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ABSTRACT
A restricted additive Schwarz (RAS) preconditioning technique was intro-

duced recently for solving general nonsymmetric sparse linear systems. In this
paper, we provide an extension of RAS for symmetric positive definite prob-
lems using the so-called harmonic overlaps (RASHO). Both RAS and RASHO
outperform their counterparts of the classical additive Schwarz variants (AS).
The design of RASHO is based on a much deeper understanding of the behavior
of Schwarz type methods in overlapping subregions, and in the construction of
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the overlap. In RASHO, the overlap is obtained by extending the nonoverlap-
ping subdomains only in the directions that do not cut the boundaries of other
subdomains, and all functions are made harmonic in the overlapping regions.
As a result, the subdomain problems in RASHO are smaller than that of AS,
and the communication cost is also smaller when implemented on distributed
memory computers, since the right-hand sides of discrete harmonic systems are
always zero that do not need to be communicated. We also show numerically
that RASHO preconditioned CG takes fewer number of iterations than the cor-
responding AS preconditioned CG. A nearly optimal theory is included for the
convergence of RASHO/CG for solving elliptic problems discretized with a finite
element method.

Key words and phrases: Restricted additive Schwarz preconditioner,
domain decomposition, harmonic overlap, elliptic
equations, finite elements

Math. Subj. Class.: 65N30, 65F10

1 Introduction

A restricted additive Schwarz (RAS) preconditioning technique was introduced re-
cently for solving general nonsymmetric sparse linear systems [1, 5, 7, 13, 15, 16, 17].
RAS outperforms the classical additive Schwarz preconditioner (AS) [8, 20] in the
sense that it requires fewer number of iterations, as well as smaller communication
and CPU time costs when implemented on distributed memory computers, [1]. Un-
fortunately, RAS in its original form is nonsymmetric and therefore the conjugate
gradient method (CG) cannot be used [14]. Although a symmetrized version was
constructed in [7], our numerical experiments show that it often takes more itera-
tions than the corresponding AS/CG. In this paper we propose another modification
of RAS and show in both theory and numerical experiments that this new variant
works well for symmetric positive definite sparse linear systems and is superior to AS.
Recall that the basic building blocks of classical Schwarz type algorithms are realized
by solving the linear systems of the form

Aδ
i w = Rδ

i v (1)

on each extended subdomain, where Aδ
i is the extended subdomain stiffness matrix

and Rδ
i is the restriction operator for the extended subdomain (formal definitions will

be given later in the paper). The key idea of RAS is that equation (1) is replaced by

Aδ
i w =

{
v inside the un-extended subdomain
0 in the overlapping part of the subdomain. (2)



6, 4(2004)
A Restricted Additive Schwarz Preconditioner with ... 75

Note that the solution of (2) is discrete harmonic in the overlapping part of the
subdomain, and therefore carries minimum energy in some sense. Setting part of the
right-hand side vector to zero reduces the energy of the solution, and also destroys
the symmetry of the additive Schwarz operator. In this paper, we further explore the
idea of “harmonic overlap” and at the same time keep the symmetry of the Schwarz
preconditioner. We mention that other approaches can also be taken to modify the
Schwarz algorithm in the overlapping regions, such as allowing the functions to be
discontinuous [4].

The algorithm to be discussed below is applicable for general symmetric positive
definite problems. However, in order to provide a complete mathematical analysis,
we restrict our discussion to a finite element problem, [3]. We consider a simple
variational problem: Find u ∈ H1

0 (Ω), such that

a(u, v) = f(v), ∀ v ∈ H1
0 (Ω), (3)

where
a(u, v) =

∫
Ω

∇u · ∇v dx and f(v) =
∫

Ω

fv dx for f ∈ L2(Ω).

For simplicity, let Ω be a bounded polygonal region in �2 with a diameter of size
O(1). The extension of the results to �3 can be carried out easily by using the theory
developed here in this paper and the well-known three-dimensional additive Schwarz
techniques; [9, 10, 12]. Let T h(Ω) be a shape regular, quasi-uniform triangulation,
of size O(h), of Ω and V ⊂ H1

0 (Ω) the finite element space consisting of continuous
piecewise linear functions associated with the triangulation. We are interested in
solving the following discrete problem associated with (3): Find u∗ ∈ V such that

a(u∗, v) = f(v), ∀ v ∈ V . (4)

Using the standard basis functions, (4) can be rewritten as a linear system of equations

Au∗ = f. (5)

For simplicity, we understand u∗ and f both as functions and vectors depending on
the situation.

The paper is organized as follows. In section 2, we introduce notations. The
new algorithm is described in section 3. Section 4 is devoted to the mathematical
analysis of the new algorithm. We conclude the paper in section 5 by providing
some numerical results and final remarks. Through out this paper, C and C0, are
positive generic constants that are independent of any of the mesh parameters and
the number of subdomains. All the domains and subdomains are assumed to be open;
i.e., boundaries are not included in their definitions.

2 Notations

Let n be the total number of interior nodes of T h(Ω) and W the set containing all
the interior nodes. We assume that a node-based partitioning has been applied and
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resulted in N nonoverlapping subsets W 0
i , i = 1, . . . , N , whose union is W . For each

W 0
i , we define a subregion ΩR

i as the union of all elements of T h(Ω) that have all
three vertices in W 0

i ∪∂Ω. Note that ∪Ω̄R
i is not equal to Ω̄; see Fig. 1(b). We denote

by H as the representative size (diameter) of the subregion ΩR
i .

We define the overlapping partition of W as follows. Let {W 1
i } be the one-overlap

partition of W , where W 1
i ⊃ W 0

i is obtained by including all the immediate neigh-
boring vertices of all vertices in W 0

i ; see Fig. 1(c). Using the idea recursively, we can
define a δ-overlap partition of W ,

W =
N⋃

i=1

W δ
i .

Here the integer δ indicates the level of overlap with its neighboring subdomains and
δh is approximately the extend of the extension. The definition of W δ

i , as well as
many other subsets, can be found in an illustrative picture, Fig. 1.

