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ABSTRACT

The aim of this paper is to prove the hypercontractive propertie of the Dunkl-Ornstein-

the)} 5o, To this end, we prove that the Dunkl-Ornstein-

Uhlenbeck semigroup, {e!
Uhlenbeck differential operator Ly with k > 0 and associated to the Zg group, satisfies
a curvature-dimension inequality, to be precise, a C(p, 0o)-inequality, with 0 < p < 1.
As an application of this fact, we get a version of Meyer’s multipliers theorem and
by means of this theorem and fractional derivatives, we obtain a characterization of

Dunkl-potential spaces.

RESUMEN

El objetivo de este articulo es demostrar la propiedad hipercontractiva del semigrupo
de Dunkl-Ornstein-Uhlenbeck, {e(th)}tZO. Para lograr esto, probamos que el operador
diferencial de Dunkl-Ornstein-Uhlenbeck Ly con k > 0 y asociado al grupo Zg, satisface
una desigualdad de curvatura-dimensién, para ser precisos, una C(p, co)-desigualdad,
con 0 < p < 1. Como una aplicacién de este hecho, obtenemos una versiéon del teo-
rema de multiplicadores de Meyer y a través de este teorema y derivadas fraccionales,
obtenemos una caracterizacion de espacios Dunkl-potenciales.
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1 Preliminaries

In this section we collect some notations and results in the Dunkl theory (see [5]), but particularly

for the Z$ group.

Let v = (v1,...,va) € Z¢ be a multi-index, where Z; = {0,1,2,...}, so v! = H].d:1 v;! and
lv| = Zjd:1 vj. For x = (x1,...,x4) € R4, we set x¥ = x{"...x3% and [x]3 = Z;i:] sz. In what
follows, we denote 0; = 9/0x;, for each 1 <j < d, and 0¥ =097"...093*. Also, (.,,.) denotes the
Euclidean inner product in R¢ and finally, A and V denote the usual Laplacean and the usual

gradient, respectively.

Let us consider the finite reflection group generated by

X, €j
O‘j(X):X—2< > 2]>e]-,
lej12
where (e; )jd:1 are the standard unit vectors of R¢. So, for each j =1,...,d,
O'j(X],...,X]‘,...,Xd):(X],...,—Xj,...,xd)

and isomorphic to Z$ ={0,1}4. The reflection oj is in the hyperplane orthogonal to e;. Then, we
consider the root system R and the positive root system R, respectively, as

R={+V2¢:j=1,...,d}, R ={V2e:j=1,...,d

and let k be a nonnegative multiplicity function k : R, — [0, 00), which is Zg—invariant. Then, we
set k = (k1,...,kq), where kj = o5 + (1/2) and o5 > —1/2, for each j =1,...,d.
Thus, in this particular case, the Dunkl differential difference operators, T¥, are given by

j
f(x) — f(o3x)
T]-kf(x) = 05f(x) + k5 (Xij ,
j
with f € C'(R4) and in the following, the operator

d
Ay = Z(Tjk)zv

j=1

given explicitty by

bt = 3 {o+ 2 ) (21000

j=1 ) )

is called ”the generalized Laplacian” or ”Dunkl-Laplacian” associated to Z$ and k.
Then the Dunkl-Ornstein-Uhlenbeck differential operator is defined as,
Ay

Ly 5 = (x, V) (1.1)
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and therefore, from (LIJ), the Dunkl-Ornstein-Uhlenbeck differential operator can be written as

L f(x Z { Zk’a Fx) — K (W)}—xjajf(x). (1.2)

X j

Here, the corresponding weight function is defined by wy(x) = H]fi:] Ix;|?% and we con-
sider the Hilbert space L?(my), where the probability measure, my, is defined by my(dx) =
c exp(—[x[3)wi (x)dx, with x € R? and cx = ([pa exp(—x[3)wi(x)dx)

Now, we consider a complete system of orthogonal polynomials, with respect to the measure
my, which is known as generalized Hermite polynomials. In dimension one, for the reflection group
Zy, the corresponding generalized Hermite polynomials are defined as

Hlﬁn() (— ])nzZnn,L 1/2)( ),
HE, (0 = (120 T 57072 (2),

where LY are the Laguerre polynomials of degree n and order «, (see [11] and [4, pages 156,157]).
In the multidimensional case the generalized Hermite polynomialb are defined by taking tensor
products of the one-dimensional HX; that is, HX(x H] ] HVJ (xj), x € RY, v € Z4. This way,

we will denote
E=2MrHE vezd,

from now on.

