincides with the tangent vector to

the path t !→ φ
(t+s)
(Fi,λi)

. That is, the isotopy t !→ Ψi
s(t) is generated by an element (Ui

s, H
i
s) where

Ui
s(t) = Ft+s

i
,

and

Hi
s(t) = λ

t+s

i
,

for all t such that (t+ s) belongs to [0, 1], and for each i. Furthermore, the sequence of generators

(Ui
s, H

i
s) converges in the L∞− metric to (Us, Hs) where

Us(t) = Ft+s,

and

Hs(t) = λ
t+s,

for all t such that (t + s) belongs to [0, 1]. Therefore, we have proved that for each s,

({Ψi
s(t)}t, (U

i
s, H

i
s))

C
0+L

∞

−−−−−→ (β(F,λ), (Us, Hs)).

Thus, Theorem 4.3 tells us that for each fixed s ∈ [0, 1] we must have λt = λt+s, and Ft(x) = Fs+t(x)

for all t ∈ [0, 1] such that (t+ s) belongs to [0, 1] and for all x ∈ M. Since this is always true for a

given s ∈ [0, 1] such that (t+ s) belongs to [0, 1], we derive that λt = λ0, and Ft(x) = F0(x) for all

t ∈ [0, 1], and for all x ∈ M. This achieves the proof. ✷

We have the following fact.
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Lemma 4.6. Let λ(U,H) be any strong symplectic isotopy. For each fixed s ∈ [0, 1), the path

t !→ λt(V,K) := λ
(t+s)
(U,H)◦(λ

s
(U,H))

−1 is a strong symplectic isotopy generated by (V,K) where V(t, x) =

U(t + s, x), and Kt = H(t+s), for all t ∈ [0, 1− s], and for all x ∈ M.

Proof. Assume that λ(U,H) = limC0+L∞(φ(Ui,Hi)). For each fixed s ∈ [0, 1), consider the

sequence {φ(Vi,Ki)} of symplectic isotopies defined by

φt

(Vi,Ki) = φ
(t+s)

(Ui,Hi)
◦ (φs

(Ui,Hi))
−1,

for all t ∈ [0, 1−s], and for each i. Compute the derivative (in t) of the path t !→ φt

(Vi,Ki)
, and de-

rive from the chain rule that at each time t, the tangent vector to the path t !→ φt

(Vi,Ki)
coincides

with the tangent vector to the path t !→ φ
(t+s)

(Ui,Hi)
, or equivalently we get Vi(t) = Ui(t + s), and

Ki
t = Hi

(t+s) for all t ∈ [0, 1−s]. A straightforward computation implies that the sequence of sym-

plectic isotopies t !→ φt

(Vi,Ki)
converges in d̄ to λ

(t+s)
(U,H) ◦ (λ

s
(U,H))

−1, as well as the sequence of gen-

erators (Vi,Ki) converges in the L∞−topology to an element (V,K) such that V(t, x) = U(t+s, x),

and Kt = H(t+s) for all t ∈ [0, 1 − s], and for all x ∈ M. That is, λ(V,K) is a strong symplectic

isotopy generated by (V,K). This completes the proof. ✷

Theorem 4.5 implies that any strong symplectic isotopy which is a 1−parameter group de-

composes as the composition of smooth harmonic flow and a continuous Hamiltonian flow in the

sense of Oh-Müller [13].

Question (b)

Is 1−parameter group any strong symplectic isotopy which decomposes into the composition of

smooth harmonic flow and a continuous Hamiltonian flow?

5 Topological Hofer-like geometry

Concatenation of strong symplectic isotopies

Let 0<u1<u2<1. For each 0<ϵ<u1 such that u2 ≤ 1 − ϵ<1, pick a smooth increasing function

a : [0, 1] → [0, 1], such that a restricted to [0, ϵ] (resp. [(1 − ϵ), 1]) is equal to 0 (resp. 1). Then

define two smooth functions as follows:
{
λ(t) = a(2t) , 0 ≤ t ≤ 1

2

µ(t) = a(2t− 1) , 1

2
≤ t ≤ 1.