We next define a subregion of Ω induced by a subset of nodes of T h(Ω) as follows.
Let Z be a subset of W . The induced subregion, denoted as Ω(Z), is defined as
the union of: (1) the set Z itself; (2) the union all the open elements (triangles) of
T h(Ω) that have at least one vertex in Z; and (3) the union of the open edges of
these triangles that have at least one endpoint as a vertex of Z. Note that Ω(Z)
is always an open region. The extended subregion Ωδ

i is defined as Ω(W δ
i ), and the

corresponding subspace as

Vδ
i ≡ V ∩ H1

0 (Ωδ
i ) extended by zero to Ω\Ωδ

i .

It is easy to verify that
V = Vδ

1 + Vδ
2 + · · · + Vδ

N .

This decomposition is used in defining the classical one-level additive Schwarz algo-
rithm [8]. Note that for δ = 0 this decomposition is a direct sum. Let us define
P δ

i : V → Vδ
i by: for any u ∈ V ,

a(P δ
i u, v) = a(u, v), ∀v ∈ Vδ

i . (6)

Then, the classical one-level additive Schwarz operator has the form

P δ = P δ
1 + · · · + P δ

N .

In the classical AS as defined above, all the nodes of W δ
i are treated equally even

through some subsets of the nodes play different roles in determining the convergence
rate of the AS preconditioned CG. To further understand the issue, we classify the
nodes as follows. Let Γδ

i = ∂Ωδ
i \∂Ω; i.e., the part of the boundary of Ωδ

i that does
not belong to the Dirichlet part of the physical boundary ∂Ω. We define the interface
overlapping boundary Γδ as the union of all Γδ

i ; i.e., Γδ = ∪N
i=1Γ

δ
i . We also need to

define the following subsets of W , see, for examples, Fig. 1, where δ = 1
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1: The partition of a finite element mesh into 9 subdomains with the overlapping
factor δ = 1. (a) the finite element mesh and nodal points; (b) a node-based partition of
the mesh into 9 nonoverlapping subsets, and the collection of “•” forms the set W 0

i ; (c) W δ
i ;

(d) W Γδ

; (e) W Γδ

i ; (f) W Γδ

i,in; (g) W Γδ

i,cut; (h) W δ
i,ovl; (i) W δ

i,non; (j) W δ
i,in; (k) W̃ δ

i ; (l) the

shadowed area is Ωδ
i .
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• WΓδ ≡ W
⋂

Γδ (interface nodes)

• WΓδ

i ≡ WΓδ ⋂
W δ

i (local interface nodes)

• WΓδ

i,in ≡ WΓδ ⋂
W 0

i (local internal interface nodes)

• WΓδ

i,cut ≡ WΓδ

i \WΓδ

i,in (local cut interface nodes)

• W δ
i,ovl ≡ (W δ

i \WΓδ

i )
⋂

(
⋃

j �=i W δ
j ) (local overlapping nodes)

• W δ
i,non ≡ W δ

i \(WΓδ

i

⋃
W δ

i,ovl) (local nonoverlapping nodes)

• W δ
i,in ≡ W δ

i,non

⋃
WΓδ

i,in (internal nodes)

We note that the most northwest and the southeast nodes in (c) were added to
Γδ

i in order to make Ωδ
i a rectangle. This just to simplify the presentation and it is

not required in the implementation of the algorithms.
We frequently use functions that are discrete harmonic at certain nodes. Let

xk ∈ W be a mesh point and φxk
(x) ∈ V the finite element basis function associated

with xk; i.e., φxk
(xk) = 1, and φxk

(xj) = 0, j �= k. We say u ∈ V is discrete harmonic
at xk if

a(u, φxk
) = 0.

If u is discrete harmonic at a set of nodal points Z, we say u is discrete harmonic in
Ω(Z).

Our new algorithm will be built on the subspace Ṽδ
i defined as a subspace of Vδ

i . Ṽδ
i

consists of all functions that vanish on the cuting nodes WΓδ

i,cut and discrete harmonic
at the nodes of W δ

i,ovl. Note that the support of the subspace Ṽδ
i is

W̃ δ
i ≡ W δ

i \WΓδ

i,cut

and, since the values at the harmonic nodes are not independent, they can not be
counted toward the degree of freedoms. The dimension of Ṽδ

i is

dim
(
Ṽδ

i

)
= |W δ

i,in|.

Let Ω(W̃ δ
i ) be the induced domain. It is easy to see that Ω(W̃ δ

i ) is the same as Ωδ
i

but with cuts. We denote Ω(W̃ δ
i ) by Ω̃δ

i . We have then Ṽδ
i = V ∩H1

0 (Ω̃δ
i ) and discrete

harmonic on Ω(W δ
i,ovl). We denote Ω(W δ

i,ovl) by Ωδ
i,ovl.

We define Ṽδ ⊂ Vδ as
Ṽδ = Ṽδ

1 ⊕ · · · ⊕ Ṽδ
N ,
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which is a direct sum. We remark that functions in Ṽδ are, by definition, the sum of
functions ui ∈ Ṽδ

i , i = 1, · · · , N . Functions in Ṽδ can, in fact, be characterized easily
as in the following lemma.

Lemma 2.1 If u ∈ V and u is discrete harmonic at all the overlapping nodes, i.e.,
on ∪N

i=1W
δ
i,ovl, then u ∈ Ṽδ.

Proof. To prove that u ∈ Ṽδ, all we need is to find a decomposition

u =
N∑

i=1

ui, with ui ∈ Ṽδ
i , i = 1, · · · , N.

For the given u, we define ui piece by piece as follows. On the nodes in W δ
i,in we

let ui = u. On the nodes in W δ
i,cut we let ui be zero. On the nodes outside W δ

i we
set ui to zero. We now need only to define ui on the nodes belong to W δ

i,ovl. There,
we extend ui as a discrete harmonic function with boundary data given by ui just
defined.