HE is a polynomial of degree |v| and {hl‘,}vezi forms an orthonormal basis of L?(my ). The gen-
eralized Hermite polynomials satisfy the following important identity which is known as Mehler’s
formula. For r € C with |r| < 1,

1 2 (IxI5 + [yl3) 2rx
K(x vl — 2 2
P y)r (1 = r2)ki+a/z &P <_ 1—12 )Ek<]_r2,y),
vezd

where the sum is absolutely convergent and the Dunkl kernel, Ex(x,y), replaces the usual exponen-
tial function, exp(x,y). Then, from [I1I] the generalized Hermite polynomials are eigenfunctions of
Li;
Li(hY) = —jvhk, vvezd. (1.3)
Also, let CX be the closed subspace of L?(my) generate by linear combination of {h¥ : [v| = n}
and we denote by J¥ the orthogonal projection of L?(my) onto CK. If f is a polynomial, then

Jhf= ) cS(fh,

[vl=n

where given a function f € L2(my), its Dunkl-Fourier coefficient is defined by cX(f) = IRd f(x)hX (x)my (dx)

and therefore, if f € 12(my), its Dunkl-Hermite expansion is given by f = Zio:o Jkf. Thus, the

operator
o0

Lf =) —nJif,

n=0
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defined on the domain D; (L) = {f eL?(mi): Y o, ZM:n Ick ()12 < oo}7 is a self-adjoint ex-
tension of Ly considered on C?(Rd). More precisely, Ly has a clousure which also will be denoted
by Lk.

Now, following [11L [13], the generalized heat kernel, I (t,x,y), is given by

ci exp{—(Ix[5 + Iyl5)/4t} Xy
Ne(t,x,y) = LD (4t)‘k2‘+d/2 z k (\/—Z_t’ \/—Z_t) ) (1.4)

where x,y € RY and t > 0. Therefore, from [I2] the Dunkl-Ornstein-Uhlenbeck integral operator
is defined as

OFf(x) = J

2t
i (e ) fywilya,
Rd

But, ([4]) allows us to express

—2t 2 2
P (1—e 2y Ck €Xp (—%) V2e tx  V2ety
exp(lyl2)Tk — 3 ¢ MY (1 — e—2t)lki+d/2 Ex e l_e2t)’

V2e tx  V2e Tty
Ve 2t /1—e—2t

and since, Ex ( ) =Ex (%"—t,y) , by using Mehler formula, we get explicity:

Otlx) = [ fly)0kx yimildy)
R

where, OX(x,y) = Zvezi e VIthk(x)hE(y). Besides, {OF}i>0 is a positive, strongly continuous

contraction semigroup on Co(R?) with generator L. Thus, formally, we write O¥ = e(ttx) and

following [12, [14], if we consider

Mk( _ (]_e_Zt) —t
{0 dy) =N [ ————,¢ "%y | wi(y)dy, (1.5)

form, (together with the trivial kernel M), a semigroup of Markov kernels.
Also, the corresponding Dunkl-Poisson semigroup {P¥};>¢ is defined, by means of subordination
principle, as

1 [ exp(—
PEf(x) = N L %Ol‘zmuf(x)du = JRd f(y)Py (x, y)mi (dy),

where the kernel P{(x,y) is defined as

1 [* exp(—u)
PE(XJJ) = = J

Vrlo  Vu
Again, {PF}(>0 is a positive, strongly continuous semigroup with infinitesimal generator (—Ly)!'/2
and it is a Markov process (see [12] [16]). In particular, by (I3]) we obtain that

O]t<2/4u. (X) y)du

OF(h¥) = e MhE and PE(h%) = e tVIVIRE
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also, if f is a polynomial

Off =) e ™Jxf and Pif=) e "VNJKf.

n>0 n>0

Following [2] 3], let us consider the squared field operator, I', associated to Ly, as

r(f,9) = 3[Lx(fg) — flilg) — gLul(f)), ¥hrg € A (16)

where we choose A as the set of all polynomials on RY, which is a dense subspace in L?(my).
Besides, let us consider the operator I'; defined as

1
N(f,g) = E[Lkl"(f, g) —T(f,Lxg) —T(g,Lxf)], Vfge AxA (1.7)

and throughout this paper we denote I'(f) = I'(f, f) and I (f) = ' (f, T).
Again, motivated by [2 B], we say that the differential operator Ly satisfies a CD(p,n)-

inequality, (a curvature-dimension inequality with curvature p and dimension n), if and only if

I (f) > pl(f) + ] Lef)?, Vfe A,

~(
where p € R and n € [1,00]. Particularly, Ly satisfies a CD(p, co)-inequality, if and only if
I(f) > pl'(f) Vfe A
Finally, we denote a Dirichley form associated to the measure my by
(1) = [P0 ix)m (v
and the Entropy of a positive function f as
Ent(f) = Jf(x) log(f) (x)my (dx) — Jf(x)mk(dx) log (J f(x)mk(dx)) .
In this case, a logarithmic Sobolev inequality, LS(A, C), has the form
Ent(f?) < Asz(x)mk(dx) + CE(f), Vf € A.

Particularly, if A = 0 we say that the logarithmic Sobolev inequality is tight. The logarithmic
Sobolev inequalities relate Entropy to the Dirichlet norm (the Energy) and these type of inequalities
were introduced by L. Gross to study the hypercontractive propertie of the diffusion semigroups
and the Markov semigroups, (see [l [J]).