Now, given two strong symplectic isotopies γ = γ(U,H) and β = β(V,K), one defines the left

concatenation γ ∗l β of β by γ as follows;

(γ ∗l µ)(t) =

{
γλ(t), if 0 ≤ t ≤ 1

2
,

γ1 ◦ βµ(t), if 1

2
≤ t ≤ 1.
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The path γ ∗l µ is a strong symplectic isotopy generated by an element (Fl, θl) given by:

(Fl, θl)(t) =

{
λ̇(t)(Uλ(t),Hλ(t)), if 0 ≤ t ≤ 1

2
,

µ̇(t)(Vµ(t)
◦ γ−1 +!µ(t)(γ,K),Kµ(t)) if 1

2
≤ t ≤ 1,

so that if

(Vi,Ki)
L
∞

−−→ (V,K), and φ(Vi,Ki)
d̄
−→ β,

and

(Ui,Hi)
L
∞

−−→ (U,H), and Φi = φ(Ui,Hi)
d̄
−→ γ,

then

!t(γ,K) = lim
L∞

(∫1

0

Ki
t(Φ̇i(s)) ◦Φi(s)ds

)

, (5.1)

for each t ∈ [0, 1]. The existence of the limit in (5.1) is supported by results found in [15, 16] (see

Lemma 3.10−[15] and Section 2.5−[16]). Note that the path γ ∗l β is a strong symplectic isotopy

from the identity to γ1 ◦ β1.

Similarly, one can define the right concatenation β ∗r γ of β by γ as follows;

(β ∗r γ)(t) =

{
βλ(t), if 0 ≤ t ≤ 1

2

γµ(t) ◦ β
1, if 1

2
≤ t ≤ 1.

The path β∗rγ is a strong symplectic isotopy from the identity to β1
◦γ1, generated by an element

(Gr,Ξr) given by:

(Gr,Ξr)(t) =

{
λ̇(t)(Vλ(t),Kλ(t)), if 0 ≤ t ≤ 1

2

µ̇(t)(Uµ(t),Hµ(t)), if 1

2
≤ t ≤ 1.

5.1 Length of strong symplectic isotopies

For any strong symplectic isotopy γ(U,H), we define its L
∞−length and L(1,∞)−length respectively

by

l∞(γ(U,H)) = max
t

(osc(Ut) + |Ht|), (5.2)

and

l(1,∞)(γ(U,H)) =

∫1

0

(osc(Ut) + |Ht|)dt. (5.3)

This agrees with the usual definition of Hofer-like lengths of symplectic isotopies [2]: If γ(U,H) is a

smooth isotopy, then above lengths coincide with the usual Hofer-like lengths. If the manifold M

is simple connected, then the above length reduces to the length of continuous Hamiltonian flows

defined by Oh [12]. Furthermore, we can as well equip PSSympeo(M,ω) with a metric D∞ which

is the topological analogue of the metric D∞. On the other hand, by writing d̄ as the metric that
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induces the C0− compact open topology, we shall call the metric topology induced by d̄+D∞ on

PSSympeo(M,ω), the symplectic topology on it.

Remark 5.1. If we consider the right concatenation β ∗r γ of β by γ, then

l(1,∞)(β ∗r γ) = l(1,∞)(β) + l(1,∞)(γ). (5.4)

But, in general, we do not know whether we always have

l∞(β ∗r γ) ≤ l∞(β) + l∞(γ), (5.5)

or not. However, using the fundamental lemma of Hofer-like geometry (see Lemma 3.9−[16, 15]),

one can show that for all ϵ>0, there exists a strong symplectic isotopy η with the same extremities

that β ∗r γ, such that

l∞(η)<l(1,∞)(β ∗r γ) + ϵ ≤ l∞(β) + l∞(γ) + ϵ. (5.6)

5.2 Hofer-like metric for strong symplectic homeomorphisms

As in [2], using the above definitions of lengths, we can assign to each strong symplectic homeo-

morphism two real numbers called ”energies” defined as follows: pick any h ∈ SSympeo(M,ω),

denote by "(h) the set of all strong symplectic isotopies γ(U,H) with time-1 map h, i.e.,

"(h) := {Φ ∈ PSSympeo(M,ω) : Φ(1) = h}.