3 Restricted additive Schwarz with harmonic over-

lap (RASHO)

Using notations introduced in the previous section, we now describe a new method,
namely a restricted additive Schwarz with harmonic overlap.

We first define P̃ δ
i : Ṽδ → Ṽδ

i as a projection operator, such that, for any u ∈ Ṽδ

a(P̃ δ
i u, v) = a(u, v), ∀v ∈ Ṽδ

i . (7)

The RASHO operator can then be defined as

P̃ δ = P̃ δ
1 + · · · + P̃ δ

N . (8)

Note, however, that the solution u∗ of (4), see also (5), is not, generally speaking,
in the subspace Ṽδ, therefore, the operator P̃ δ cannot be used to solve the linear
system (5) directly. We will need to modify the right-hand side of the system (5).
A reformulated (5) will be presented in Lemma 3.1 below. We will show that the
elimination of the variables associated with the overlapping nodes is not needed in
order to apply P̃ δ to any given vector v ∈ P̃ δ.

We now introduce a matrix form of (8). We define the restriction operator, or a
matrix, R̃δ

i as follows. Let v = (v1, . . . , vn)T be a vector corresponding to the nodal
values of a function u ∈ V ; namely for any node xi ∈ W , vi = u(xi). For convenience,
we say “v is defined on W”. Its restriction on W̃ δ

i , R̃δ
i v, is defined as

(
R̃δ

i v
)

(xi) =

⎧⎨
⎩

vi if xi ∈ W̃ δ
i

0 otherwise.
(9)
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The matrix representation of R̃δ
i is given by a diagonal matrix with 1 for nodal points

in W̃ δ
i and zero for the remaining nodal points. We remark that, by way of definition,

the operator R̃δ
i is symmetric; i.e., (R̃δ

i )
T = R̃δ

i . Use this restriction operator, we
define the subdomain stiffness matrix as

Ãδ
i = R̃δ

i A (R̃δ
i )

T ,

which can also be obtained by the discretization of the original finite element problem
on W̃ δ

i with zero Dirichlet data on nodes W \ W̃ δ
i . The matrix Ãδ

i is block diagonal
with blocks corresponding to the structure of R̃δ

i and its inverse is understood as an
inverse of the nonzero block. A matrix representation of P̃ δ

i denoted also by P̃ δ
i is

equals to

P̃ δ
i =

(
Ãδ

i

)−1

A

and
P̃ δ =

(
(Ãδ

1)
−1 + · · · + (Ãδ

N )−1
)

A. (10)

Using the matrix notations, the next lemma shows how to modify the system (5)
so that its solution belongs to Ṽδ.

Lemma 3.1 Let u∗ and f be the exact solution and the right-hand side of (5), and

w =
N∑

i=1

(Ãδ
i )

−1R̃0
i f, (11)

then, we have ũ∗ = u∗ − w ∈ Ṽδ, which is the solution of the modified linear system
of equations

Aũ∗ = f − Aw = f̃ .

Proof. If we can show that
a(w, φk) = f(φk),

for a regular basis function associated with an arbitrary overlapping node xk ∈ W δ
i,ovl,

for some i, then we will have

a(u∗ − w, φk) = f(φk) − f(φk) = 0, (12)

which says that ũ∗ = u∗−w is discrete harmonic at the overlapping node xk. We can
then use Lemma 2.1 to conclude the proof. Let us now consider

wi = (Ãδ
i )

−1R̃0
i f,

which, by definition, is the same as

a(wi, φj) = (φj , R̃
0
i f), ∀xj ∈ W̃ δ

i .
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Here and in the rest of the proof, φj is the basis function associated with the node
xj ∈ W̃ δ

i . Using that R̃0
i is symmetric and

(φj , R̃
0
i f) = (f, R̃0

i φj) = a(u∗, R̃0
i φj),

we get
a(wi, φj) = a(u∗, R̃0

i φj). (13)

Let us compute a(wi, φk). Since xk is an overlapping node, it cannot be on the
boundary of Ω̃δ

i . This leaves us with the following two cases.
Case (1): The support of φk(x) belongs to the exterior of Ω̃δ

i . Since the supports
of wi and φk do not overlap, we have

a(wi, φk) = 0.

Case (2): The support of φk(x) belongs to the interior of Ω̃δ
i . In this case, we have

a(wi, φk) = a(u∗, R̃0
i φk).

Taking the sum of the above equality for i = 1, · · · , N ,

a(w, φk) = a

(
N∑

i=1

wi, φk

)
= a

(
u∗,

N∑
i=1

R̃0
i φk

)
= a(u∗, φk),

which proves (12). Here the fact
∑N

i=1 R̃0
i = I is used.

There are basically two ways to compute w in practice. Suppose that subdomain
problems are solved using some LU factorization based method. One can use the same
factorization of Ãδ

i to modify the right-hand side of the system and to solve subdomain
problems in the preconditioning steps, as what was suggested in Lemma 3.1. Or, one
can obtain w by solving several small Poisson problems on each subdomain with zero
Dirichlet boundary conditions in the overlapping regions Ωδ

i,ovl. In both strategies, the
computation can be done in parallel and no communication is needed in a distributed
memory implementation.

