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ABSTRACT
In this paper we study the classification and the existence of homographic
solutions in the n-body problem.

1 Introduction

Celestial Mechanics is the field of scientific knowledge that studies the consequences
of Newton’s laws of gravitation. The main problem in the Celestial Mechanics is to
describe the movement of n-particles where the only forces acting on the particles are
the Newtonian attractions of the bodies on each other when we know the positions
and velocities at a given time. This problem is called n-body problem (see the basic
references on Celestial Mechanics [2], [6], [9] and [16]). The complexity of motion aris-
ing when more than two bodies move under their gravitational attractions increases
quickly with the number of objects concerned. In the 2-body problem, given the ini-
tial position and velocity of one body relative to the other, we can predict the position
and velocity in the space at any time and it is known that the solutions are conics
with one of its focus on the center of mass. Thus, the 2-body problem is completely
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solved in the sense that we can describe explicitly all its solutions. When more than
two bodies are involved, we have many partial results, but it is still impossible to find
all its solutions and we are far from understanding the dynamics of this problem. For
example, in the 3-body problem we know five explicit solutions that were discovered
by Euler [4] in 1767 where the bodies are all the time at a collinear configuration and
two equilateral configurations where the bodies are all the time are at an equilateral
triangular configuration. They were discovered by Lagrange [5] in 1772.

The planets of the solar system constitute a classic example of the n-body prob-
lem in the first approximation. As the positions of the planets change during their
orbital motion around the Sun, the gravitational forces acting on a given member of
the system changes also. In the case of the Solar system, however, the Sun is the
dominant centre of force. Hence the resulting planetary motions approximate closely
the motions which would be observed if the Sun and each planet made up a pure
two body-problem. Therefore we can consider the 2-body problem as a first approxi-
mation to understand the motion of the planet around the Sun or the motion of the
Moon around the Earth.

Now, we shall outline the mathematical formulation of the n-body problem. Let n

bodies with point masses my,...,m,, (or we can assume that the masses concerned
are spherically symmetrical in homogeneous layers so that they attract one another
like point masses) and let ry, ..., r, be the vector position of the particles with respect

to the origin O fixed in the space and masses m; respectively. Then, applying New-
ton’s law of gravitation yields that the complete description of the problem involves
the solution of the second order system of n differential equations:

n

. mim; .
m;r; = _ -r;) =V, U (t=1,...,n), 1.1
3 it ) ( ) (1.1)
J=1j#i
where U = U(ry,...,r,) is the Newtonian potential defined by
v= Y G (1.2)

i v =]l

where G is the universal gravitational constant, G = 6.6732x 10~ 1m?/s%kg, however,
the units for length, mass and time may be chosen, without loss of generality, such
that G = 1 (see [7], [16]) and V,,U represents the gradient of U with respect to
r;. This system of equations (1.1) define the Newtonian formulation of the n-body
problem.

The Hamiltonian formulation of this problem is obtained introducing the linear
momentum of the ith particle p; = m;¥;, such that the system (1.1) can be rewritten
as a first order system of 2n differential equations

. 1 . .
b= e hi=VU (=), (1.3

with the function H defined by

Z el U(ry,....t0), (1.4)

2m;
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the system (1.3) takes the following formulation:
i, =Hp, DPi=—Hy, (i=1,...,n) (1.5)

where r = (ry,...,r,) € R*, p = (p1,...,p,) € R*" and H,,, Hp, denote the
partial derivative of H with respect to the variables r; and p;, respectively (a good
reference for details on this formulation is [7]). We observe that the standard theory
of differential equations yields the following result:

Theorem Given (ro,to) € (IR*" \ A) x IR*, there exists a unique solution r(t) of
(1.5) defined in a mazimum interval t; < t < tf, containing t = to, with initial
conditions r(ty) = ro, t(tg) = o. Furthermore, all components of r(t) are analytic
functions of t and of the coordinates of ro and ry.

Here A = Uij,i;éinj with Aij = {I‘ = (I‘l,. e ,I‘n) S R3n / r, = I‘]‘} represents
the set where the potential U in (1.2) is not defined.

From this local Theorem, it is clear that the main question of the n-body problem
in Celestial Mechanics is not the existence of solutions of (1.5) but it is important to
know explicitly some of them and also to understand the qualitative behaviour of the
solutions associated to (1.5). Firstly, the easier solution in an autonomous system
of ordinary differential equations are the equilibrium solutions, but in the n-body
problem it is clear by the equations of motion that (1.1) does not have equilibrium
solutions. In fact, if we assume the existence of an equilibrium solution of (1.1) we have

Ve U=0(=1,...,n)50,1;:Ve,U =0 (i =1,...,n), then, 0 = > 1;-V,,U = ~U,
i=1
because of the Euler’s relation. Therefore, we obtain a contradiction, since U > 0 by
definition (1.2).
An important element to try to understand the n-body problem is the following
definition:

Definition 1.1 An integral of motion or first integral of (1.1) is a differentiable func-
tion F : U ¢ IR* x R* — TR, (U is open), such that it is constant along the
solutions of the equations of motion (1.1) or (1.5).

By (1.1) we have that,
Integrating this expression twice with respect to ¢, we obtain

miry + ...+ myr, = At + B, (1.6)

where A and B are constant vectors depending only on the initial conditions of the
problem, so A and B are integrals of the movement. Let R be the vector of the center
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of mass of my, ma,...m,, that is,

1 & -
Rzﬁgmiri’ where Mzggmi-

Thus from (1.6) we have

A B
R=—t+—
M +M

where we get that the center of mass of the particles moves uniformly on a straight

n
line in space. Notice that A = Zmii‘i.
i=1
The motion of each m; relative to the center of mass is given in the following way.
Let

r; :R+£,“ (1‘7)

therefore the vectors r; denote the vector position of each body, m;, with respect to

the center of mass of the bodies. Since r;, — r,=r;—r and R = 0, the equations

of motion of the bodies in the coordinates r; to stay identical those given by (1.1).

