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On Quasi orthogonal Bernstein Jordan
algebras.*

A. Fuenzalida, A. Labra and C. Mallol

Abstract.

Bernstein algebras were introduced by P.Holgate in [1]
to deal with the problem of populations which are in equi-
librium after the second generation. In [3] we work with
‘Weak Bernstein Jordan algebras, i.e. a class of commuta-
tive algebras with idempotent element and defined by rela-
tions. In [3, section 4] we prove that if A = Ke® U @ V'
is the Pierce decomposition of A relative to the idempotent
e then the situations U3 = {0} and [ﬂ(UV {0} are

depend of the diffe Pierce d ions of A,
then they are invariants of A.

We say that A is orthogonal if U® = {0} and quasi-
orthogonal if U>(UV) = {0}. The orthogonality case was
treated in [2].

In this paper we prove that every Bernstein-Jordan alge-
bra of dimension less than 11 is quasi-orthogonal. Moreover
we prove that there exists only one non quasi-orthogonal
Bernstein-Jordan algebra of dimension 11.

1 Preliminaries

In what follows K denota an infinite field of characteristic different from 2 and A
a finite d i ive, not ily associative algebra over K.

Ifw : A— K is a non zero algebra homomorphism, then the ordered pair (A, w)
is called a baric algebra and w the weight function of A. A Bernstein algebra is a
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baric algebra (A,w) such that (z%)? = w(z)?2? for every z € A.

A is a Jordan algebra if the identity z%(yz) = (2%y)z holds in A.

1t is known (see [4]) that if (A, w) is a baric algebra then A is a Bernstein and a
Jordan algebra if and only if the identity z°> = w(z)z? holds in A. Moreover every.
Bernstein-Jordan algebra is a Weak Bernstein Jordan algebra and in [3] we prove
that if A= Ke® U @V, is the Pierce d ition of a Weak B in Jordan
algebra A relative to the idempotent e, then U?> C V, UV C U and V? C Ke. In
the case V2 # {0}, the pts of ortk lity and quasi-orth lity are the
same and in the case V2 = {0}, Ais a Bernstem Jordan algebra. Moreover since
U? C V and V? = {0} the followi | are satisfied (see [3], Corollary 3.3
and Proposition 3.5) For every z € UGB \4

z*=0 @)

For every u,u’ € U,v €V and v/ € U?

(uv')v =0 @
u(w'v) + v'(w) = 0 (3)
v(uv’) + v'(uv) = 0 (4)

v'(u’) =0 6)

v(uww) =0 (6)

(w)2=0 @

(w)*=0 ©®

(uwv)(uwv') =0 9)

By linearizing relation(1) we have for every z,y,z € U ® V.

(zy)z + (yz)z + (zx)y =0 (10)

2 Quasi-orthogonality
The following result will be used in Theorem 2.2

Proposition 2.1 Let A be a non quasi-orthogonal Bernstein-Jordan algebra.
Then there exist u, u; € U, v € V such that u*(u1v) # 0. So, u?uy # 0 and
{u, w1} is a linearly independent subset of U. Moreover we can choose uj
such that u}(uv) # 0.

Proof: Since A is non quasi-orthogonal then there exist uy, uz, u3 € U, v € V such
that (upus)(u1v) # 0. Then if uf(u1v) = 0 = u}(u1v) we have (up + u3)?(u1v) # 0.
Thus in any case there exist u, u; € U, v € V such that u?(u1v) # 0.

Relation (4) implies v(u?u;) # 0 and u?u; 5 0. So {u,u,} is a linearly indepen-
dent subset of U.
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Moreover we can choose an element u; such that u3(uv) # 0. In fact if u}(uv) =
0 let us consider the element u’ = uy +u. Then u' # 0, because {u,u,} is a linearly
independent subset of U. Moreover u(uv) # 0 and by using relations (4), (3) and
(10) we have u?(uv) = —u?(vu1) # 0. "

EXAMPLE: Let A = Ke® U @V, where U =< ug,..,u; > and V =<
Vo, ...,v4 ) be a commutative real algebra with multiplication table given by e = e,
eu; = zll-u W= V2, UoUy = Vi, UgUs = Vg, Ul = uz, UV = 11‘4; UoV3 = uy,
ugvy = us, uf = vg, wup = —vy, I = il i = — U7, U1vy = U, U1Vs = Lug,
Wy = —dus, vy = Ug, Uy = — s, Ugly = Us, Us) = —Us, Uz = —Ug, all
other products being zero. Then A is a baric algebra with weight homomorphism
w: A — K defined by w(e) = 1, w(w;) = 0, w(v;) =0,i=0,..,7 and j =0,...,4
Moreover the identity z° = w(z)z? holds in A. Therefore A is a Bernstein-Jordan
algebra. Finally u?(u1v0) = vous = us # 0. Thus A is non quasi-orthogonal.