Let f̃ = f −Aw, then ũ∗ is the solution of the following linear system of equations

Aũ∗ = f̃ . (14)

Since ũ∗ ∈ Ṽδ,
g ≡ P̃ δũ∗

is well defined, and can be computed without knowing ũ∗ by using the following
relations:

a(P̃ δ
i ũ∗, v) = a(ũ∗, v) = (f̃ , v), ∀v ∈ Ṽδ

i and i = 1, · · · , N.
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More precisely speaking, we can obtain g by solving the subdomain problems

a(gi, v) = (f̃ , v), ∀v ∈ Ṽδ
i ,

for i = 1, · · · , N , and taking g = g1 + · · · + gN . With such a right-hand side, we
introduce a new linear system

P̃ δũ∗ = g, (15)

which is equivalent to the linear system (14). The system (15) is a symmetric positive
definite system under the usual energy inner product, and therefore, can be solved
using the conjugate gradient method. RASHO has a few advantages over the classical
AS preconditioner. Let us recall AS briefly. Let

(
Rδ

i v
)
(xi) =

⎧⎨
⎩

vi if xi ∈ W δ
i

0 otherwise.
(16)

Then the AS operator takes the following matrix form

P δ =
(
(Aδ

1)
−1 + · · · + (Aδ

N )−1
)

A (17)

where Aδ
i = Rδ

i A(Rδ
i )

T . Because of the inclusion of the cut interface nodes, the size
of the matrix Aδ

i is |W δ
i |, which is slightly larger than the size of the matrix Ãδ

i ,
which is |W̃ δ

i |. In a distributed memory implementation, the operation Rδ
i v involves

moving data from one processor to another, but the operation R̃δ
i v does not involve

any communication. More precisely speaking, in RASHO, if u ∈ Ṽδ, then it is easy
to see that

R̃δ
i Au = R̃δ

i,inAu, (18)

where R̃δ
i,in is defined as

(
R̃δ

i,inv
)

(xi) =

⎧⎨
⎩

vi if xi ∈ W δ
i,in

0 otherwise.
(19)

Therefore, for functions in Ṽδ, we can rewrite P̃ δ, as in (10), in the following form

P̃ δ =
(
(Ãδ

1)
−1R̃δ

1,in + · · · + (Ãδ
N )−1R̃δ

N,in

)
A. (20)

Although the operator (20) does not look like a symmetric operator, but it is indeed
symmetric when applying to functions in the subspace Ṽδ. The form (18) takes the
advantage of the fact that the operator R̃δ

i,in is communication-free in the sense that
it needs only the residual associated with nodes in WΓδ

i,in ⊂ Ω0
i .

We make some further comments on how the residual Au can be calculated in a
distributed memory environment, for a given vector u ∈ Ṽδ. In a typical implementa-
tion, the matrix A is constructed and stored in the form of {Ãδ

i }, each processor has



6, 4(2004)
A Restricted Additive Schwarz Preconditioner with ... 83

one or several of the subdomain matrix Ãδ
i . Similarly u is stored in the form of {ui},

where ui ∈ Ṽδ
i . We note, however, that to compute the residual at nodes WΓδ

i,in some
communications are required. The processor associated with subdomain Ωδ

i needs
to obtain the local solution from the neighboring subdomains at nodes connected to
WΓδ

i,in. It is important to note that the amount of communications does not depend
on the size of the overlap since only one layer of nodes is required. This shows that
in terms of communications, the RASHO is superior to AS and RAS.

4 Theoretical analysis

The algorithm presented in the previous section is applicable for general sparse, sym-
metric positive definite linear systems. The notions of subdomains, harmonic overlaps,
the classification of the nodal points, etc, can all be defined in terms of the graph of
the sparse matrix. In this section we provide a nearly optimal estimate for a Poisson
equation discretized with a piecewise linear finite element method. We estimate the
condition number of the RASHO operator P̃ δ in terms of the fine mesh size h, the
subdomain size H , and the overlapping factor δ. We note that because we do not
include a coarse space, the constant will depend on the subdomain size H . We shall
follow the abstract additive Schwarz theory [20]:

Lemma 4.1 Suppose the following assumptions hold:

i) There exists a constant C0 such that for any u ∈ Ṽδ there exists a de-
composition

u =
N∑

i=1

ui,

where ui ∈ Ṽδ
i , and

N∑
i=1

|ui|2H1(Ωδ
i ) ≤ C2

0 |u|2H1(Ω).

ii) There exist constants εij , i, j = 1, . . . , N such that

a(ui, uj) ≤ εij a(ui, ui)1/2a(uj, uj)1/2, ∀ui ∈ Ṽδ
i , ∀uj ∈ Ṽδ

j .

Then, P̃ δ is invertible, symmetric; i.e., a(P̃ δu, v) = a(u, P̃ δv), ∀u, v ∈ Ṽδ, and

C−2
0 a(u, u) ≤ a(P̃ δu, u) ≤ ρ(E)a(u, u), ∀u ∈ Ṽδ. (21)

Here ρ(E) is the spectral radius of E, which is a (N) × (N) matrix made of {εij}.

It is trivial to see that ρ(E) ≤ C. So our focus in the rest of the paper is in
bounding C0.
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4.1 A partition of unity and a comparison function

The construction of a partition of unity is one of the key steps in an additive Schwarz
analysis. We construct φi(x) as follows:

φi(xk) =

⎧⎪⎨
⎪⎩

1 if xk ∈ WΓδ

i,in

discrete harmonic if xk ∈ W δ
i,ovl ∪ W δ

i,non

0 if xk ∈ W\W̃ δ
i

Note that φi(x) = 0 if x �∈ Ω̃δ
i . Let us denote Ω(W δ

i,non) by Ωδ
i,non, then φi(xk) = 1

at xk ∈ W δ
i,non for the case Ωδ

i,non ∩ ∂Ω = ∅ since all the boundary nodes of Ωδ
i,non

belong to WΓδ

i,in. Also, it is easy to see that {φi(x), i = 1, . . . , N} restricted to WΓδ

form a partition of unit.
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Figure 2: The partition of Ωδ
i into the union of four types of subregions. This is a ‘floating’

subdomain with δ = 2. The collection of “•” forms the set W 0
i .

In addition to φi(x), we also need to construct a comparison function θi(x) for
each subdomain Ωδ

i . Comparison functions, or barrier functions, are very useful for
many Schwarz algorithms, such as these on non-matching grids [6]. We will show
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that, even though θi(x) ∈ Vδ
i , not in Ṽδ

i as we wished, it can still be used to bound
functions in Ṽδ

i . Both θi(x) and φi(x) depend on the overlapping factor δ. Because
φi(x) is discrete harmonic at W δ

i,ovl ∪ W δ
i,non, we have

a(φi, φi) ≤ a(θi, θi).