Therefore, from now on we will consider the center of mass of the fixed system in the
n

origin, i.e., E m;r; = 0.
i=1

n
Let L = Z p: be the total linear momentum of the system. As
i=1

then

since each term in this sum appears twice with opposite signs. Therefore the linear
momentum is a first integral of the system.
Let us consider now the total angular momentum of the system, i.e.,

C= Zl‘i X Pi, (18)
i=1

n
where x denotes the canonical vectorial product in IR. Being C = Zrz X pi +
i=1

Z mimjri X (I‘j — I‘z’)

and by the relation r; x (r; —r;) =r; Xr; —r; Xr; each term
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in the second sum repeats twice with opposite signs, then C=o. Therefore, the total
angular momentum is a first integral of (1.1). We have, therefore, that C, L (six func-
tions) and the total energy (1.4) are integrals of motion of the problem of the n-bodies.

In this work we are mainly interested in the classification and the existence of some
particular solutions of the n-body problem called, homographic solutions, but we will
leave open, in general, the question of the existence of such solutions. Actually we
ask a question: Is the question about the existence of homographic solutions still an
open problem ? The answer to this problem is affirmative (except for n = 3), i.e., this
problem continues open. This problem is in Wintner’s book [16](1941) on celestial
mechanics. Afterwards, we will explain why this open question is so difficult.

Definition 1.2 An homographic solution is a solution of the n-body problem char-
acterized by the existence of a scalar function r» = r(t), a matrix Q(¢) € SO(3) and
a vector 7 = 7(t) € R?, such that, r;(t) = r()Qt)r? + 7(t), i = 1,2,...,n, where
r;,7,Q, 7 are defined for all ¢+ where the solution is defined and r? = r;(¢,) (according
to definition in [16]).

It follows that an homographic solution r;(t) ( = 1,...,n) is characterized by
the existence of one rotation Q(¢) and a dilatation r(¢) > 0, such that the translation
vector 7(t) must vanish identically in view of the barycentric condition, i.e., the center
of mass is in the origin of the coordinate system. Therefore, the homographic solutions
are given by

ri(t) =r()QM)rY, i=1,...,n. (1.9)

As r¥ = r;(ty) we have that
M =rty) =1, Q°=Q(t) =1, (1.10)

where I is the identity matrix of order 3 x 3. Considering the change of coordinates
x; = Q71 (t)r;, i = 1,...,n, the relation (1.9) takes us to the equation

x;=rr) i=1,...n, (1.11)

i.e., if r;(t) is a solution on the inertial system, then x;(t) = r(¢)r} is the solution of
the system in rotating coordinates.
There exists two particular types of homographic solutions namely:

e (i) Homothetic solution. It is the homographic solution in (1.9), characterized
by:
r, =rr), e, (Qt)=1I,r=r(t)>0). (1.12)

This means that the configuration is dilated without rotation.

e (it) Solution of relative equilibrium. It is the homographic solution character-
ized by:
r, =), e, (r(t)=1, Q=Q(1)). (1.13)
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This means that the configuration is rotated without dilatation. Notice that for
the equation (1.11) every solution of relative equilibrium in the rotating system
corresponds to a equilibrium solution.

In this paper we will use essentially Wintner’s book [16] to do the characterization
and existence of the homographic solutions, also we will show the role and importance
of this solution. We intend to put in evidence the ideias used by Wintner in the proofs
in a very clear and easy sequence for a reader that is not familiar or accustomed to
this kind of problem.

One of the purpose of this paper is to prove the following Theorem that classifies
the homothetic solutions and the solutions of relative equilibrium:

Theorem A. (a) An homographic solution is homothetic if and only if the angular
momentum C vanishes.

(b) An homographic solution is a solution of relative equilibrium if and only if it is
planar and it rotates with constant angular velocity different from zero.

The proof of this Theorem will be carried out in section 3.

For the question about the existence of homographic solutions we need the follow-
ing definition:

Definition 1.8 The n-position vector (r;,...,r,) of the n bodies m; will be said to
form a central configuration with respect to n fixed positive constants m;, if the force
of gravitation acting on m; at the moment of the given configuration is proportional
to the mass m; and to the position vector r;, i.e.,

V.U(riy...,ry) = omyry, (i=1,...,n), for someo € RR. (1.14)

In section 4 we will prove that if a solution r;(¢) belonging to n given m; of the
n-body problem is homographic, then the m; must form a central configuration at
every t, i.e.,

Theorem B. Let r; (i = 1,...,n) be an homographic solution as in (1.2) of (1.1)

with masses m;, then the initial positions (r),...,r2) form a central configuration.
It is clear by the definition 1.14 that if (ry,...,r,) forms a central configuration

then (Ary,...,Ar,) and (Qrq,...,Qr,) are also central configurations with A € IR
(A > 0) and © an orthogonal transformation in IR®.

Considering (r1(¢),...,r,(t)) an homographic solution of (1.1) as in (1.2) let h
and C be its energy and angular momentum respectively and let ¢(¢) be the angle
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function associated to the rotation Q(¢) € SO(3). Defining,
_U(r?,...,r%);ho C

b= =5 V=5
> millrf|? > millrf|? > mallrf|?
=1 =1 i=1

The next Theorem shows us how to construct homographic solutions.

h o

Theorem C. A solution (ri(t),...,r,(t)) of the n bodies, with given values m; of
the masses, is homographic if and only if there exists two functions r(t), ¢(t) and n
initial position vectors (r9,...,10) such that v;(t) = r()Qt)r? (i=1,...,n) and

rTn

cosg(t) —sing(t) 0 1 ) )
Q)= | sing(t) cosg(t) 0 |, K= +r%) - B, |CY| =12,
0 0 1 2 r

while (r9,...,1%) is any central configuration belonging to (my,...,my,).