Theorem 2.2 Every Bernstein Jordan algebra of dimension less than 11 is
quasi-orthogonal.

Proof: By proposition 2.1, if A is non quasi-orthogonal, there exist elements
u, uy € U, v € V such that u # uy, u?us # 0, u?(u1v) # 0, u? # 0 and u}(uv) # 0.

Moreover {u.u1,uv, uyv, u?u;,u?(u1v)} is a linearly independent subset of U. In
fact if (*) o+ Bug + yuv + durv + nutu; + 6u?(uyv) = 0, then multiplying by u
and by using relations (10), (3) and (1) we have

au? + Buuy + §(urv)u = 0 (11)

Multiplying (11) by u and by using V2 = {0} and relations (1) and (10) we

have ;
Buru? + 8(urv)u? = 0 (12)

Now multiplying (*) by v and after that by u? and using relations (4), (10) and
(1) we have Bu? (ugv)+nu?((u1u?)v) = 0. Relations (4) and (5) imply 7u?((wu?)v) =
0. Therefore fu*(u1v) = 0 and 3 = 0. By using relation (12) we obtain 6 = 0, and
relation (11) implies & = 0. Then we have (**) yuv + nu’u; + 6u*(ujv) = 0.

Multiplying (**) by v and by using V? = {0} and relations (10) and (4) we
obtain 7v(u?u;) = 0 and 7 = 0. Finally, multiplying (**) by u? and by using 7 = 0,
relations (4) and (1) imply y(uv)u? = 0 and = 0. Thus dimg (U) > 6.

On the other hand {v,u?,u?, u(u1v)} is a linearly independent subset of V. In
fact if aw + Bu? + vu? + bu(uv) = 0 then multiplying this relation by uju? and
using relation (5), (4) and (1) we obtain av(uyu?) + 8(u(u1v))(uru?) = 0.

Relation (10) together with (3), (9) and (1) imply (u(u1v)(u;u?) = 0. Then
av(uu?) =0 and a = 0.

Multiplying Bu® + yu? + Su(u1v) = 0 by uyv and by using relations (1), (10)
and (8) we have Bu*(u1v) = 0 and 8 =0.

Now multiplying vu? + §u(u1v) = 0 by u, then relations (1), (3) and (10) imply
5u?(uv) = 0 then § = 0. Finally yu? = 0, then v = 0. Thus dimg (V) > 4. d

Therefore if A is non quasi-orthogonal then dimg(A) > 11. L ]
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Theorem 2.3 There exists only one non quasi-orthogonal Bernstein Jordan
algebra of dimension 11

Proof: Let A=Ke®U®V, U =< ug,...,us >, V=< vg,...,u3 > be an algebra
with the following multiplication table: €? = e, eu; = Ju;, i = 0,..,5, u§ = vy,
gty = —3v1 — Jvs, Uous = va, gLy = Uy, UgVy = Us, UgUs = —Sus, U = vy, Uy =
U3, U1ty = Us, UNV) = Ug, U1V3 = Sus, Up¥p = Us, UgVy = U, UsVo = —Us, all other
products being zero. Moreover A is a baric algebra with weight homomorphism
w: A — K defined by w(e) = 1, w(y;) = 0, w(v;) =0,4=0,...,5 and j = 0,...,3
and for every = € A, z° = w(z)z?. Then A is a Bernstein-Jordan algebra. Finally,
since u3(uovo) = v2(uovo) = vaup = us # 0, A is non quasi-orthogonal.

Next we give the way of built this algebra.