2 The results

Now, we are ready to present the results of this paper.
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2.1 Hypercontractivity of Dunkl-Ornstein-Uhlenbeck semigroup

Following D. Bakry [2, [3], we turn now to the study of the local structure of the Dunkl-Ornstein-
Uhlenbeck differential operator L. Then, we started recalling the operators, I' and I';, defined in

(C8) and (7)) respectively. That is,

rf) = % [Li(f2) — 2fLy(f)]  and Ta(f) = % (LT (f) — 2I'(f, Ly )], (2.1)
where,
P(f, Lef) = 5 [Le(fLicf) = FLie(Lief) — (Leh)?] (2.2)

Vf € A. Again, we consider A as the space of all polynomials on R¢.
Now, from (L2)), let us denote

d
Lf =) Lf, VfeA, (2.3)
where, for each j =1,...,d,
; 1 2k; f(x) — f(o;%)
L f(x) 3 {aff(x) + X—jlajf(x) —¥ <T’ —x;0f(x). (2.4)

Thus, in order to obtain our results, we prove the following technical Lemmas.

Lemma 2.1. Let Ly be the Dunkl-Ornstein-Uhlenbeck differential operator defined as in (I2).
Then

d 2
(f)(x) = 'Vf +Zk (ﬂ) Ve A

j=1 e

Proof. From (1)) and (23], it is obvious that we can write

N |

d
Z 26(x)L(F)(x)},

where, considering [2.4]), we denote
L f(x) = Uf(x) + QL f(x), j=1,...,d
with

Ljf(x):%a]-zf(x)—xjaf(x) and QLf(x):l
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for each j = 1,...,d. Thus, first we have to compute Li (f?) and 2fLJ (f). We can see that

D (2)(x) = (95%) (x) + F(x) 05 f(x) — 2x;f(x)d;f(x),
2f(x)U (f) (x) = f(x)a]zf(x) — 2%;f(x)05f(x),

since

0;(f2)(x) = 2f(x);f(x),
02(f2)(x) = 2(35F)2(x) + 2f(x)07f(x)

and therefore
U (f2)(x) — 2f(x)Uf(x) = (3;)%(x). (2.5)
On the other hand,

5 ¢ x)0;(x )—%(fz(xJ—fz(ojx))]

X j

- 1
QL)X =5 [

and

Zf(x)QLf(x) = l4k] f(x)0;f(x) — :—;(21‘2()() —Zf(x)f(cfjx))l .
j

Then, we obtain that

ﬁz(f(x) — f(ojx))? (2.6)
)

L ()(x) = 26(x)QL(F)(x) = 32

and consequently, the result of the Lemma follows from (2X) and (2], since

d
rhHx) = Z 2f()UF(x)} + {QL(F) (x) — 2f(x) Q) f(x)}

N |

N —

:d .
_ {Z ' (f(x)—f(ojx))z}.
J

j=1
O

Lemma 2.2. Let Ly be the Dunkl-Ornstein-Uhlenbeck differential operator defined as in (1.2).
Then, Vf € A, we have

Lic(fLicf) (x) = (L) (x) + FO) Lic (L) (x) + (VF(x), VLiF(x))
d

(
#3203 14 (160~ (o0 (LLf(o) ~ Liftow).

i=1j=1

Proof. From (Z3]) we obtain that

LL(fL) ) (x)

d d
=1

Le(fLf)(x) = )

i=1j
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and by using (Z4) with fLLf instead of f, we can express

L (L) f)(x) =
2K o (L) (x) — ‘X‘—z (FOILLFx) — f(oix)L’]’{f(Uix))}

[af(ﬂ_Lf) (x) + —
Xi

NI =

—x:0i(fLL)(x).  (2.7)
Now, for each j=1,...,dand i =1,...,d, we have
i (FLLF) (x) = d:F(x) L F(x) + F(x)d: (L f)(x), 2.8)
Q2(fLLF)(x) = d2F(x) L) f(x) 4+ 20:F(x)d: (L, F)(x) + F(x)d2(L)(x) '

and since,

— E[f(x)LLf(x) — f(ox) U f(o1x)] =

5
ki j ki j j
o ((x) — F(o1x)) LLF(x) — Ef(x) (ka(x) — ka(oix))
+ :—2 (F(x) — f(0ix)) (L{;f(x) - L{(f(aix)) . (2.9)

then substituing (2.8) and 29) in (2.7) we obtain explicitly

LL (L) f)(x) =
<l {aff(x) + Zki 0if(x) — k—;(f(x) — f(oix))] — xiaif(x)> LLf(xH—

2 Xi X{

Va2 ZKiy g Ki j j

3 { (L) (x) + X—iai(ka)(X) — Q(ka(x) — L f(oix)) | —xi0: (L f)(x) | f(x)+

(LA () + 55 (F6x) — Flowe)) (L fx) — k(o)

X
N

and we can express

LL(fLLf)(x) =
LEF(x) L F(x) + F(x)LL (L F)(x) + i f(x)d: (LLF) (x)+
ks ) )
T (f(x) = o)) (LLF(x) — L f(owx)),
1
foreachj=1,...,dand i=1,...,d. Therefore, taking the sum with respect to i and j, we obtain
O

the result of the Lemma.
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Consequently, the identity (Z2) and the Lemma [Z2] allows us to write

R0 = 5 [Lk(r(fmx) — (1), VL)

d

_ Z Z 2]::_2 (f(x) — f(oix)) (L{;f(x) — L{;f(dix)) ] (2.10)

i=1j=1

and in the following result we obtain an explicit expression for the operator I;(f). More precisely,

Proposition 2.3. Let Ly be the Dunkl-Ornstein- Uhlenbeck differential operator defined as in (I.2).
Then, Vf € A, the operator T2 (f) can be rewritten as

5 {(a%f)Z(x) (0:F)200) |, ks [(aiﬂxwaif(mn (f(x)—f(mx))r

Xi X

(f(x) _f(GiX))Z}

X3

2
d d
+ Z , > _ {(Jf + ;—}(ajf(x) —05f(04x))? + %(aif(x) —dif(0jx))?