It is clear from the above Theorem that (r(¢), ¢(t)) must satisfy the equation of
the Kepler problem in polar coordinates, so its solutions are conics, depending on the
energy h and C°. Therefore, it is necessary to know the central configuration to
construct all the homographic solutions. The natural question here is: how much is
known about the existence of the central configurations in the n-body problem ? The
answer in general is a still open. For n = 3 it is well known that there exists exactly
five central configurations, three collinear and two equilateral central configurations
arising from the Eulerian (1767) [4] and Lagrangean (1772) [5] solutions. Moulton
(1910) [8] showed that there exists exactly n!/2 collinear central configurations in the
n-body problem, one for each ordering of the masses on the line. It is not known how
large is the number of central configurations for n > 4, not even if this number is
finite or not. Today a very important topic of research in Celestial Mecahanics is the
notion of central configurations and many excellent mathematicians dedicate their
efforts to the understanding of the problems arising here, for example: Albouy [1]
(he proved that for four equal masses there exist exactly fifty central configurations),
Saari [12] (he studied the role and properties of n-body central configurations), Xia
[17] (for n > 8 Xia’s estimatives shows that the number of central configurations, in
the case of equal masses increases too fast). By the way, in 1998, Smale [15] during
the lecture given on the occasion of Arnold’s 60th birthday at the Fields Institute,
Toronto, (June 1997) published a list with the mathematical problems for the next
century.

Problem 6: Finiteness of the number of relative equilibria in celestial mechanics.

Is the number of relative equilibria finite, in the n-body problem of celes-
tial mechanics, for any choice of positive real numbers my,...,my as the
masses?
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For 4-bodies the finiteness is unknown.

In Smale [14], he interpreted the relative equilibria or the solution of relative
equilibrium as critical points of a function induced by the potential of the planar n-
body problem. More precisely the relative equilibria correspond to the critical points
of

V(S —A)/SO(2) = R (1.15)

n n
1
where Sj, = {r € (R*)" / g m;r; = 0, B E myl|r;||* =
i=1 i=1

A={resS, /ri=r; some i7#j}.
The rotation group SO(2) acts on Sy — A and V is induced on the quotient from the
potential function
= T
[[ri =]l

1<J

Note that V' : S;, — IR is invariant under the rotation group SO(2) and that the quo-
tient space S;,/SO(2) is homeomorphic to complex projective space of dimension n—2.

Thus the question has the equivalent form:

For any choice of mq,...,m,, does Vin (1.15) have a finite number of
critical points?

Mike Shub (1970) [13] has shown that the set of critical points is compact.

2 Preliminaries

In this section we present some important preliminaries for one better under-
standing of this paper, as for example the deduction of some results of the theory of
Ordinary Differential Equations and Linear Algebra used with frequency along this
work.

Let us denote by A(3,IR) the set of the skew-symmetric matrix of order 3 x 3 with
real coefficient and by SO(3) the set of the orthogonal 3 x 3-matrix with determinant
1.

Let us consider the curve of class C2, = Q(¢) € SO(3) for all t. So, QTQ =1
then (27Q) = 0 and Q71Q = —(Q7'Q)7, this means that Q7'Q € A(3,IR), and
by the isomorphism among A(3,IR) and IR?, associated to © = Q(t), there exists a
vector 8 = S(t) € R® and a matrix ¥ = %(t) € A(3,IR), such that

$1 _ 0 —s3 59
S=1| s9 and ¥ =Q"1Q= 83 0 —s1 |. (2.1)
S3 —S89 S1 0
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Thus’ . . . . .
¥ = (QTQ) =T+ aTa. (2.2)

As 2T = QTQ then ©TQ! = Or and it follows that —NZQT = OT. Substituting this
expression in (2.2) we have ¥ = Q710 - 3070 = Q710 - %2 je,

QO =452 (2.3)

where %2 = (s;5, — ||S||%eir), ||S||? = 5% + s2 + s% and (e;) is the element (i, k) of
the identity matrix, i.e.,

*(35 + 5%) 5182 5153
¥ = 8182 —(s? +s2) 5283 . (2.4)
5183 $983 —(s% +s2)

Reciprocally, given S(t) € R® or ©(t) € A(3,IR) both of class C?, we state that always
there exists Q(t) € SO(3) such that $(t) = Q~1Q and Q(t) is uniquely determined by
S(t) and by an initial condition Q(to) which can be chosen as an arbitrary orthogonal
matrix. In fact, this is equivalent to verify that % = X(t)Q2, so we obtain from the
theory of ordinary differential equations that Q(t) is defined by

T
d
Q(t) = Qtg)edo =0, (25)
therefore Q(t) € SO(3) for all ¢ since Q(tg) € SO(3) and as X(t) is an skew-symmetric,
ftto Y(r)dr is also skew-symmetric and it is known that e is an orthogonal matrix
with determinat 1 since A € A(3,IR). It is verified that £2(¢) is unique, since from the
existence and uniqueness theorem of Ordinary Differential Equations, there exists a

unique (¢) with the same initial condition Q(to).

Let us observe that the property above proved is invariant under SO(3). In fact,
let us consider £(¢) and P in SO(3), where P is constant, then Q(t) = PQ(t)P~! €
SO(3), because the product of orthogonal matrix is orthogonal, then by (2.1) there

exists L(t) = Q(t)~1Q(t) € A(3,IR), satisfying
() = (PQ ) P~Y)(PQ(t)P~Y) = PR(t)P~L.

Reciprocally, given %(t) = PY(t)P~" € A(3,1R), we know that there exists a unique
matrix Q(t) € SO(3), defined by the relation (2.5), such that Q~1(t)Q(t) = %(¢).
Choosing  (t) = PQt)P~! e SO(3), it is verified that Q1 ()Qt) =
(PQ= 1) P~H)PQ(t)P~1 = PX(t)P~1 = X(¢).