If dimg(U) = 6 and dimg (V) = 4, then the proof of Theorem 2.2 implies
{v,u?,u}, u(uv)} and {u,u;,uv,u1v,u?u;,u?(u1v)} are basis of V and U respec-
tively. Let us consider the elements uu; € V and uu? € U. Then

uuy = aw + Bu? + yu? + Su(uiv) (13)

wu? = eu+ Cuy + uv + Quyv + Aulu + pu?(urv) (14)

First we shall prove that A # 0. In fact if A = 0, then multiplying (14) by

u? and by using relations (1), (4) and (6) we have 0 = Cu?u; + 6u?(uyv). Since

{u?uy,u*(uyv)} is a linearly independent subset of U we have { = 0 and 8 = 0.
Therefore

uu} = eu + nuv + pu® (u) (15)

Multiplying (15) by u; and by using relations (3) and (9) we obtain
0 = euu; + n(uv)uy (16)

Now multiplying (16) by u, using relations (10) and (4) and that {u?u;,u?(u1v)}
is a linearly independent subset of U we obtain € = 7 = 0 and uu? = pu?(w1v)-
Multiplying this relation by v and by using relations (4) and (6) we obtain (uuf)v =
0 i.e. u}(uv) = 0, a contadiction. Therefore A # 0.

Next we shall prove that we can choose A = 1.

In fact, by setting uy = Au we have uy # 0, {uy, uy, usv, u1v, wduy, uf(uiv)} and
{v,u%,u},us(u1v)} are basis of U and V respectively. Moreover relations (13) and
(14) become

Uy = Aov ﬁju} + Ayud + u()) (urv) 17)
wyud = euy + Aur + nurv + Auv + ujuy + %uﬁ(u,v) (18)

Now we shall prove that e =n=0=p=(=a=0.

Multiplying (17) by uy, replacing z = uy, y = z =  in relation (10) together
with relation (3) imply —Juju? = advu; + %u}u; — 8(u1(uav))u;. Now multi-
plying by u} and by using relations (4), (1) and (5) we have 0 = aA(vu;)uy ~
8(ur (upv)uy)u.
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Since UV C U and U2 C V, relations (10), (4) and (1) imply (w1 (upv)ur)ut =
-1 )i = Ju()(ww)uf = —F(ud)u} = 0. Then a(vur)u} = Oie.
ov(u1u?) = 0 and a = 0. Thus

uuy = gu} +yAuf + uy(uyv) (19)
Multiplying (19) by u and by using UV C U and relation (10) we have
1 1
- '2"‘?‘"‘ =yl — Eﬁui(ulu) (20)

Replacing (18) in relation (20) and by using {uy,u;, uyv, w0, w3t ud(urv)} a
linearly independent subset of U we have 0 = ¢ = ( = 5 < 6, —3 = A, and
= %6‘ Then g = —A6 and

1
wpu = guﬁ - Euf + buy(uyv) (21)
uyu? = wdu; — 63 (uyv) (22)
Multiplying relation (22) by v and by using relations (4) and (6) we obtain
(uaud)v = (wu)v and
i (uav) = uf(urv) (23)
Now multiplying (19) by u; and by using relations (1), (10) and (3) we have
—Luyu? = 8u())?u1+16ud(urv). Therefore relations (22) and (23) imply —Ju3u; =
gu}u‘. Then % = —% and
12 1,
upu = —oux — cuy + Suy(uyv) (24)
Finally by setting u = u, we have

1 1
uuy = —zu’ — Euf + bu(uv) (25)

2

Next we prove that always it is possible to find elements u,u; € U and v € V
satisfying Proposition 2.1 and (u + u1)? = 0. If (u + u1)? # 0 let us consider the
elements v’ = u — duv and u} = u; — 26ujv. Then (¢’ + u{)? = 0 if and only if
(u+uy)? = 6u(uyv), but this is true because uuy = 3((u +u,)? — u? — u?) and we
use relation (25). Moreover the elements u/, u, and v satisfy Proposition 2.1.

Thus 1 1

uuy = —Euz - Euf (26)

Now if A = Ke ® U @ V, identifying uy = u, u = uv, ug = uyv, uq = vy,
us = u?(u1v), vo = v, v; = u?, v = u}, and vs = u(u1v) we have the algebra given
at the beginning of the proof of this Theorem. ™

In a forthcoming paper the same authors study orthogonality in Weak Bernstein
Jordan algebras which are not baric algebras.
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