To construct the function θi(x), we first consider the case when Ω0
i is a floating

square subdomain. “Floating” refers to the fact that the subdomain doesn’t touch the
boundary ∂Ω. The extension to cases when Ωδ

i touches the boundary is simple and we
will comment on it later. To further simplify our arguments, we assume that Ωδ

i and
its neighboring extended subdomains Ωδ

j are squares of the same size; i.e. sides length
equals to H + 2(δ + 1)h. This assumption is equivalent to that ΩR has size H and
δ levels of overlap is applied; see Fig. 2. And we also assume the overlap is not too
large; for the analysis given below δh no larger than H/4 is enough. Our techniques
can be modified to consider larger overlaps and more complex subdomains, although
too large of an overlap has little practical value.

Roughly speaking, θi(x) equals to φi(x) on W\W δ
i,ovl. On the overlapping region

W δ
i,ovl we need to define θi(x) carefully so that we can control its energy in the semi

H1 norm. For this purpose, we decompose Ωδ
i into subregions of four types: Ωδ

i,non,
Ωδδ

i , ΩδH
i , and Ωδδ̃

i and define θi(x) on each piece of the subregion separately.
Type (1): The first subregion is Ωδ

i,non, which a square with sides of size H−2δh.
Type (2): The second subregion Ωδδ

i is the area where Ωδ
i overlaps simulatneously

with three neighbors Ωδ
j . Ωδδ

i therefore represents the union of the four corner pieces
of Ωδ

i ; i.e. four squares with sides of size (2δ + 1)h.
Type (3) and (4): The area where Ωδ

i overlaps only one neighbor are four rect-
angles of size H − 2δh by (2δ + 1)h. We further partition each of the four rectangles
into three smaller rectangles; i.e. two of them are of Ωδδ̃

i type and one of them of
ΩδH

i type. For instance, without lost of generality, Let us consider the intersection of
Ωδ

i with its right neighbor Ωδ
j , excluding the corner parts. In this case, the subregion

to be partitioned is a rectangle of size (2δ + 1)h in the x direction and H − 2δh in
the y direction. The partition of this rectangles gives two smaller rectangles of Ωδδ̃

i

type with dimensions 2(δ + 1)h × δh and each one has an edge in common with a
square of Ωδδ

i type. We denote them as transition subregions because they are placed
between a corner type subregion Ωδδ

i and a face type subregion ΩδH
i . The ΩδH

i face
type subregions are the smaller rectangles that are placed between the two smaller
rectangles of Ωδδ̃

i type. ΩδH
i face type regions are of size (2δ + 1)h by H − 4δh.

For any node x belonging to a Type (1) region Ωδ
i,non, we define θi(x) to be equal

to one; i.e., equals to φi(x). Therefore

|φi(x)|2H1(Ωδ
i,non) = |θi(x)|2H1(Ωδ

i,non) = 0.

We next define θi(x), node by node, in Ωδ
i,ovl, which is the union of corner, tran-

sition and face type regions defined above.
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For a Type (2) region Ωδδ
i . Let Q be such a square with vertices V1 = (a, b), V2 =

(a + (2δ + 1)h, b), V3 = (a, b + (2δ + 1)h), and V4 = (a + (2δ + 1)h, b + (2δ + 1)h).
We assume that V1, V2, and V4 belong to ∂Ωδ

i . In other words, Q is located on
the southeast corner of Ωδ

i . Let use also introduce another square region Q̃, with
vertices V3 = (a, b + (2δ + 1)h), Ṽ1 = (a, b + δh), Ṽ2 = (a + (δ + 1)h, b + δh), and
Ṽ4 = (a + (δ + 1)h, b + (2δ + 1)h). Note that Q̃ is contained in Q, with V3 as the
common vertex. To define θi(x) on Q, we set θi(V3) = 1, θi(Ṽ1) = 0, θi(Ṽ2) = 0,
θi(Ṽ4) = 0. At the remaining nodes x on the edges Ṽ1Ṽ2 and Ṽ2Ṽ4 we set θi(x) = 0,
and on the edges V3Ṽ1 and V3Ṽ4 we set θi(x) = 1. For nodes on Q\Q̃ we set θi(x) = 0.
It remains only to define θi(x) for nodes x in the interior of Q̃. To define θi(x) there
we use a well-known cutoff function technique, such as the one introduced in Lemma
4.4 of [10] but for two-dimensional square regions. An illustrative picture of θi(x) in
a typical region Ωδδ

i is shown in Fig 3.
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Figure 3: An illustrative picture of θi(x) in a typical region Ωδδ
i .

For the completeness of this paper, we include the construction below. Let C be the
center of the square Q̃. The construction of θi(x) is defined by the following steps:

(1) Define θi(V3) = 1, θi(Ṽ2) = 0, θi(Ṽ1) = 0 and θi(Ṽ4) = 0.

(2) For a point P that belongs to the segments V3Ṽ4 or V3Ṽ1, define θi(P ) = 1. For
a point P that belongs to the segments Ṽ4Ṽ2 or Ṽ1Ṽ2, define θi(P ) = 0.

(3) For a point Y that belongs to the line segment connecting C to V3, define θi(Y )
by linear interpolation between values θi(C) = 1/2 and θi(V3) = 1. For a point
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Y that belongs to the line segment connecting C to Ṽ2, define θi(Y ) by linear
interpolation between values θi(C) = 1/2 and θi(Ṽ2) = 0.

(4) For a point S that belongs to a line segment connecting a point Y to a vertex
Ṽ1 or Ṽ4, define θi(S) = θi(Y ).

(5) Note that the θi is defined everywhere on Q̃ ∪ ∂Q̃. θi is continuous everywhere
except at the points Ṽ1 and Ṽ4. We redefine θi as the continuous piecewise linear
finite element function given by the standard pointwise interpolation.