Then assign to h the real numbers ē(h), and ē0(h) defined respectively as follows:

ē(h) = inf
Φ∈!(h)

{l∞(Φ)}, (5.7)

and

ē0(h) = inf
Φ∈!(h)

{l(1,∞)(Φ)}. (5.8)

Using the above definitions of energies, we define two real valued functions on SSympeo(M,ω) as

follows: for each h ∈ SSympeo(M,ω), we have

∥h∥SHL =
ē(h) + ē(h−1)

2
, (5.9)

and

∥h∥
(1,∞)
SHL

=
ē0(h) + ē0(h

−1)

2
. (5.10)

We have the following properties.

Theorem 5.2. Let (M,ω) be any Lefschetz closed symplectic manifold. Given two strong sym-

plectic homeomorphisms h, and f we have :
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(1) ∥h∥SHL = 0, if and only if, h = idM,

(2) ∥h∥SHL = ∥h−1
∥SHL,

(3) ∥h ◦ f∥SHL ≤ ∥h∥SHL + ∥f∥SHL.

Proof. The item (2) follows from the definition of the map ∥, ∥SHL. For (1), we adapt the

proof of the nondegeneracy of the Hofer norm for Hamiltonian homeomorphism given by Oh [12]:

Suppose that h ≠ idM. Then h displaces a small nonempty compact ball B with positive symplectic

displacement energy eS(B)>0 (we refer to [4] for the definition of symplectic displacement energy).

For such a ball B, we set δ = eS(B). The characterization of the infimum tells us that one can find

a strong symplectic isotopy γδ(U,H) with γ
δ
(U,H)(1) = h, such that

∥h∥SHL>l∞(γδ(U,H))−
δ

4
.

On the other hand, it follows from the definition of strong symplectic isotopies that there exists a

sequence (φ(Fi,λi)) that converges to γ(U,H) with respect to the (C0 + L∞)−topology. So, we can

find a larger integer i0 for which the path φ(Fi0
,λi0)

is sufficiently close to γ(U,H) [resp. φ
−1

(Fi0
,λi0)

sufficiently close to γ−1

(U,H)] with respect to the (C0 + L∞)−topology, and so that

l∞(γδ(U,H))>l∞(φ(Fi0
,λi0)

)−
δ

4
,

where φi0 = φ1
(Fi0

,λi0)
displaces B. It follows from the definition of Banyaga’s Hofer-like norm

∥, ∥HL (see [2]) that l∞(φ(Fi0
,λi0)

) ≥ ∥φi0∥HL, i.e.

l∞(φ(Fi0
,λi0)

)−
2δ

4
≥ ∥φi0∥HL −

δ

2
.

Then, we derive from the definition of symplectic displacement energy eS (see [4]) that

∥φi0∥HL −
δ

2
≥ eS(B)−

δ

2
= δ−

δ

2
=
δ

2
>0.

Summarizing the above statements together gives,

∥h∥SHL>l∞(γδ(U,H))−
δ

4
>l∞(φ(Fi0

,λi0)
)−

2δ

4
≥ ∥φi0∥HL −

δ

2
=
δ

2
>0.

For (3), let h and f be two strong symplectic homeomorphisms, pick γ ∈ "(h) and β ∈ "(f), and

derive from Remark 5.1 that for all ϵ>0, there exists a strong symplectic isotopy η with the same

extremities as the right concatenation γ ∗r β such that

ē(h ◦ f) ≤ l∞(η)<l(1,∞)(γ ∗r β) + ϵ ≤ l∞(γ) + l∞(β) + ϵ, (5.11)

and passing to the infimum in (5.11) yields

ē(h ◦ f) ≤ ē(h) + ē(f). (5.12)
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Similarly, one shows that

ē(f−1
◦ h−1) ≤ ē(h−1) + ē(f−1). (5.13)

Relations (5.12) and (5.13) imply

∥h ◦ f∥SHL ≤ ∥h∥SHL + ∥f∥SHL. (5.14)

This completes the proof. ✷

Let SSympeo(M,ω) denote the group of strong symplectic homeomorphisms equipped with

the symplectic topology (see [3, 5, 6] for more convenience).