Let E € R? and a rotation Q defined in the following way E = (&,1,0)7, Q = (a;),
a;; € R, and let us define the change of coordinates X = Q'E with X = (z,y, 2)T.
In this case, the coordinates (§,7,() represent a fixed coordinate system in R? and
(z,y, z) represent a rotating coordinates system in IR3. Sometimes this change of
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coordinates is too convenient for studying the motion of a particle.

Using the previous notations and supposing that E = E(t) represents a curve in
IR? of class C2, Q = Q(t) a curve in SO(3) of class C? and by definition X = X(t) =
Q~1(t)E(t) is a curve of class C? in IR?, the following identities are verified

YX=SxX, ¥X=SxX, ¥XX=($X)S(SS)X. (2.6)

Computing the derivative of E we obtain, E = QX+0X and E = QX +20X+QX,
thus using (2.2) and (2.3) it is proceeded that

O 'E =X + X, (2.7)
QB =X + 25X 4 (U + 22)X. '

Finally, we have

QO 'E =X4+SxX,
O YEXE) =Xx(X+8SxX), (2.8)
QO 'E =X 428 xX+8xX+(SX)S—(S9)X.

Let us choose now a rotation §2(¢) such that the particle stays all the time ¢ in the
(z,y)-plane of the system of rotating coordinates, that is, z(t) = 0, and therefore
Z = 0. Notice that the curve F = E(t) is in the({,n)-plane, it is always possible
to find a rotation Q(t) convenient such that in each instant in the rotating system
the particles lie in the (z,y)-plane. Thus the condition such that the (z,y)-plane of
the system of rotating coordinates (z,y, z) rotates on (&, n)-plane of the system of
non-rotating coordinates (£,7,¢) and by (2.1) it is equivalent to the condition

0 —s3 O 0
¥=1s 0 0, or S={ 0], (2.9)
0 0 O 10)
and also
cosp —sing 0
Q=| sing cosp 0 |. (2.10)

0 0 1

In general, let us observe that the condition such that £(¢) is a rotation on some fixed
axis (in this case the rotation is said of invariable position) is that X(¢) is constant,
i.e., the component s; of the vector S are constant.

Using definition and by (2.1) we have from the first relation in (2.8) that

_ ) T 0 —83  So T
OE=X+2X=| g9 |+ s3 0 —s1 Y (2.11)
0 —S89 S1 0 0
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) T — 83y
Q'E = U+ 83 : (2.12)
—S2% + S1Y

On the other hand being S x X = (—s3y,s3z,51y — sax) and X+SxX =
(Z — s3y,¥ + s3x, 81y — s22) the second expression in (2.8) takes the form

s1y° — s21y
sox? — s11Y . (2.13)
xy — yi + s3(2% + )

We say that a matrix of 3 X 3, is in the normal form if, under orthogal transformation,
we can make the third column or row null, i.e., A € M3,3(IR) is in the normal form
if P € SO(3) such that PAP~! has the third row or column null. Therefore, all
skew-symmetric matrix 3 x 3 can be put in the normal form, because zero is an
eigenvalue.

Let us observe that the rotation Q(¢) is said to be invariant position if, and only
if, there exists a constant ortogonal matrix P, such that all elements of the third row
and column of the matrix ¥ = PLP~! € A(3,TR) vanish for every ¢, where X is given
by (2.1).

In fact, if Q(t) € SO(3), £(t) = Q7'Q € A(3,IR). By what was exposed pre-
viously the affirmation follows. Reciprocally, let ¥ = PXP~! € A(3,IR) be a ma-
trix with all elements of the third row or column null. Being ¥ skewsymmetric
there exists v € R®, v # 0, such that Xv = 0. As Q(t) is given by, (2.5), i.e.,
Qt)v = Qto)ed "Dy = Q(te) [T+ A+ 42 + .. Jv. Defining A = [ S(t)dt € A(3,R)
it satisfies Av = 0. Considering Q(tp) = I it follows that Q(¢)v = v, and the proof is
complete.

3 Classification of the homographic solutions

Let be (ry,...,r,) an homographic solution of the n-body problem with initial
positions given by (r?,....r%) in the instant ¢t = t;. From now on we will use the

following notation:
r, = (xiay’hzi) S ]R'37 (31)
it follows that
C= Zmi(yizi — YiZi, L — 2i&q, BilYi — Tili)- (3.2)

i=1

n
Let us define the moment of inertia of the n-particles by J = Z mg||r;||?. Then,
i=1
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defining, J* = J(x{,...,r)), U? =U(xY,...,r)), U2 = Uy, (x7,...,1Y), we have that

1t n rtn
0 0
U U

J=J"%* U= — Q U, = 5 (3.3)

Let ¥ be as in (2.1). Computing the derivative in (1.9) we have t; = (#Q + r)r?,
as in the preliminaries we define the skewsymmetric matrix ¥ = Q~!€2, so we have

Qe = (F T+ r2)rd. (3.4)

On the other hand derivating twice the expression (1.9), using (2.1) and (2.3) we
obtain the relation _
Q7Y = [FT + 275 4 (2 + 22)]r). (3.5)

Defining the constant vectors in IR®, a;,a; and ag, by the relation UBL_ = m;a;, along
a homographic solution r; = r;(¢) of the equation m;¥; = U,,, we have

Kt)r) =a; (3.6)

(2

where _
r2[i ]+ 275 4+ (X + 22)] = K = (kpy)- (3.7)
In fact, being Uy = my;a; and m;#; = Uy, it follows from (3.3) that r2Q~'¥; = a;, by

(3.5) we have 72[F] + 2r% + r(2 4 22)]r? = a;, then taking K (t) defined by (3.7), we
obtain the wanted expression.
It is clear that
)T =% »T=—-% and %7 =-3, (3.8)

then, K7 = r2[fI + 27X + 3T + 3T 4+ 1(22)7] = r2[fI — r#E — r¥ + r¥?], and
follows that