The most important observation of the construction of θi(x) inside Q̃ is that
|∇θi(x)| ≤ C/r near Ṽ1 or Ṽ4. Here r is the distance of x to Ṽ1 or Ṽ4. Therefore, we
obtain (see [10] and [19])

|θi(x)|2H1(Q) = |θi(x)|2
H1(Q̃)

≤ C

(
1 + log

(
(δ + 1)h

h

))
= C(1 + log(δ + 1)).

Since inside of Ωδ
i there are four of those squares we obtain

|θi(x)|2H1(Ωδδ
i ) ≤ C (1 + log(δ + 1)) .

Type (3) regions consist of transition type rectangles. Let us consider one of them
and denote it by T , which we assume has vertices at V3 = (a, b + (2δ + 1)h), V4 =
(a+(2δ+1)h, b+(2δ+1)h), V5 = (a, b+(3δ+1)h), and V6 = (a+(2δ+1)h, b+(3δ+1)h).
Note that T stands on the top of the square Q introduced above and has the common
edge V3V4. We define θi(x) over the edge V3V4 to be equal to φi(x). Over the
edge V3V5, we set θi(x) = 1. Over the edge V4V6, we set θi(x) = 0. And over the
edge V5V6 we let θi(x) decrease linearly from the value 1 to 0. What remains is
to define θi(x) inside T . Let us define the nodes Vl = (a + δh, b + (2δ + 1)h) and
Vr = (a + (δ + 1)h, b + (2δ + 1)h), which is the same as the node Ṽ4 used in the
description of Type (2) regions. The nodes Vl and Vr are exactly the places on the
edge V3V4 where φi(x) jumps from 1 to 0. On the triangle V3VlV5 we set θi(x) = 1. On
the triangle VrV4V6 we set θi(x) = 0. On the region VlVrV6V5, we let θi(x) decrease
linearly in the x direction from the value 1 to 0. We note that next to the nodes VlVr ,
θi(x) has a singular behavior similar to |∇θi(x)| ≤ C/r where r is the distance from
x to the line Vl Vr. Similarly, we have

|θi(x)|2H1(T ) ≤ C (1 + log(δ + 1))) .

Since there are eight rectangles of Type (3) inside Ωδδ̃
i , we obtain

|θi(x)|2
H1(Ωδδ̃

i )
≤ C (1 + log(δ + 1)) .

Type (4) regions are rectangles of face type. Let R be one of them, and we assume
that the vertices are given by V5 = (a, b+(3δ+1)h), V6 = (a+(2δ+1)h, b+(3δ+1)h),
V7 = (a, b + H − (δ − 1)h), and V8 = (a + (2δ + 1)h, b + H − (δ − 1)h). Note that R is
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on the top of the rectangle T defined above and its height is H − 4δh. The vertices
V6 and V8 are the vertices that belong to ∂Ωδ

i . We define θi(x) = 1 if x is on the edge
V5V7, and equals zero if x is on the edge V6V8, and linear in the x direction for the
remaining points. We obtain then

|θi(x)|2H1(R) ≤
H − 4δh

(2δ + 1)h
.

Since there are four of those rectangles inside ΩδH
i , we obtain

|θi(x)|H1(ΩδH
i ) ≤ C

H − 4δh

(2δ + 1)h
≤ C

H

(2δ + 1)h
.

For the cases in which Ω0
i touches the boundary ∂Ω, the analysis needs to be

modified slightly. The first modification is because the shape of the overlapping region
changes slightly, i.e. the longer side is shorter. It is easy to see that we get similar
bounds as before. The other modification is because φi on Ωδ

i,non is not identically
equal to one and therefore the corresponding energy is not necessarily zero. For this
case we can design θi similarly and obtain

|θi(x)|2H1(Ωδ
i,non) ≤ C

(
1 + log

(
H

h

))
.

Putting all pieces of θi(x) together, we see that θi(x) ∈ Vδ
i and it equals to φi(x) on

WΓδ

. Adding all the estimates on subregions of four types, we arrive at the following
lemma.

Lemma 4.2 For i = 1, · · · , N. θi(x) ∈ Vδ
i , and φi(x) ∈ Ṽδ

i , and also

(1) |φi|2
H1(Ωδ

i )
≤ |θi|2H1(Ωδ

i )
.

(2) |θi|2H1(Ωδ
i \Ωδ

i,non) ≤ C

(
1 + log(δ + 1) +

H

(2δ + 1)h

)
.

(3) if Ωδ
i,non ∩ ∂Ω = ∅ then |θi|2H1(Ωδ

i,non)
= 0.

(4) if Ωδ
i,non ∩ ∂Ω �= ∅ then |θi|2H1(Ωδ

i,non) ≤ C

(
1 + log

(
H

h

))
.

Here C > 0 is independent of the parameters h, H and δ.

4.2 A bounded partition lemma

To obtain the parameter C0 of Assumption i) of the abstract additive Schwarz theory,
see Lemma 4.1, we construct a decomposition of Ṽδ and prove its boundedness below.
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Lemma 4.3 There exists a constant C > 0, independent of h, H, and δ, such that
for any u ∈ Ṽδ, there exist ui ∈ Ṽδ

i , such that

u =
N∑

i=1

ui, (22)

and
N∑

i=1

|ui|2H1(Ω) ≤ C (1 + log(δ + 1))
(
1 + log

(
H
h

)) |u|2H1(Ω)+

C
1

H2

(
1 + log(δ + 1) +

H

(2δ + 1)h

)
|u|2H1(Ω).

(23)

Proof. We first construct the decomposition (22). For any given u ∈ Ṽδ, we define
ui ∈ Ṽδ

i as

ui(xk) =

⎧⎨
⎩

u(xk) if xk ∈ W δ
i,in

discrete harmonic if xk ∈ W δ
i,ovl

0 if xk ∈ W\W̃ δ
i .

It is easy to see (22) holds. For i = 1, . . . , N , let us define vi ∈ Ṽδ
i by

vi = ui − ūiφ
i ∈ Ṽδ

i ,

where
ūi =

1
|Ωδ

i |
∫

Ωδ
i

udx

is the average of u on the extended region Ωδ
i . Here |Ωδ

i | is the area of the region Ωδ
i .