Theorem 5.3. Let (M,ω) be a closed symplectic manifold. Then, the mapping

∥.∥SHL : SSympeo(M,ω) → R, h !→ ∥h∥SHL

is continuous.

Proof. In the way that the symplectic topologies had been defined on the spaces SSympeo(M,ω)

and PSSympeo(M,ω) (see [5]), the map

∥.∥SHL : SSympeo(M,ω) → R+,

h !→ ∥h∥SHL,

is continuous if and only if, for any open subset I inR+, the set ∥.∥
−1

SHL
(I) is open inSSympeo(M,ω).

But, considering the following evaluation map

ev : PSSympeo(M,ω) → SSympeo(M,ω),

γ(U,H) !→ γ(1),

which is a continuous mapping with respect to the symplectic topology on PSSympeo(M,ω). We

see that ∥.∥−1

SHL
(I) is an open subset in SSympeo(M,ω) if and only if ev−1(∥.∥−1

SHL
(I)) is an

open set in PSSympeo(M,ω). That is, the map

∥.∥SHL : SSympeo(M,ω) → R+,

is continuous if and only if the map

∥.∥SHL ◦ ev : PSSympeo(M,ω) → R+,

is continuous with respect to the symplectic topology on the space PSSympeo(M,ω). Then, the

continuity of the map

SSympeo(M,ω) → R+,
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h !→ ∥h∥SHL,

is proved as follows: Let {γ(Uk,Hk)} be a sequence in PSSympeo(M,ω) that converges to γ(U,H) ∈

PSSympeo(M,ω) with respect to the (C0 + L∞)−topology. Set γk(1) = γ1(Uk,Hk)
, for each k,

and γ(1) = γ1(U,H). Now, compute

|ē(γ(1))− ē(γk(1))| ≤ ē
(
[γ1(Uk,Hk)

]−1
◦ γ1(U,H)

)
≤ l∞(γ−1

(Uk,Hk)
◦ γ(U,H)) → 0, k → ∞.

This completes the proof. ✷

The main result of this paper is the following theorem.

Theorem 5.4. (Topological Hofer-like norm) Let (M,ω) be a closed Lefschetz symplectic manifold.

Then, the map ∥, ∥SHL induces a norm on the group SSympeo(M,ω).

Proof. The proof of Theorem 5.4 is a consequence of Theorem 5.2 and Theorem 5.3. ✷

Theorem 5.4 is the symplectic analogue of a result that was proved by Oh [12] for Hamiltonian

homeomorphisms. In particular, if the manifold M has a trivial first de Rham cohomology group

H1(M,R), then the norm ∥.∥SHL reduces to the norm ∥.∥Oh constructed by Oh on the group of

all Hamiltonian homeomorphisms [13, 12].

Note that the norm ∥, ∥SHL defined on the group SSympeo(M,ω) induces a right-invariant

distance on it, defined by:

D(φ,ψ) = ∥φ ◦ψ−1
∥SHL,

for all φ,ψ ∈ SSympeo(M,ω).

Note that when H1(M,R) ≠ 0, it follows from the decomposition theorem of strong symplectic

homeomorphisms that the group of Hamiltonian homeomorphisms is strictly contained in the group

of strong symplectic homeomorphisms (see [14]). So, it is an interesting task to investigate whether

the topology induced by the norm ∥.∥SHL is an extension of Oh’s topology or not: This motivated

the following result.

Theorem 5.5. (Topological Banyaga’s conjecture) The norm ∥.∥SHL restricted to the group of

Hamiltonian homeomorphisms is equivalent to Oh’s norm: There exists a positive constant κ>0,

such that

∥φ∥SHL ≤ ∥φ∥Oh ≤ κ∥φ∥SHL,

for all Hamiltonian homeomorphism φ.

This result is motivated in party by a conjecture which can be found in [2]. The latter conjec-

ture first was proved by Buss-Leclercq [7], and an alternate proof of the same conjecture is given
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in [17]. This conjecture stated that the restriction of Banyaga’s Hofer-like norm to the group of

Hamiltonian diffeomorphisms is equivalent to Hofer’s norm.