S+ KT) = 25T +75?) (3.9)
and
%(K_KT) = r2(rS + 2i). (3.10)

The above formulae allow us an essential simplification in the special case in which
the solution r; = r;(¢) is planar. In this case, let us choose convenient coordinates r
such that the third component of the vector r;(t), be null for all ¢, i.e., Q is given as
in (2.10) and X is given by (2.9) where s3 = ¢ > 0 denotes the angular velocity of the
system in rotating coordinates x = Q~'r defined by ¢ = 0, in the non-planar case.
Substituting (2.1) in (3.7), we obtain

r2(F —rg?)  —r2(ré+2rd) 0
Kt)=| r2(ré+2r¢) r2(F-r¢%) 0 |. (3.11)
0 0 P2

We will discuss now some identities in the planar case that will be useful in the
proof of the results in the next section.
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First, it is easy to verify that ||| = ||7r?|2 + ||[r¢r?||2. In fact, we observe that
taking the dot product of (3.4) to itself, we obtain ||&;||* = ||7r?]|? + 27r(x?, Xr?) +
[rEed||? as (Zrd,r?) = (2f, XT¢0) = —(x¥, 3r?), the term intermediates of this

expression is canceled, thus

[£5]|* = [lFed || + [lrEe*. (3.12)
For t = ty we denoted r{ by (z;9;,0). Applying ¥ to r}, we obtain that
|Z29||2 = |4|?||Ir?]|?, substituting this expression in (3.12) we verify our statement.
Another property is that by (3.2) the components of the vector r; x ¥; in R? are
(0,0, 8||rr?||?). In fact, let us denote r;(t) by (z;(t), y:(t),0), is r; x ¥; = (0,0, x;9; —
yii;), using (1.9) we have (x;,y;,0) = r(z{cosgp—yy sing, i sing+y) cos¢, 0). Develop-
ing this system and calculating &;, §; we find ;g —yi&; = r*¢[(2])*+(y))?] = ol|rr}||?,
then r; x ; = (0,0, ¢[|rry||*) = (0,0,r%¢[[r}||?).

Being ||t;]|% = ||7?]|2 + [|ror?||2 = (72 + r2¢?)||r?||?, we will have that

T = %(vﬂ +72¢%)J°. (3.13)

By definition of C (see (1.8)) and using the previous relations, we get

C = (0,0,m1672|||1> + ... + mndr?|r0]|?) = (0,0, ¢r> ZmiHr?HQ) = (0,0, ¢r2J°),
i=1

(3.14)
then ||C|| = |<z'5|r2JO'. We know that C is a constant of motion, then we have that
¢ = 0 or the sign of ¢ is constant for all ¢, so we can suppose without loss of generality,
gﬁ > 0, therefore

or2J% =|c|, (J°>o0). (3.15)

Now, we are going to analyse the homographic solution. Considering r; = r;(t) a
homothetic solution and also a solution of relative equilibrium for the n-body problem,
it follows that rr) = Qr?, ie., (rI — Q)ry = 0 for all ¢. It follows that r = 1 and
Q = I. Therefore r;(t) = r?, (i = 1,...,n), and so it is an equilibrium solution
which is absurd, because we know that there exists no equilibrium solution for this
problem. Therefore, a homographic solution cannot be simultaneously homothetic
and a solution of relative equilibrium. Also, it is important to observe that if a
solution is homographic in a coordinate system obtained of the inercial one by a
rotation of coordinates around a fixed axis, it continues to be a homographic solution
in the inertial system. The same remarks are true for the homothetic solutions and
the equilibrium relative solutions.

Before proving the following Lemma we introduce the definitions:

Definition 3.1 e A given solution of the n-body problem (1.1) will be called
planar if there exists a plane m which contains all n bodies for every t.

e A given solution of the n-body problem (1.1) will be called flat if there exists
for every t a plane m(¢) which contains all n bodies at this ¢.
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e A given solution of the n-body problem (1.1) will be called rectilinear if there
exists a line [ which contains all n bodies for every ¢.

e A given solution of the n-body problem (1.1) will be called collinear if there
exists for every t a line [(¢) which contains all n bodies at this t.

Remarks. 1) It is clear that every planar solution is flat and every rectilinear solu-
tion s collinear but in both cases the reciprocal is not true.

2) If one solution of (1.1) is rectilinear or homothetic then C = 0.

3) We notice that n > 3 is a necessary condition for the existence a non-flat solution
of the n-body problem.

4) If (ry1,...,r,) 18 a given non-flat homographic solution, then all n initial posi-
tion vectors (r9,...,10) are co-planar, and so one can select three values of i, say

i = «,B,7, such that ro,rg,r are independent. This last statement deserves some
explanation. The idea of the proof is to suppose the contrary, i.e., all combinations of
0 .0 .0

three vectors vy, r;, 1) are dependent linearly, so we conclude that the solution is flat,

which s a contradiction.

5) If a solution of the n-body problem is flat, then we can choose the rotation Q(t)
(analytic function of t, because every solution (ry,...,r,) of the analytic differential
equations is analytic) so that the n bodies is, for every t, in (§,n)-plane of the rotating
coordinate system Q(t) "1 (z,y,2)T = (&,n,0)T, i.e., ((t) =0 for every t.

