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7 on peut se poser la question: quel est le théoréme

mathématique le plus profond, le plus difficile, dont il existe
une interprétation physique concréte et indubitable? (...) Pour
moi, c’est le théoréme de Stokes qui est le candidat numéro un.
Et cela témoigne d’un fait: la différentielle extérieure est une
notion trés mystérieuse, dont la véritable nature, je crois, recéle
encore bien des énigmes, et cela en dépit de la simplicité de sa
définition formelle.”

René Thom, La science malgré tout ...

ABSTRACT
Similarities are shown between the algebras of differential forms and of Clif-
ford algebra-valued multi-vector functions in an open region of Euclidean space.
The Poincaré Lemma and the Dual Poincaré Lemma are restated and proved in a
refined version. In the case of real-analytic differential forms an alternative proof
of the Poincaré Lemma is given using the Euler operator. A position is taken in
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the debate on the redundancy of either of the two algebras.

RESUMEN

Se muestran similitudes entre las dlgebras de formas diferenciales y las de fun-
ciones multivectoriales valuadas de una algebra de Clifford en una regién abierta
del espacio Euclidiano. El Lema de Poincaré y Lema de Poincaré dual son pre-
sentados y probados en una versién refinada. En el caso de formas diferenciales
reales analiticas una prueba alternativa del Lema de Poincaré es dada usando
el operador de Euler. Una posicién es tomada en el debate en redundancia de
cualquiera de las dos édlgebras.

Key words and phrases: differential forms, multi-vector functions,
Poincaré Lemma
Math. Subj. Class.: 58A10, 30G35

1 Introduction

In this paper two mathematical languages are confronted with each other: the lan-
guage of differential forms and the one of Clifford algebra-valued multi-vector func-
tions.

The Cartan algebra A (2) of smooth differential forms on an open subset 2 of Euclidean
space R™t! endowed with exterior multiplication, is of course well-known. A fun-
damental operator on A(Q) is the exterior derivative d with its important property
that for any differential form w, d(dw) = 0.

Introducing the Hodge co-derivative d* leads to the differential operator D =
d + d*, by means of which the so-called ”"harmonic” r-forms (0 < r < m + 1) are
characterized as smooth differential r-forms w” satisfying Dw” = 0.
The algebra £(Q) of smooth multi-vector functions is less well-known. Multi-vector
functions arise in a natural way when considering functions defined in Q and tak-
ing values in the universal real Clifford algebra Ry 41 constructed over RO+ e,
R™*! equipped with an anti-Euclidean metric. If RG i1 (0 <7 <m + 1) denotes
the space of r-vectors, then the Clifford algebra Rg 41 is precisely the graded as-
sociative algebra Rom1 = Yol @ R{ i1, and an r-vector function F,. is a map
F.:Q — Rj,, 1. It was William Kingdon Clifford who introduced his so-called
geometric algebra in the 1870s, building on earlier work of Hamilton and Grassmann.
A fundamental operator on the space of smooth multi-vector functions, is the Dirac
operator 9, by means of which the so-called monogenic functions are characterized
as the smooth functions f satisfying 0f = 0. Note that the monogenic functions are
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at the core of so-called Clifford analysis, a function theory which developed exten-
sively during the last decades, offering a direct and elegant generalization to higher
dimension of the theory of holomorphic functions in the complex plane. Note also
that the above mentioned Dirac equation may be expressed in the language of sys-
tems of partial differential equations by modelling Clifford algebra through its matrix
representation.

The spaces of smooth differential forms on the one hand, and of smooth multi-vector
functions on the other, are shown to be isomorphic in a natural way: a smooth r-form
is identified with a smooth r-vector function, the action of the differential operator
D = d+d* on the space /\"(2) of smooth r-forms, is identified with the action of the
Dirac operator 0 on the space &,.(€2) of smooth r-vector functions, and the counter-
parts in the space of multi-vectors of the exterior derivative d and the co-derivative
d* are pinpointed. This isomorphism is moreover fully exploited in that proofs can
be given in either of both languages and that the results obtained are mutually ex-
changeable (section 4).

In fact the paper also focusses on two well-known theorems on differential forms: the
Poincaré Lemma and the Dual Poincaré Lemma. They are restated in a refined ver-
sion which, to the authors’ knowledge, rarely appears in the literature. Combining
these two theorems, a structure theorem for monogenic multi-vector functions and its
counterpart in the space of smooth differential forms is given (section 5). In proving
these structure theorems, we heavily rely on the classical Poincaré Lemma and the
classical Dual Poincaré Lemma. In section 6 an alternative proof of those lemmata
are given in the special case of real-analytic differential forms in an open ball centred
at the origin.