Proof. We have to compute each term in equation (2I0). As first step in this argument, observe
that by using (23] and the Lemma 2.1l we get

Le(M) =)

d d
i=1j=

d
L(nf) =) L) +) > LN,

1 i=1 i=1j=1,j#i

where we denote

Nif(x) = (2.11)

2 ZXi
Using the identity (Z4) with I'if instead of f, we can express

(0:’() , (f(x) —f(aix))z

LL(Nf)(x) = % {af(nf)(x) + %aj(nf)(x) e <nf(x) —X znf(cjx)>} — Tf(x). (2.12)
j j

Then, let us consider two cases: i =jandi#j, with 1 <i<dand1<j<d Ifi=j,
differentiating (2I1]) with respect to x; we obtain

KU f(x) — Fo00) (0:f(x) + 1 F(01x)) — o

2
ai(l"if) (X) = aif(X)ai f(X) + fo fo

(f(x) — flox))? (2.13)
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and

07 (Tif) (x) = dif ()97 F(x) + (7 )% (x) + ki (dif(x) + dif(01x))?

2x?
ok () — o)) (921(x) — 03 (ax)) — S (x) — Flo) (Bsf(x) + Oxflov))  (2.14)
209 — flow) ),

1

(note that 9;(oix) = —1).

Otherwise, considering ([ZI1]) with o;x instead of x, we can write

2
rif(GiX) = (alf)zzﬂ + ki <%X—fm) ) 1<iL da

since 0y(0ix) = x and we obtain that

ki ki
ﬁ(ﬂf(XJ —Nif(oix])) = poe: ((d:)*(x) — (3:)* (01x)). (2.15)

Therefore, if 1 =j, replacing 213), (214) and @2I5) in [Z12)), we get that

LL ()0 =
(a%f;(x) + aif(x)za o) x102F(x)0:f(x) + %(aif(x) + 0if(oix))?
L (700 — o) (031(0) — 02(00)) = 25 (19:)2(x) = (3:)2 (0vx) 16)
+ [ LA ﬁ] (F(x) — F(ox)) (Q4F(x) + 0cF(01x)) + 02F(x)2:f(x)
2%y x) 2% X4
. 2 .
[j% -5 2%] (7(x) — ()2
Now, if i # j, again differentiating (2.I1) with respect to x; we obtain
03(14F) () = 0T ()03, Fx) + -5 () — (o)) (25 (x) — B3] (2.17)

and

07 (If) (x) = (3% (x) + dif(x)d3;f(x) + %(ajf(x) — 9jf(ovx))?+

ki
2x?

(f(x) — f(03x)) (07 f(x) — 3Ff(oix)).  (2.18)
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Again, considering (ZI1]) with ojx instead of x we have that

20 (Fif(x) — Tyf(oyx) =
j
K; kiki
é((aif)l(x) — (0:6)?(05%)) + SX’%X% [(f(x) — f(o1x))? — (f(o5%) — foy05%))?] . (2.19)

Therefore, if 1 # j, replacing the equations (21I7), (ZI8) and 21I9) in (ZI2) we can see that
LL(FJ) can be expressed as

262 _ ; |
L, (Iif)(x) = (aijfz) (x) + alf(x)gijjf(x) — %05 F(x)O%F(x) + %(ajf(x) —95f(0yx))?
+ Zl%z(f(x) — f(01x)) (3] f(x) — 3} f(0ix)) + %aif(x)aizjf(x)
: )
(2.20)
kik; Kix; K
Lxﬁ; - z;-%]] () = flo1x))(95f(x) — 85f(0vx)) — é((aif)z(x) — (1) (05x))
— oz (10 = o)) = (o7 — (ovopx) ]

2.2
8x: X;

Thus, taking the sum with respect to i and j in (216) and ([2.20) we obtain explicitly that

d 2.2 . 3 .
Le(Th(x) =) { (aif; ), alf(x)za () X107 F(x)0:f(x) + %(aif(x) +9if(0ix))?