6) If (r1,...,r,) (in the non-rotating coordinate system (x,y,z)) is collinear then it
is flat, and the solution is planar. We divide the prove of this fact in two cases. First,
if the angular momentum C # 0, we have r; X r; = 0 where ¢,57 = 1,...,n. Hence,
(r; xr;)r; =0, then (r; x #;)-r; =0, and so 0 = C-ry = 0 where k =1,...,n. Thus,
the proof is complete in this case. Second, if C = 0 we need some properties. Let
7(t) be the plane that contains the n bodies for every ¢t. So, we can always choose,
by remark (5), the rotation Q(¢) which rotates around the centre of mass, so that
the particles r;(¢) is in the (£, n)-plane of the rotating coordinates Q(t)~!(z,,y,2)T =
(€,n,0)7T;ie., ¢(t) =0 (i=1,...,n). Defining,

(a) J™* = Zmi@?; JY = mef; J = Zmifﬂh
= i=1 i=1 (3.16)

(b) K= Zmi(&fh‘ - &),
=1

and considering S as in (2.1)(a), we have the following relations
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0 s1JYY — 5o %Y
@ o'l o |= $2J%% — 51 J%Y ;
1€l K+ 53(J™ + %)
2 3.17)
N Y EE N £ & & (
(i) ‘ oo gw | = DL mymi| Y ;
T 1<j<k<n i T

(idi) J™ 4 Jv = J.

Since C = 0, the relation (3.17) (¢), implies that we have the following homogeneous

systems
Jv o —Jey st y_( 0
() (5)-() 529
As s1(t), sa(t), s3(t) and J*(t)J¥Y(t) — J*¥(t)? are analytic functions the system
(3.18) implies that

(a) s1(t) =s2(t) =0, forevery t, or
(b)  J*E(t)JYY(t) — J®(t)?> =0, for every t.

In the case (a), we have that Q(¢) is a rotation around the (-axis. Then, the
rotating coordinate system (£, (,n) coincides with the z-axis of the fixed coordinates
system (z,y,z). So, the solution (ry(t),...,r,(t)) is planar.

In the case (b) by (3.17) (it) {mr — &y = 0 for 1 < ¢ < k < n. It follows,
that the area of the triangle formed by the origin and any two of the n masses
vanishes identically; and so the n masses are collinear for every ¢. Then, the rotating
coordinate system (&,7,() can be chosen so that all n masses are in the £-axis for
every t. Therefore, n;(t) = 0 for every ¢t and ¢ = 1,...,n. Consequently, by (3.16),
JYY = J% = K = 0 and by (3.17) (iii) J** = J. Because, C = 0, (3.17)(i) implies
that soJ = s3J = 0, for every t. As, J # 0 it follows that sa(t) = s3(t) = 0 for every
t; so that the proof is complete.

Now, we can prove the Lemma:

Lemma 3.1 If an homographic solution is not-flat, then it is homothetic.

Proof. Let (ry,...,r,) be a given non-flat homographic solution, then by the
above remark we can select three values i = «, 3,7 such that detB # 0, where
B = (r),rp,r)) is a constant invertible matrix of order 3 x 3.

On the other hand by the definition of the vectors a; the matrix D = (a,,ag, a)
of 3 x 3 is a constant matrix. Using (3.6), we see that K = DB~! is also constant, it
follows therefore from (3.9) and (3.10) that

r2# [ 4+ r3%? = const., (3.19)
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and _
3% + 2r?FY = const. (3.20)

On the other hand, r2#I is a diagonal matrix and, the difference of two diagonal
elements of the 3 x 3 matrix 332, when compared with X2, shows that 7‘33”8,, and

r3(s?, — s7) are independent of ¢, where (u,v) = {(1,2),(2,3),(3,1)} and consequently

r3s3 = const., (A=1,2,3). (3.21)

In fact, by (3.19), 7332 = const. — 2], and therefore for elements out of the diagonal
of this matrix we have r3s#s,, = const. Now for the diagonal elements, take the

difference two by two of these elements, to obtain r?(s? — s7) = const. From (2.1)

we have that ¥ and r depend of ¢ and by (3.21) ¥ = r~2%°, where X is a constant
matrix in A(3,R). By the remarks of the section 2, there exists a constant matrix, Py,
belonging to SO(3) such that Py¥oP; " belongs to A(3,1R), where all the elements
of the third column are null. Thus, from the observation done in section 2, Q(¢) is a
rotation around invariable position, with reference to the system (z,y, z). Choosing
2 to be one rotation around the axis z, therefore, it is given by a matrix as in (2.10).
Taking ¥ as in (2.1), assuming s; = s2 = 0 and s3 = ¢, we will show that ¢ = 0.
For this we will use the fact that r3(i>2 = const., obtained when we consider A = 3
in (3.21). Using (3.14) we obtain that the third component of C is C3 = r?¢c, with
=" m;|z?)? + [y?>. If ¢ = 0 then 2 = ¢ = 0, it follows that all the n-bodies m;,
are on the axis z for every t, this means that the solution r;(¢) is flat, an absurde, it
follows that ¢ # 0. Then, rzé) = % = const., and on the other hand r3g232 = const.,
we see that either qb = 0 or the function r, which is positive, is independent of ¢.
Supposing that r = const., then by the choice of 2 we have that z;(t) = 2! for every
t and for every i = 1,...,n, i.e,

O=miz= Y %(zj—zi), (i=1,...,n). (3.22)

We can take ¢ such that z; — z; > 0 and there exist j € {1,...,n} with z; — z; > 0
because the solution is not flat. Thus, the assumption r = const. implies a contradic-
tion.

Therefore, r depends on ¢ and therefore ¢ = 0. So, ¢ = const. and Q2 = I, then
for (1.12) the solution is homothetic, the proof is complete. |

Lemma 3.2 If a homographic solution is flat, then it is planar.