Proof of Theorem 5.5. By construction, we always have

∥.∥SHL ≤ ∥.∥Oh.

To complete the proof, we need to show that there exists a positive finite constant κ such that

∥.∥Oh ≤ κ∥.∥SHL, (5.15)

or equivalently, via the sequential criterion, it suffices to prove that any sequence of Hamiltonian

homeomorphisms converging to the constant map identity with respect to the norm ∥.∥SHL, con-

verges to the constant map identity with respect to Oh’s norm. The proof that we give here heavily

relies the ideas that Oh [12] and Banyaga [2] used in the proof of the nondegeneracy of their norms.

Let ψi be a sequence of Hamiltonian homeomorphisms that converges to the identity with respect

to the norm ∥.∥SHL. For each i, and any ϵ>0 there exists a strong symplectic isotopy ψ(Ui,ϵ,Hi,ϵ)

such that ψ1

(Ui,ϵ,Hi,ϵ) = ψ
i, and

l∞(ψ(Ui,ϵ,Hi,ϵ))<∥ψi
∥SHL + ϵ. (5.16)

On the other hand, for a fixed i, there exists a sequence of symplectic isotopies φ(Vi,j,Ki,j) such

that

ψ(Ui,ϵ,Hi,ϵ) = lim
C0+L∞

(φ(Vi,j,Ki,j)). (5.17)

In particular, one can find a sufficiently large integer j0 such that φ(Vi,j0
,Ki,j0

) is sufficiently close

to ψ(Ui,ϵ,Hi,ϵ) with respect to the (C0 + L∞)−topology, and so that

l∞(ψ(Ui,ϵ,Hi,ϵ))>l∞(φ(Vi,j0
,Ki,j0

))−
ϵ

4
. (5.18)

Since ∥ψi
∥SHL → 0, i → ∞, then the Hofer-like length of the isotopy φ(Vi,j0

,Ki,j0
) can be con-

sidered as being sufficiently small for i sufficiently large. This implies that the flux of the path

φ(Vi,j0
,Ki,j0

) can be considered as arbitrarily small for all i sufficiently large. Hence, it follows

from Banyaga [2] that, for all i sufficiently large, the time−1 map of φ(Vi,j0
,Ki,j0

) is a Hamiltonian

diffeomorphism. So, we can assume (without breaking the generality) that φ1
(Vi,j0

,Ki,j0
) is Hamil-

tonian for i ≤ j0, and i sufficiently large. Therefore, the above statements together with formula

(5.18) imply that

l∞(ψ(Ui,ϵ,Hi,ϵ))>∥φ1
(Vi,j0

,Ki,j0
)∥HL −

ϵ

4
. (5.19)

For i ≤ j0, and i sufficiently large, since the diffeomorphism φ1
(Vi,j0

,Ki,j0
) is Hamiltonian, we derive

from a result found in [7, 16] that there exists a positive finite constant D which does not depend

on neither i, nor j0, such that

1

D
∥φ1

(Vi,j0
,Ki,j0

)∥H ≤ ∥φ1
(Vi,j0

,Ki,j0
)∥SHL, (5.20)
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where ∥.∥H represents the Hofer norm of Hamiltonian diffeomorphisms. This implies that

∥ψi
∥SHL + ϵ>

1

D
∥φ1

(Vi,j0
,Ki,j0

)∥H −
ϵ

4
, (5.21)

for i ≤ j0, and i sufficiently large. At this level, we use the fact that Oh’s norm restricted to the

group of Hamiltonian diffeomorphisms is bounded from above by Hofer’s norm to get

∥ψi
∥SHL + ϵ>

1

D
∥φ1

(Vi,j0
,Ki,j0

)∥Oh −
ϵ

4
, (5.22)

for i ≤ j0, and i sufficiently large. Passing to the limit in the latter estimate, yields

lim
i→∞

∥ψi
∥SHL +

5ϵ

4
≥

1

D
lim

j0≥i,i→∞

∥φ1
(Vi,j0

,Ki,j0
)∥Oh =

1

D
lim
i→∞

∥ψi
∥Oh, (5.23)

for all ϵ. Finally, we have proved that for all positive real number δ (replacing ϵ by
4δ

5D
), we have

δ ≥ lim
i→∞

∥ψi
∥Oh. (5.24)

This completes the proof.!