" 4]:3 (f(x) = f(ox)) (9 (x) — O (0ix)) — 4‘;} (1) (x) — (3:F)* (o))
+ { k%s -5 ﬁ} (F(x) — Flo00)) (0:F() + uF(00x)) + —02F(x):f(x)
3 x3 2 X1

+ —'} (f(x) — f(cfix))z}+
Xy

+ 4Xf - ZX‘: 2 2
L & [N | dif(x)og;f(x) , . 2 (2.21)
; j—]ZJ#l 2 * 2 N Xjajf(x)aiif(x) + Q(ajﬂx) — 0;f(03x))
+ 41::2 (f(x) — f(o1x)) (35 F(x) — B5 F(ovx)) + ﬁaif(x)a%]f(x)
: )

Now, we will develop the second part of the proof of this proposition calculating the operator
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(Vf, VL f), such can be written as

(VE(x), VL f(x)) = ) 0:f(x)0:(Lif)(x)

o

i=1

d
> 0ut(x)ai (L H(x)

j=1

o
Il
-

|
.I\/]ﬂ-

Again, we consider i =j and 1 #j. If 1 =, from (24]) we obtain that

01 (Lif)(x) =
aff(x) 2 ki 2 ki ki
5~ 0:f(x) —x107f(x) + X—iaif(x) - Qalf(x) - ﬁ(alf(x) + 0if(0ix)) (2.22)
ki
+ S (f(x) — (o).
X3
But, if i #j, we get
. 0% F(x) X5, ki 5
L) = 2+ TTORf(x) = 0 0:f) — Acflo) —xioRi(). (229)

)

Thus, taking the sum with respect to i and j in (222) and (2:23)) we express

(V£(x), VL f(x)) =
d aff(x)alf(X) 2 2 ki 5 . )
; {f — (0:1)7(x) — x1 07 F(x)9:f(x) + X—iai f(x)0if(x) — g(aif) (x)
d d 3 )
_ %(aif(X) + 0:f(03x))0:f(x) + %(f(x) — f(o‘ix))aif(x)} n Z Z {w (2.24)
i b =T

+ ﬁajzif(x)aif(x) — k—jz(aif(x) — 0if(03%x))0:f(x) — xjajzif(x)aif(x) .
Xj ZXJ-

Finally as third step, we turn now to compute explicitly the terms of the expression

d i . .
5y zklz (F(x) = flox)) (LLF(x) — L f(owx) )

Then, if i =j, by using (Z4) with o;x instead of x, we can write

. 02f(oy ki ki
L f(oix) = —— (ZG X _ —0if(oix) — 5 (floix) — f(x)) +xi0:f(oix),
Xi 2x

i
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(remind that oix = (x1,...,—Xi,...,xq) and oi(oix) = x), therefore,
Lif(x) — LLf(oix) =
92f(x) — 02f(oix k; ki
0000 ZRO) 4 X 94500 + 01(009) — 25 (1) — o) (225)
i i

—xi(0:f(x) + 0if(oix)).
But, if i #j, we get

L f(x) — L.f(oix) =
(07f(x) — 07 f(0ix)) K
+ —

2 X]'

—xj(ajf(x) - ajf(mx)).

(a]‘f(x) — ajf(O'iX)) + 2Xj

So, from (Z25]) and (228) we can conclude that

5y kig (F(x) — flow)) (LLF(x) — L f(oix)) =

d
> 4K (02(x) — 02£(00)) (F(x) — Florx)) + %(aif(x) +0if (o)) (F(x) — f(orx))

2 .
~ X (50 — flou))? — T (0t(x) + 0ct(01x)) (Flx) — f(mx))}+
2x5 2%
4 4 Ki 5 kik;
2 2§ 7z O = 3f (o) (F(x) — Floix)) + 7= (35 (x) = 3F(03x)) (F(x) — f(0x))
=1 =151 LN XX
+ 4]::;2% (flojx) — f(x) + f(o1x) — f(oy01x)) (f(x) — f(0o1x))
_ ‘;x"; (35F(x) — 35 F(o1x)) (F(x) — f(oix))}.

K5 (#oy%) — £(x) + (o) — Hoyorx))  (2:26)

(2.27)

Then, at this point in our argument, replacing the identities (2.21)), (Z24) and (2.27) in (ZI0)

and simplifying the terms that are equal, we can write

M2 (f)(x) = E1(x) + E2(x),
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where we denote by

(0:F)2(x) + %(aif(x) 4 0if(01x))2

i=1
%(a F(x) + 3+ F(o)) (Fx) — F(oex)) + [f; ; 2%] (F(x) — F(o1x))2
41;%(((3 F2(x) — (3P (0x)) + ‘;—i;(aif)z(x) 4 %(aif(x) 4+ 0:f(01x))9f ()
—%(f( ) — f(or))auf( )}
and
d d aZf 2 . )
E2x) = %{Z y ! ”2) L L (@3(0x) — B5f(o0x))? — 25 (037 () — (8:1)2 (03]
i=1j=1,j#i i j
kjki 2 2 K;
= R [(f(x) — f(0x))? = (f(o5x) — f(0105%))?] + E(aif(x) —0if(0j%))0:if(x)
kik;
— [(f(o5x) — f(x) + f(ovx) — f(o500x)) (f(x) — f(o1x))] 5.

Therefore, we only need to express Eq(x) and E,(x) more easily. First, we consider Eq(x) and
associating the terms, we see that

ki
42

%(aif(x) +0:f(07x))%.