Proof. If the homographic solution is collinear then by remark (6) the solution is
planar, so we will assume that r; = r;(¢) is a flat homographic non-collinear solution.
Then, there exists, among the n initial position vectors ry, at least two, say (rd,r}),
such that r9 x r% # 0. Since the solution is flat, all n initial position vectors r¥ lie
in one and the same plane through the origin of the coordinate system r = (x,y, 2),
which can be chosen according to the preliminaries to coincide with the plane (z,y),
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so 29 = 0 for every i. Hence, denoting a; = (a},a?,a?) (defining as previously), we

have by (3.6)
ki ()z) + kp(t)y) =a] (v=1,2,3;i=1,2,...,n), (3.23)

so that, by the definition of the vector Ug it follows that a? = 0. Fixing i = o, 3 in
(3.23), we obtain two linear equations with constant coefficients

ko (D)0 + ka2 (t)ya = ad (3.24)
k1 ()2 + kpa(t)yp = a

— 7
=a},
whose matricial form is BX = a, where X = (k41(t), ky2(t)), a=(a},a}) and B is

a 2 X 2 matrix

.’170 yO
L (3.25)
Tg Yp

Since ¥ x r% # 0, we have that detB # 0, therefore it is easy to see using the system
X = B~ 'a, that for v = 1,2 the two scalars k1, k2 are constant, because they are
linear combinations, with constant coefficients, of the two scalars, a7, ag and vanish
for v =3, so

k1o + ko1 = const, ki1 — koo = const., k31 =0, k3 =0. (3.26)

Then, from substitution of (2.1) in (3.7) these relations become respectively

r3s189 = const., 13(s? —s3) = const.

=278y +1(—82+5351) =0 (3.27)
—27s1 +r($1 + s3s2) =0,
therefore from the first relation above we have r3s? = u, r3s2 = v, where u, v are
constant, it is follows that

3
2

_ _3
S1 = C1r s S9 = CaT7" 2

,where ¢;=u 2%, co=v"3 and r>0 (3.28)

[V

Substituting sq, s in the two last equations in (3.27), for the expressions obtained
above we find

1
S3rcy — 57’”02 =0 (3.29)
1,
57‘01 + s3rcoy =0
a system of linear homogeneous equations of the type QY = 0, where @ is the matrix

of 2 x 2
ssr % : (330)
% : 53 ’
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whose determinant s3r? + 272 = 0 if and only if, s3 = 7 = 0. Let us observe that
if at least one of the constants ¢; or ¢y is different from zero, the equations (3.30)
show that the functions s3 and 7 are null for every ¢, and thus one of the following
conditions must be satisfied

(a) c1=0, c=0
(b) s3(t)=0, r(t)= const.. (3.31)
If (a) is true, it follows from (3.28) that s; = s» = 0 for all ¢, therefore the matrix X
becomes

0 —S83 0
ss 0 0 |. (3.32)
0 0 O

As we saw previously, this means that the rotation Q(¢) is a rotation around the z-axis
of the coordinate system. As the choice of the z-axis it done so that z = 0, then the
system (1.9) show that 2{(t) = 0 for all ¢, and the movement happens in the plane
(z,y) and the solution is planar. This proves the theorem in the case (a).

Let us suppose now that (b) is true, then clearly (3.28) shows that sy, sq, s3 are
constant, with s3 = 0. This means that the matrix X(¢) = const., thus Q(¢) is a
rotation on a fixed axis with reference to the system (x,y, z), which it is located in
the plane (z,y), because s3 = 0. As each 2{(ty) = 0, for i = 1,...,n it follows from
(1.9) that the system of rotating coordinates system X = Q~'r cannot rotate around
a fixed axis contained in the (z,y)-plane. Therefore, there is no rotation at all, i.e.,
Q(t) = const. and so this solution is homothetic.

This completes the proof. |

Now, we can prove:

Theorem 3.1 (a) An homographic solution is homotethic if and only if the angular
momentum C' is null.

(b) An homographic solution is a solution of relative equilibrium if and only if it is
planar and rotates with a constant angular velocity different from zero.

Proof. We are going to divide the proof in two cases:

(I) Planar case. If the homographic solution is planar, we have for (3.15) that
(]527”2 = “J%” and then:

i) C = 0 if and only if, ¢(t) = 0 if and only if, ¢(t) = const. if and only if, the
homographic solution is homothetic.

ii) The homographic solution is a solution of relative equilibrium if and only if,
r = r(t) = const. > 0 if and only if, ¢ = const. # 0, if and only if, C # 0.
Therefore, this proves (a) and (b) for the planar case.
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(IT) Non-planar case. If a homographic solution is not planar, then by Lemma 3.2
the solution is not flat and by Lemma 3.1 the solution is homothetic, so it is not a
solution of relative equilibrium. Therefore, if the homographic solution is a solution of
relative equilibrium it is planar and by case (I) we have that it rotates with constant
angular velocity. The converse of () is clear by the case (I). This completes the proof

in (b).

If the homographic solution is homothetic then C = 0. So in order to complete
the proof in (a), it is sufficient to prove that C = 0 for every non-planar homographic
solution. Because in this situation we have C # 0 then the homographic solution is
planar. Let a non-planar homographic solution, then by Lemma 3.2 it is not flat and
by Lemma 3.1 it is homothetic and therefore C = 0.

This completes the proof of (a) and of the Theorem. |
Remark. The Theorem 3.1 1s sometimes called Lagrange-Pizzeti Theorem because La-
grange had already used it in the three body problem and this result is due to Pizzetti
[11].

Since (3.13) holds in the planar case and U = U°/r in every case, it follows that the
energy integral T'— U = h of every homographic solution may be written in the form

Lo a:v50 Lo

5 (7 +r°¢)J TU =h

if ¢ = ¢(t), which is defined as the angular velocity of the rotating coordinate system
(€,1,0)T = Q7Y (x,y,2)T in the planar case, and it is defined by ¢(¢) = 0 in the non-
planar case. In this sense (3.13) holds in the non-planar case also, since then C = 0,
by Theorem 3.1, Lemma 3.1 and Lemma 3.2. Finally, we see from (3.7) that (3.11)
holds with ¢ = 0 if ¥ = 0, because from (3.7) we have 7%# = 0, which means, by the
preliminaries that = 0. Since Lemma 3.1 and Lemma 3.2 show that Q(¢) = const.
is satisfied in the non-planar case, it follows that (3.11) becomes valid for this case
by placing again ¢ = 0.