The next step is to bound the sums
∑N

i=1 |vi|2H1(Ω) and
∑N

i=1 |ūiφ
i|2H1(Ω). For the

second sum, we use Lemma 4.2 to obtain

N∑
i=1

|ūiφ
i|2H1(Ω) ≤ C

(
1 + log

(
H

h

)) ∑
i∈∂Ω

|ūi|2+

C

(
1 + log(δ + 1) +

H

(2δ + 1)h

)∑
i

|ūi|2.

Here we use i ∈ ∂Ω to denote the subdomains Ω0
i that touch the boundary ∂Ω with

a face.
By Cauchy-Schwarz and Friedrichs inequalities we have

N∑
i=1

|ūi|2 =
N∑

i=1

(
1

|Ωδ
i |
∫

Ωδ
i

udx

)2

≤ C
N∑

i=1

1
H2

‖u‖2
L2(Ωδ

i )

≤ C
1

H2
‖u‖2

L2(Ω) ≤ C
1

H2
|u|2H1(Ω).
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And for the cases i ∈ ∂Ω, we can use a Poincaré inequality to obtain
∑
i∈∂Ω

|ūi|2 ≤ C
∑
i∈∂Ω

1
H2

‖u‖2
L2(Ωδ

i ) ≤ C
∑
i∈∂Ω

|u|2H1(Ωδ
i ) ≤ C|u|2H1(Ω).

To bound the other terms |vi|2H1(Ω), i = 1, . . . , N , we use θi(x), i = 1, . . . , N ,
introduced before. Consider ṽi ∈ Vδ

i defined as follows

ṽi(x) = Ih(θi(x)(u(x) − ūi)).

Note that ṽi(x) is equal to vi(x) on WΓδ

i and on ∂Ωδ
i . On Ωδ

i,ovl and Ωδ
i,non, vi is

discrete harmonic. Therefore, we have

|vi|2H1(Ωδ
i ) ≤ |ṽi|2H1(Ωδ

i ).

The rest of the proof will be devoted to the estimate of |ṽi|2H1(Ωδ
i )

in terms of |u|2
H1(Ωδ

i )
.

Let K be an element of Ωδ
i and let us denote wi = u − ūi then

|ṽi|2H1(K) = |Ih(θiwi)|2H1(K) ≤ 2|θ̄iwi|2H1(K) + 2|Ih((θ̄i − θi)wi)|2H1(K). (24)

Here, θ̄i is the average of θi on K, and Ih is the standard pointwise interpolation. To
estimate the first part of (24) we use the fact that |θ̄i| ≤ 1, to obtain

|θ̄iwi|2H1(K) = |θ̄i(u − ūi)|2H1(K) ≤ |u − ūi|2H1(K) = |u|2H1(K).

The last equality comes from the fact that ūi is a constant. For the second part of
(24), according to an inverse inequality we have

|Ih((θ̄i − θi)wi)|2H1(K) ≤ C
1
h2

‖Ih((θ̄i − θi)wi)‖2
L2(K). (25)

To obtain the bound for the right-hand side of (25), we consider the element K in
four different situations corresponding to the four types of subregions into which the
the subregion Ωδ

i is split i.e., Ωδ
i,non, ΩδH

i , Ωδδ̃
i and Ωδδ

i .
The proof for the cases K ⊂ ΩδH

i and K ⊂ Ωδδ̃
i are nearly the same, so we only

consider one of them here. For K ⊂ ΩδH
i , since

‖θ̄i − θi‖2
L∞(K) ≤ C

(
h

(2δ + 1)h

)2

,

we obtain
1
h2

‖Ih((θ̄i − θi)wi)‖2
L2(K) ≤ C

1
((2δ + 1)h)2

‖wi‖2
L2(K).

Applying a technique developed in Dryja and Widlund [11], we obtain

1
((2δ + 1)h)2

‖wi‖2
L2(ΩδH

i ) ≤ C

(
H

(2δ + 1)h
|wi|2H1(Ωδ

i ) +
1

H((2δ + 1)h)
‖wi‖2

L2(Ωδ
i )

)
.

(26)
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Using the fact |wi|2H1(Ωδ
i )

= |u|2
H1(Ωδ

i )
and a Friedrichs inequality

‖wi‖2
L2(Ωδ

i ) ≤ CH2|u|2H1(Ωδ
i ). (27)

Combining the estimates (26) and (27), we obtain

1
((2δ + 1)h)2

‖wi‖2
L2(ΩδH

i ) ≤ C
H

(2δ + 1)h
|u|2H1(Ωδ

i ).

For the case when K ⊂ Ωδδ
i , we use similar arguments as in Dryja, Smith and

Widlund [10] to obtain∑
K∈Ωδδ

i

1
h2

‖Ih((θ̄i − θi)wi‖2
L2(K) ≤

∑
K∈Ωδδ

i

C
1
r2

‖wi‖2
L2(K), (28)

where ch ≤ r ≤ C((δ + 1)h) is the distance to those “cut pieces”. We have used here
that θi(x) has the singular behavior C/r on Ωδδ

i . We have then

∑
K∈Ωδδ

i

1
r2

‖wi‖2
L2(K) ≤ C

∫ C(δ+1)h

ch

∫
α

r−2r‖wi‖2
L∞(Ωδδ

i )dαdr (29)

and

‖wi‖2
L∞(Ωδδ

i ) ≤ C

(
1 + log

(
H

h

))
|u|2H1(Ωδ

i ). (30)

For the inequality (30), we have used a well-known result (see Bramble [2])

‖u − ūi‖2
L∞(Ωδδ

i ) ≤ ‖u − ūi‖L∞(Ωδ
i ) ≤ C

(
1 + log

(
H

h

))
‖u − ūi‖2

H1(Ωδ
i )

and that ūi is the average of u on Ωδ
i ; i.e., a Friedrichs inequality

‖u − ūi‖2
H1(Ωδ

i ) ≤ C|u|2H1(Ωδ
i ).