' (2.28)

M (002 (x) — (0:F)2(01x) =

KL 31 (0) + 84 F(01%)) 04 F(x) —
43

(3if(x) + d:f(oix))? + 2

Now, taking the identity (2.28) and completing squares in Eq(x) we obtain that

L (04F(x) + 04f(01x))? — S5 (04F(x) + 04F(0x)) (x) — Flovx)) =

7 ] = (2.29)

2
ki | (3if(x) + 0if(07x))? _ Z(alf(x) + 0if(oix)) (f(x) — f(oix)) " (f(x) — f(o1x))?
2 x? Xi x? X

2 Xi x2

1

2
ks l(aif(xwaif(mx)) B (f(x)—f(mx)ﬂ _ (100 — o).

This way, from (2.29) we can write

d (5202 ) . (o — f(o:
Eylx) = l{ 5 @0 ey (alf(x) + _alf(cnx)) . (f(x) X;(mx)) i

s+ ] (0 = flo? + S 0un0 )—%(f(x)—f(mxnaif(x)},
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since, (3ki/4x?) — (ki/2x1) = ki/4x}.
Then, associating the terms in the above expression, we have

2
k—%(aif)z(x) - :—%(f(x) (o)) F(x) + 4%(f(x) o)) =k [af:") - (”") ;xfg(m)ﬂ

and therefore, we can conclude that

d (3212 . _ (o — f(o;
£ () _l{ 3 I (0 5 (2o _ (100 lown)) 2

x
i=1 t

Aifl(x) (f(x) —f(cfix))]z Lk

Xi 2x? 2x?

+ ky [ (f(x)—f(aix))z}.

Now, we consider E;(x). Once more, we observe that
k; k; ki

— 4—’2[(aif)2(x) — (3i)%(ojx)] + z—lz(aif(x) —09;f(05%))d:f(x) = 4—]2[aif(x) —0if(o5x)]%. (2.31)
X X; X

Moreover, associating the terms

4]:22122 (f(O'jX) —f(x) 4+ f(oix) — f(o'j 0:x))(f(x) — f(oix)) =

§Xq

8]:2.2]:.2 [2((x) — f(01x))* = 2(f(0y%) — f(o50:x)) (F(x) — f(0:x))]
j M
then
kjki 5 5
i [(f(X) — f(oix))” — (f(oyx) — f(oy05%)) } +
TR
8]:2111 ;2 [2(f(x) — f(o3x))* — 2(f(03%) — f(oj0:%)) (f(x) — f(ox))] =
iXq
8]22]:3 [(£(x) = flovx)) = (F(03x) — flor0))1* . (2:32)

Therefore, replacing [231)) and [232]) in E,(x), we express

& & 030 K
Ea(x) _Z{ ;j ]Z#. )f + W[a]-f(x) —9f(ox) 12+
mET (2.33)

k; k;k;
5 [04f() = Bet(ap0l? + £ 3 [(Fx) — Flowx)) — (Floyx) — F(oioyx))1
X; XX
and finally, the sum of (230 and (233]) allows us to obtain the result of the Proposition. O

In consecuense, we are able to prove that the Dunkl-Ornstein-Uhlenbeck differential opera-
tor, Ly, defined as in (I2]) and associated with the Zg group, satisfies a CD(p, co)-inequality, if
0<p<l.
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Theorem 2.4. Let Ly be the Dunkl-Ornstein-Uhlenbeck differential operator defined as in (I2).
Then, if 0 < p <1, the CD(p, 00)-inequality is satisfied.

Proof. From Lemma [Z1] and the Proposition 2.3] we have that I'>(f)(x) > pI'(f)(x) is true, if and
only if,

d 2
(021)2(x) (0:F)2(x) | ke [(0cF0) + dif(onx)) _ (F(x) — (01x))
Z{7+(1_9)T+I[ B ]

Xi X

2
d d aZf 2 . .
+ Z | > | {(’47)(") + %(ajf(x) —3jf(0ix))? + %(aif(x) —0if(0jx))?

kik;
+ — 52 [(f(x) — f(o1x)) — (f(oyx) — f(or05%))])> ¢ > 0.
T6x7%;
Then, we only need to choose 0 < p < 1 to obtain the result. O

Now, again we consider the family of measures M¥(x, dy) defined in (LH). If the measures my
are replaced by M¥(x, dy), then the logarithmic Sobolev inequalities LS(A, C) can be rewritten as

OK(f? log f2) — OK(f?) log O (f2) < A(t)O¥(f2) + c(t)OK(T¥)

and if A =0,
OX(f%log f2) — OX (%) log OK(f2) < c(t)OX(T¥), (2.34)

which are known as local Log-Sobolev inequalities and local tight-Log-Sobolev inequalities respec-
tively, (see [2]). Therefore, from the general criterion of D. Bakry and M. Emery cf. [1] we have
that the curvature inequality C(p,00) is equivalent to the local tight-Log-Sobolev inequality with
—2pt
c(t) = 1=¢
P

we obtain that inequality (Z34) is true and therefore,

, (for details, we refer the reader to [2, Proposition 2.6]). Thus, from Corolario [2.4]

J O (2 log 2) (x) myc(dx) — J O (2)(x) log 0% (2) (x) myc (dx)
R4 R4

<c(t) JRd O(Tf) (x)mc (dx),

where I is defined as in the Lemma 2.l Then, by using the propertie
| Oftbomuan) = fixmfa),
R4 R4

we can conclude that
Ent(f?) < CE(f), Vfe A.
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In a general context, L. Gross [8] [7] proved that Logarithmic Sobolev inequality is equivalent
to the fact that for any t > 0 and p € (1, 00),

Ml < €™,

where (Ht)¢ is a diffusion semigroup or a symmetric Markov semigroup and the functions q(t) and
m(t) are defined by

q(t)—1

- =exp(4t/C) and m(t) = % (l — L) ,

P qlt)

(see [8, Theorems 1 and 2]).