4 Existence of the homographic solutions

In the section 3 the results there obtained contain a classification of all possible
homothetic solutions and solutions of relative equilibrium but they leave open the
question about the existence of such solutions. The first result in this section is:

Theorem 4.1 If a solution r; = r;(t) of the n-body problem with masses m; is
homographic, then the bodies m; must form a central configuration at every t.

Proof. If the solution is planar, we can choose the coordinate system (x,y, z) such
that z(t) = 0 for every ¢, and ¢(¢) > 0 will denote the angular velocity of the rotating
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plane (§,7) where (§,7,¢()" = Q7 '(z,y,2)". On the other hand, if the solution is
non-planar, let ¢(t) be defined by ¢ = 0. Then, as show in the remark at the end of
section 3, all the formulae in the planar case are true in the non-planar case.

We define the constants:

By (4.1)
c'=L. (U°J°>0.

then the energy relation is %(7"2 + T2q§2)J0 —r71U°% = h and the expression for the
angular momentum (3.15) are transformed, using (4.1), in:
(z) %(TQ +r2<i>2) _ % — hO0

@) 6=, 2

The equivalent formulation J = 2U + 4k of the energy integral may be written, as
(rit+7%)J° —r'U° = 2h
or equivalently,

I

r

-2

72 = —rit + = 4+ 2h° (4.3)

We see from (4.2) i) and (4.3) that
F—rd® = —7%. (4.4)

Since the expression on the right hand side in (4.2) (ii) is constant, then computing
the derivative, we obtain (r?¢)" = 0, so

ré + 2i¢ = 0. (4.5)

On the other hand, substituing (4.4) in (3.11) K is a matrix given by diag(—u, —p,
—p+1r2¢) and as ¢ = 0, then

—u 0 0

K(t) = 0 —u O

0 0 —u
Therefore, from (3.6) we have K(¢)r! = —ur? = a; but, by definition U = m;a;
if only if, a; = m;lUg, thus m;lUg = —ur?, in both the planar and non-planar
cases. Thus, Ufi = —pm;r? and since the initial date ¢, may be chosen arbitrary, and
remembering the definition 1.14 the proof is complete. |

Remark. This Theorem 4.1 shows that homographic solutions and central configura-
tion belong to the same group of mathematical objects and that their properties are
strongly related. It was proved by Lagrange [5] for n = 3, and a modern version by
Elmabsout [3] for central configurations.
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Since ¢ = 0, in the non-planar case, we can write a homographic solution in (1.9)
not only in the planar case but also in the non-planar case in the form

r; =rQrd, r=r(t)
cosp(t) —sing(t) 0
Q)= sing(t) cose(t) O
0 0 1

(4.6)

The identities (1.7) implies that ¢° = ¢(¢y) = 0, on the other hand (4.2) (ii) for
t = to implies ¢ = 7|"|20(_:0||)’ but r(to) = 1 and ||C°|| > 0 then ¢ > 0. Thus, the following
conditions are valid:

=1 ¢°=0, é>0. (4.7)

The functions r(t), #(t) satisfying the conditions above and defining r;(t) = r(¢)Q(t)r?

(2

are solutions of (4.4) and (4 5) if and only if they are solutions of the Kepler prob-

lem. In fact, by (43) 7 = -0+ & + & and substituing this expression in (4.4)
we obtain —% + & + M — T¢2 = —{%. Multlplymg this last equation by 35 we get

ho = $(72 + 7"2(;52) — & Wthh is the energy associated to the Kepler problem.

The next result shows that is easy to construct homographic solutions, once we
know the central configurations.

Theorem 4.2 A solution (ri(t),...,r,(t)) of the n-body problem is homographic if

and only if, there exist functions r(t),d(t) satisfying (4.4) and ((4.5), and initial

conditions (r9,...,12) forming a central configurations with masses m; and r;(t) =

r@)Qt)rY (i=1,...,n).

(2

Proof. The necessary conditions follows by Theorem 4.1 and the above remarks. In

order to prove the sufficient condition, it is necessary to prove that r;(¢) = r(¢)Q(t)r?
(¢ =1,...,n) is a solution of the n-body problem with masses m;. We need to prove
that 1f r( ), ¢(t) are solutions of (4.4), (4.5) with initial conditions as in (4.7). Using

the notations in (4.1) and as (r9,...,r%) form a central configuration (as in (1.14)),

then o = thus we have

JO ?
Uy = —pmr). (4.8)

From (3.3) we obtain Uy, = 5QUY, it follows from the motion equation (1.1) that
ri(t)(i=1,...,n)isa solutlon if and only if —-5QUY = m;¥; so by (4.8) 5Qur? =1,
and

Q7 = —prd. (4.9)

Consequently, we have only to show that (4.9) is an identity in .

To this end, let r(t), #(t) be any given pair of functions of class C2. Let Q(t)
be defined in terms of ¢(t) in (4.6) and K(t) be defined by (3 11) in terms of r and
¢. Since, r2Q71(rQ)" = r2Q7L(FQ + 270 + rQ) = % + 2r2- Q71O + 3071, we
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have using (2.1) and (2.3) that r2Q~'(rQ)" = r2[¢ + 27X + (X + £2)], so by (3.7)
r?Q~1 (rQ)" = K(t). But, from (4.6) ¥; = (rQ)"'r?,i = 1,...,n. Comparing we have

72

Q7 = K(t)r?. (4.10)

7

Being a; = m; U, the relation (3.6) implies that K (¢)r) = m;'U? and comparing
this expression with (4.10) it follows that r2Q~'¥; = —ur?. Thus, (4.9) is satisfied
and r;(t) is a homographic solution of the n-body problem. |

Received: December 2002. Revised: April 2003.
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