5.3 Topological symplectic displacement energy

In this Section, we extend the symplectic displacement energy to the world of strong symplectic

homeomorphisms. This is motivated by the uniqueness result from [5] and the uniqueness of

Banyaga’s Hofer-like geometry [15].

Definition 5.6. The strong symplectic displacement energy e0,∞
S

(B) of a non empty compact

subset B ⊂ M is :

e0,∞S (B) = inf{∥h∥SHL|h ∈ SSympeo(M,ω), h(B) ∩ B = ∅}.

Lemma 5.7. For any non empty compact subset B ⊂ M, e0,∞
S

(B) is a strict positive number.

Proof. Let ϵ>0, by definition of e0,∞
S

(B), there exists a strong symplectic isotopy ψ(Fϵ,λϵ)

such that ψ1
(Fϵ,λϵ) = h, and

e0,∞S (B) +
ϵ

2
>l∞(ψ(Fϵ,λϵ)). (5.25)

On the other hand, there exists a sequence of symplectic isotopies (φ(Fi,λi)) that converges to

ψ(Fϵ,λϵ) with respect to the (C0 + L∞)−topology. So, one can choose integer j0 large enough such

that φ1
(Fi,λi)

displaces B, and

l∞(ψ(Fϵ,λϵ))>l∞(φ(Fi,λi))−
ϵ

4
. (5.26)
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for all i>j0. It follows from the definition of symplectic displacement energy that

∥φ1
(Fi,λi)

∥HL ≥ eS(B)>0, (5.27)

for all i>j0. Relations (5.25), (5.26) and (5.27) implies that

e0,∞S (B) +
ϵ

2
+
ϵ

4
>l∞(φ(Fi,λi)) ≥ ∥φ1

(Fi,λi)
∥HL ≥ eS(B)>0, (5.28)

for i sufficiently large. Therefore,

e0,∞S (B) + ϵ>eS(B)>0,

for all positive ϵ. This completes the proof. ✷

6 Conjectures and Examples

6.1 Conjectures:

Conjecture (A): For any h ∈ SSympeo(M,ω), we have ∥h∥SHL = ∥h∥
(1,∞)
SHL

. ⋆

Conjecture−(A) is supported by the uniqueness result of Hofer-like geometry from [15] or

more generally in [16].

Conjecture (B): If h ∈ SSympeo(M,ω), then the norm φ !→ ∥h ◦φ ◦h−1
∥SHL is equivalent

to the norm φ !→ ∥φ∥SHL.♣

Conjecture−(B) is supported by a result found in [4] (Theorem 7).

Conjecture (C): Let σ be the canonical volume form on the unit circle S1 given by the

orientation of the circle. If λ is a strong symplectic isotopy generated by (U,H), then the Fathi’s

mass flow of λ is exactly one of the following quantities:

±
1

(n− 1)!

∫

M

((∫1

0

Htdt

)

∧ωn−1 ∧ f∗(σ)

)

,

for any mapping f : M → S1.♥

In particular, any continuous Hamiltonian flow has a trivial mass flow. Therefore, is any strong

symplectic isotopy with trivial Fathi’s mass flow homotopic (relatively to fixed endpoints) to a

continuous Hamiltonian flow?
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Conjecture (D): If λ is a strong symplectic isotopy generated by (U,H), then the mapping,

λ !→
(∫1

0
[Ht]dt

)
∈ H1(M,R), is a well defined group homomorphism which only depend on the

homotopic class of λ relatively to fixed ends, where [, ] stands for the de Rham cohomology class.$

6.2 Examples

6.2.1 Example

A harmonic 1−parameter group is an isotopy β = {βt} generated by the vector field X defined by