Putting (29) and (30) together, we obtain

∑
K∈Ωδδ

i

1
r2

‖wi‖2
L2(K) ≤ C

(
(1 + log(δ + 1))

(
1 + log

(
H

h

)))
|u|2H1Ωδ

i
. (31)

For the case K ⊂ Ωδ
i,non. If Ω0

i is a floating subdomain, which is to say that Ωδ
i,non

does not touch ∂Ω, then θ̄i − θi is zero. If Ωδ
i,non touches the boundary ∂Ω, then the

estimate becomes

|vi|2H1(Ωδ
i,non)

≤ C
(
|u|2

H1(Ωδ
i,non)

+ |ūi|2|φi|2
H1(Ωδ

i,non)

)

≤ C

(
1 + log

(
H

h

))
|u|2

H1(Ωδ
i )

.

(32)



92 Xiao-Chuan Cai, Maksymilian Dryja and Marcus Sarkis
6, 4(2004)

4.3 The main theorem

We state the main theorem of this paper here, the proof follows directly from the
abstract AS theory and the lemmas just proved.

Theorem 4.1 The RASHO operator P̃ δ is symmetric in the inner product a(·, ·),
nonsingular, and bounded in the following sense

C−2
0 a(u, u) ≤ a(P̃ δu, u) ≤ C1a(u, u) ∀u ∈ Ṽδ. (33)

Here

C2
0 = C

(
(1 + log(δ + 1))

(
1 + log

(
H

h

))
+

1
H2

(
1 + log(δ + 1) +

H

(2δ + 1)h

))
.

The constants C, C1 > 0 are independent of h, H, and δ.

We remark that the corresponding convergence rate estimate for the regular one-
level AS [11], in terms of the constant C0, is

C2
0 = C

(
1 +

1
H(2δ + 1)h

)
.

The lower bound C2
0 of RASHO is theoretically slightly worse than the lower bound

of AS in case of large overlap, but roughly the same for small overlap. On the other
hand, the upper bound C1 of RASHO is smaller than the upper bound of AS. We can
see this since Ṽδ

k ⊂ Vδ
k , ∀k, implies that the positive numbers εij defined in Lemma 4.1

are smaller for RASHO than the correspondent εij for AS. Consequently, the spectral
radius of E in RASHO is smaller. Because C1 of RASHO is smaller, the numerical
performance of RASHO presented in the next section is better than that of AS. We
also remark that the results of the paper is for one-level Schwarz algorithms. Because
of the “harmonic overlap“ requirement, the extension of the algorithm to multiply
levels is not as trivial as the multilevel AS.

5 Numerical experiments

In this section, we present some numerical results for solving the Poisson’s equation
on the unit square with zero Dirichlet boundary conditions. We compare the perfor-
mance of RASHO and AS preconditioned Conjugate Gradient methods in terms of
the number of iterations and the condition numbers. We pay particular attention to
the dependence on the number of subdomains and the size of overlap.

We first discuss a few implementation issues related to the new preconditioner.
In order to apply the RASHO/CG method, it is necessary to force the solution to
belong to Ṽδ. To do so, a pre-CG-computation is needed, and it is done through the
formula (11). We note that u = u∗ − w ∈ Ṽδ, see Lemma 3.1, and therefore, we can
apply the regular PCG to the RASHO preconditioned system (15). The AS/CG is
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Table 1: RASHO and AS preconditioned CG for solving the Poisson’s equation on
a 128 × 128 mesh decomposed into 2 × 2 = 4 subdomains with overlap = ovlp. The
AS/CG results are shown in ( ). The “+1” is for the preprocessing step needed for
RASHO.

ovlp iter cond max min
h 42 (42) 129.(129.) 1.98 (1.98) 0.0154 (0.0154)
3h 24+1 (28) 48.4 (86.3) 1.94 (4.00) 0.0402 (0.0464)
5h 20+1 (23) 33.3 (51.8) 1.91 (4.00) 0.0574 (0.0773)
7h 18+1 (20) 27.2 (37.0) 1.89 (4.00) 0.0694 (0.1081)

Table 2: RASHO and AS preconditioned CG for solving the Poisson’s equation on
a 32 ∗ DOM × 32 ∗ DOM mesh decomposed into DOM × DOM subdomains with
overlap = 3h, i.e. δ = 1.

DOM × DOM iter cond max min
2 × 2 19+1 (20) 26.8 (43.7) 1.89 (4.00) 0.0708 (0.0916)
4 × 4 39+1 (42) 86.9 (145.) 1.95 (4.00) 0.0225 (0.0276)
8 × 8 75+1 (78) 328. (550.) 1.97 (4.00) 0.0060 (0.0073)

16 × 16 147+1 (156) 1295 (2168.) 1.98 (4.00) 0.0015 (0.0018)

the classical additive Schwarz preconditioned CG as described in [8]. We note that in
the case δ = 0, i.e. ovlp = h, RASHO and AS are the same.

The stopping condition for CG is to reduce the initial residual by a factor of 10−6.
The exact solution of the equation is u(x, y) = e5(x+y) sin(πx) sin(πy). All subdomain
problems are solved exactly. The iteration counts (iter), condition numbers (cond),
maximum (max) and minimum (min) eigenvalues of the preconditioned matrix are
summerized in Table 1, and Table 2.

From Table 1 and Table 2, it is clear that RASHO/CG is always better than the
classical AS/CG in terms of the iteration counts and condition numbers. Note that
there is a practical suggestion for AS that the overlap should be 3h − 5h width. In
this case the condition number of RASHO is almost twice smaller than AS. This is
an important result since it is easy to modify a (parallel) AS/CG code to obtain a
RASHO/CG implementation. Although we do not have any parallel results to report
here, we are confident to predict that RASHO/CG would be even better than AS/CG
on a parallel computer with distributed memory since much less communications are
required. Also the local solvers in RASHO are slightly cheaper since the local solvers
have slightly smaller numbers of unknowns than for the regular AS.
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