Particularly, tight-Logarithmic-Sobolev inequality is equivalent to the hypercontractivity prop-
erty. In consecuense, we can conclude that the Dunkl-Ornstein-Uhlenbeck semigroup, {Olf}tzo, is
hypercontractive, Vt > 0 and 1 < p < co. This means,

10l g (o), mic < [fllp,miy  ¥F € LP (mue),

where, exp(4t/C) = (q(t) —1)/(p — 1) for some positive constant C.
By using subordination formula we obtain the same result for the Dunkl-Poisson semigroup

{P}hi>0.

2.2 Applications

As a consequence of the hypercontractivity propertie of {Of}t>0 semigroup, we obtain the LP (my)-
continuity of JK operators for every 1 < p < oo and n = 0,1,2,... The reasoning is similar as in
the case of classical Ornstein-Uhlenbeck semigroup and we refer the reader to [I7, Lemma 1.1],
where the identity OF(JXf) = e ™K f, if f € A, is a key condition in the argument. Moreover, for
1 <p <ooandn €N, there exist a constant C, , > 0, such that,

IOF(T = =T )fllp,mi < Cpne ™ [Ifllp,my, (2.35)

and since the development is similar to the classical Ornstein-Uhlenbeck semigroup, we omit the
details and refer to [I7, Lemma 1.2]. Then we extend the celebrated P.A Meyer’s multiplier the-
orem to Dunkl-Ornstein-Uhlenbeck semigroup and the Z$ group. A first version of this theorem,
associated with Hermite expansions, has be obtained in [I7, Theorem 1.1] (see also, [I8]). After-
wards, similar versions to Laguerre and Jacobi setting have been obtained in [6, Theorem 3.4] and
[10, Theorem 4.1], respectively.

Theorem 2.5 (Meyer’s multiplier theorem). Let {OF}>o be the Dunkl-Onstein-Uhlenbeck semi-
group. Assume that h is a function, which is analytic in a neighborhood of the origin. Let {\(n)}nen
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be a sequence of real numbers, such that Pp(n) = h(n=P), ¥n > ny and some B € (0,1]. Then, the

operator
Tof=) $Mmsf, f=) Jkf,
n>0 n>0
defined initially in L?(my), has a unique continuous linear extension to each of the spaces LP (my),
for 1 <p < oo.

Next, we consider the fractional integrals, the fractional derivatives and the Bessel potentials
associated to the differential operator Ly and the Z$ group. Since, Ly is symmetric and has a self-
adjoint extension, these can be defined by standarts ways, by example by spectral representation
of Bochner subordination. However, the use of these fractional operators together with Meyer’s
multipliers theorem allows us to obtain a characterization of Dunkl-potential spaces, similar to the
classic case (see [13]).

Then, Dunkl-fractional integral of order s > 0, associated to Dunkl-Ornstein-Uhlenbeck dif-
ferential operator and the Z‘zjl group, is defined by

1§ = (—Li)~*/T,

where TTp denotes the orthogonal projection onto the orthogonal complement of the subspace
spanned by the constant functions. Immediately, from (3] we have

(hS) =vI"¥2hy, v >0, feA,

and an integral representation of I} f can be obtained

‘I o0
Bf=—| t7"PI—TK)fdt 2.
b=y | e (2.36)

which makes sense, for all f € LP(my), by means of ([2.35) and subordination formula, because

1T A

me.S'Ap”ﬂ

p,mie fors>0,and 1 <p < oo,

(we refer the reader to [6 9] and [10]).
Also, we introduce the fractional derivative in the Z$-Dunkl setting which is given formally by

Df = (—Li)*2,
For the generalized Hermite polynomials we have
Di(h¥) = v[*/2hE, ¥s >0

and therefore, by using the density of polynomials in LP (my), the derivative D} can be extended
to LP(my). Particularly, if 0 < s < 1, we can write

o0

] o0
D{f = C—J ts T (PFf — f)dt, where, C, :J u s e ™™ —1)du. (2.37)
s JO 0
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The identity (Z37) may be regarded as the definiton of D, with 0 < s < 1, for all f € CZ(RY),
or for all f for which the corresponding integral is absolutely convergent. Moreover, if f is a

polynomial, we get
Di (I3 f) = [R(Dgf) = Tof.

Now, the Dunkl-Bessel potential operator, associated to the Dunkl-Ornstein-Uhlenbeck dif-
ferential operator and the Zg group, is defined as
oo
(I-L) =) (1+n) */?J5f, feA
n=0
and we defined the Dunkl-potential spaces Li’s(mk), associated with generalized Hermite expan-
sions, as the completion of the space of all polynomials with respect to the norm
Iflpys = 1=t
PyMi
By means of Meyer’s multiplier theorem, we can observe that the Dunkl-Bessel potential op-
erator extends to a continuous linear operator on LP(my), (for a similar argument see e.g Lemma
6.1 in [6]). Also, the potential spaces have the following properties:

i) If 1 <p < q, then L}"*(my) C LY>*(my), for each s > 0.

if) If 0 <s <, then LY°"(my) C LY (my), for each T < p < oo.