ι(X)ω = K, where K is a harmonic 1−form, and let φ be a non-smooth Hamiltonian homeomor-

phism [13]. By definition of φ, there exists a sequence of Hamiltonian isotopies Φj which is Cauchy

in (C0 + L∞), and φj := Φj(1) → φ, uniformly. The isotopy Ψj : t !→ φ−1

j
◦ βt ◦ φj, has time−1

map φ−1

j
◦β1 ◦φj, and it is generated by (

∫1

0
K(Φ̇j(s)) ◦Φj(s)ds,K). In fact, the smooth function

x !→
∫1
0
K(Φ̇j(s)) ◦ Φj(s)ds(x), does not depend on the choice of any isotopy with time−1 map

φj := Φj(1) [5, 16, 18]. As it can be checked, the sequence of generators (
∫1

0
K(Φ̇j(s))◦Φj(s)ds,K)

is Cauchy in D∞ if and only if the sequence of functions x !→ (
∫1

0
K(Φ̇j(s)) ◦ Φj(s)ds)(x) is

Cauchy in the L∞−Hofer norm. But, Lemma 3.9 from [15, 16] shows that the sequence of func-

tions x !→ (
∫1
0
K(Φ̇j(s)) ◦ Φj(s)ds)(x), is Cauchy in the L∞−Hofer norm provided the sequence

Φj is Cauchy in the metric d̄; which is the case. Thus, the latter converges in the complete met-

ric space N 0([0, 1] × M ,R) to a time-independent continuous function that we denote F0. The

strong symplectic isotopy Φ : t !→ φ ◦ βt ◦ φ
−1, is generated by (F0,K), and its time−1 map

x !→ (φ ◦β1 ◦φ
−1)(x) is not necessary C1, but continuous. Hence, we have constructed separately

an example of strong symplectic isotopy which is a 1−parameter subgroup and whose generator is

time independent. The Hofer-like length of Φ are given by

l∞(Φ) = osc(F0) + |K| = l(1,∞)(Φ), (6.1)

and we also have,

ē0(φ ◦ β1 ◦ φ
−1) ≤ ē(φ ◦ β1 ◦ φ

−1) ≤ osc(F0) + |K|<∞. (6.2)

△

6.2.2 Example

Consider the torus T2l with coordinates (θ1, . . . , θ2l) and equip it with the flat Riemannian metric

g0. Note that all the 1−forms dθi, i = 1, . . . , 2l are harmonic. Take the 1-forms dθi for i = 1, . . . , 2l

as basis for the space of harmonic 1-forms and consider the symplectic formω =
∑l

i=1
dθi∧dθi+l.

Given v = (a1, . . . , al, b1, . . . , bl) ∈ R2l, the translation x !→ x+v on R2l induces a rotation Rv on

T2l, which is a symplectic diffeomorphism. Therefore, the smooth mapping {Rt
v} : t !→ Rtv defines

a symplectic isotopy generated by (0,H) with H =
∑l

i=1
(aidθi+l − bidθi). Now, consider the
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torus T2 as the square: ✷ := {(p, q) | 0 ≤ p ≤ 1, 0 ≤ q ≤ 1} ⊂ R2, with opposite sides identified.

Then, the action of the unit circle S1 on T2:

ρ : S1 × T
2 → T

2, (α, (θ1, θ2)) !→ (θ1 + α, θ2 + α),

induces a non-Hamiltonian diffeomorphism ρα : T2 → T2, because the latter has no fixed point

for α small and non-trivial. Assume this done. Let D2
⊂ R2 be the 2−disk of radius τ ∈]0, 1/8[

centered at A = (a, 0) with 7/8 ≤ a<1, and let Λ2(τ) be the corresponding subset in T2. For any

ν<1/4, consider the nonempty open subset B(ν) = {(x, y) | 0<x<ν} ⊂ R2, and let C(ν) be the

corresponding open subset in T2.

Let φ be a non-smooth Hamiltonian homeomorphism of T2 supported in Λ2(τ), and assume

that ρα is induced by a horizontal vector v = (b, 0) ∈ R2, with ν<b ≤ 1/2. Then, the map

x !→ (φ−1
◦ ρα ◦ φ)(x) displaces completely the nonempty open subset C(ν). It follows from the

proof of Lemma 5.7 that, 0<eS(C(ν)) ≤ e0,∞
S

(C(ν)) ≤ l∞({φ−1
◦ ρ(αt) ◦ φ}t∈[0,1])<∞. ✷
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