Moreover, the embeddings in i) and ii) are continuous. Again, we omit the proofs of these two
facts, but we refer the reader to the Proposition 2.2 in [9] and the Proposition 6.3 in [6].

Finally, the following theorem allows us to extend the Dunkl-fractional derivative, D}, to the
potential spaces Lﬁ’s (my), for 1 < p < 0o, s > 0 and associated to generalized Hermite expansions,
where we consider the Zg group. Thus, the union of these spaces;

Ly (my) = U LP>% (my)
p>1
make up a natural domain of Dj. Similar versions of this theorem has been obtained in [9]
Theorem 2.2], where we consider classical Hermite expansions, in [6, Theorem 6.4] related to
Laguerrre expansions and afterwards, in [I0, Theorem 5.1] in the Jacobi context.

Theorem 2.6. Let s >0 and 1 <p < 0.

i) If {Pnln is a sequence of polynomials such that limp_,eo Pn = in L (my), then lim, D§ Py
exists in LY° (my) and does not depend on the choice of a sequence {Pn}n.
If £ € LD (muy) N LT (muc), then the limit does not depend on the choice of p or v. Thus,
D f = limp_00 D{Pr in LPP (my), limp o0 Pn = in LY (my),
fely(my), is well defined.
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i) fe L (my) if and only if Dif € LP(my). Moreover,

Bpslfllp,s < Dfllp,mi < Ap,slifilp,s-

References

[1] D. Bakry, M. Emery, Hypercontractivité de semi-groupes de diffusion, C.R Acad. Sci. Paris Sér,
1299, (15), 775-778, (1984).

[2] D. Bakry, On Sobolev and Logarithmic Sobolev inequalities for Markov semigroups, in: New
Trends in stochastic analysis (Charingworth), 43-75, (1994). River Edge N.J 1997. Taniguchi-
Symposium World. Sci. Publishing.

[3] D. Bakry, Functional inequalities for Markov semigroups, Probability measures on groups:
Recent directions and trends, Tata Institute of Fundamental Research, Mumbai, 91-147, (2006).

[4] T.S Chihara, An introduction to orthogonal polynomials, Gordon and Breach, New York, (1978).

[5] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer.
Math. Soc, 311, 167-183, (1989).

[6] P. Graczky, J. Loeb, 1. Lépez, A. Nowak, W. Urbina, Higher order Riesz transforms, fractional
derivatives and Sobolev spaces for Laguerre expansions, J. Math. Pures et Appl, 84, 375-405,
(2005).

[7] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, in: Dirich-
let forms (Varenna, 1992) Springer, Verling, 54-88, (1993).

[8] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97, 1061-1083, (1976).

[9] 1. Lépez, W. Urbina, Fractional differentiation for the Gaussian measure and applications, Bull.
Sci. Math, 83, Vol 128, Issue 7, 587-603, (2004).

[10] 1. Lépez, Operators associated with the Jacobi semigroup, J. Approx. Theory, 161, 385-410,
(2009).

[11] M. Rosler, Generalize Hermite polynomials and the heat equation for Dunkl operators, Com-
mun. Math. Phys. 192, 519-542, (1998).

[12] M. Rosler, M. Voit Markov processes related with Dunkl operators, Adv. in Appl. Math, 21,
575-643, (1998).

[13] M. Résler Dunkl operators. Theory and applications, Orthogonal polynomials and special
functions, (Leuven 2002), 93-135. Lecture Notes in Math. 1817, Springer-Berlin, (2003).



SIZJ(ZBOI?) On the hypercontractive property of the Dunkl-Ornstein-Uhlenbeck... 31

[14] M. Résler, M. Voit, Dunkl theory, convolution algebras and related Markov processes, in:
Harmonic and stochastic analysis of Dunkl processes, eds. P. Graczyk, M. Rosler, M. Yor,
Travaux en cours 71, 1-112, Hermann, Paris, (2008).

[15] E. Stein, The Characterization of Functions Arising as Potentials I, Bull. Amer. Math. Soc.
97, 102-104, (1961). II (ibid) 68, 577-582, (1962).

[16] E. Stein, Topics in Harmonic Analysis related to the Littlewood-Paley Theory, Princenton
Univ. Press. Princenton (1971).

[17] H. Sugita, Sobolev spaces of Wiener functionals and Malliavin’s calculus, J. Math. Kyoto Univ,
25-1, 31-48, (1985).

[18] S. Watanabe, M. Gopalan Nair, B. Rajeev Lectures on Stochastic differential equations
and Malliavin Calculus, Tata Institute of Fundamental Research, Vol. 73, Springer Verlag,
Berlin/Heidelberg/New York/Tokyo, (1984).



	Preliminaries
	The results
	Hypercontractivity of Dunkl-Ornstein-Uhlenbeck semigroup
	Applications