We wish to emphasize that the present paper may not be seen as a pleading to sub-
stitute one of the languages for the other, nor to prefer one language above the other.
On the contrary, we are convinced that differential forms and multi-vector functions,
despite the natural identification given, are quite different mathematical objects, the
use of which is very much imposed by the mathematical context. This in-depth differ-
ence between and context-dependence of differential forms and multi-vector functions
will be fully discussed in a forthcoming paper by one of the authors.

2 Multi-vector functions: preliminaries

In this section we recall some basic notions and results from Clifford algebra and
Clifford analysis. For a detailed account we refer the reader to [10] and [2]; the re-
cent book [3] gives a nice and broad overview of the intrinsic value and usefulness of
Clifford algebra and Clifford analysis for mathematical physics.

The construction of the universal real Clifford algebra is well-known; we restrict our-
selves to a schematic approach. Let R%™*1 be the real vector space R™*! (m > 1)
endowed with a non-degenerate symmetric bilinear form B of signature (0,m + 1),
and let (eg,e1,- -+ ,em,) be an associated orthonormal basis:

-1 if i=j o
B(ei,ej)—{ 0 if i#j’ (0<4,5 <m).
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The anti-Euclidean metric on R%™*1! is induced by the scalar product
< ej,e5 >= —B(ei,ej) = 6”», 0<12,7<m.
Introduce the anti-symmetric outer product by the rules:

e; Neg = 0, 0<i1<m
e; N ej+e; Ne = 0, 0<i#j<m.

For each A = {i1,i2, -+ ,i,} € M = {0,1,---,m}, ordered in the natural way:
0<1 <<+ <ip <m, put

ea = €, N ey, N o N e
and
€p = 1.

Then for each r = 0,1,--- ,m + 1, the set {e4 : A C M and |A] = r} is a basis for
the space R ,,, 1 of so-called r-vectors.

Introducing the inner product by
e;0e;=—<ene; >, 0<4,7<m
leads to the so-called geometric product in the Clifford algebra, given by
eej=¢e; *¢e; + ¢ Nej, 0<i,7<m.

The respective definitions of the inner product, the outer product and the (geometric)
product are then extended to r-vectors by the formulae:

ejrea=c;%(ei, Ao Aei) = (—1)F5i ea i

k
where
EA\fiy =€in N N ey A les, N Cinis N ot A€,
and
ej Nea = e A (e, N Ney)=e Neyz N Ne, ifj¢A
{ej Nega = 0, ifjeAd
and finally

ejeq =e€j®epat+e; N ea.

The inner and outer products are distributive over addition, and so is the (geometric)
product.
The universal real Clifford algebra R ,,+1 is the graded associative algebra

m—+1
RO,erl = § D RS,erl'

r=0
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If[. ]r : Romy1 — R 41 denotes the projection operator from R 11 onto R, 41,
then each Clifford number a € Rg ;41 may be written as

m—+1

a= Z [a];.

r=0
Note that in particular for a 1-vector u and an r-vector v, , one has
UV =U®VrF+UuU N U
with
1 T
U v, = [uv—1 = 5 w v, — (=1)"vr u
and
1 T
u A v = [ = 3 u v+ (—=1)"v u ).

Usually R and R™"! are identified with Rgﬁm 41 and R(l)’m 41 respectively. An element
= (20,21, ,Tm) € R™HL is thus identified with the 1-vector z = E;’LO T €.

Now let Q be an open region in R™*!1. A smooth r-vector function F, is a map
Fro:Q—RG g, 2 Z F. s(x) ea
|A|=r
where for each A, F,. 4 is a smooth real-valued function in Q.
We denote by &,.(€Q) the space of smooth r-vector functions in €2, and we put

m—+1

Q) =) & &(Q).
r=0

The projection operator from £(Q2) onto &,.(Q2) is denoted by [ . |,. For the linear

T
operator T : £.(2) — £(Q2) we denote by ker T the kernel of T in &,.(2), while im T
stands for the image of &,(Q2) under T.

A fundamental operator in Clifford analysis is the so-called Dirac operator, a vector
differential operator given by
m
0= ¢ 0n,.

§=0
Due to the non-commutativity of the multiplication in the Clifford algebra, it can act

from the left or from the right on a function. For F' = Z eaFa € E(Q) these actions
A

8F=ZZejeA 0z, Fa and F@zZZeAej Oz, Fa.
A J A

J

are given by
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A function F' € £(Q) is called left (resp. right) monogenic in Q iff it satisfies OF = 0
(resp. FO =0) in Q.

Restricting the Dirac operator 9 to the space &,.(2) we find for an r-vector function
F,, that OF, and F,.0 split up into an (r — 1)-vector and an (r + 1)-vector function:

m
8Fr = Zej 8;5].F7n = Zej L 8;5].F7n + Z@j A\ 8;5].F7n
J=0 J J

and

m
F.0 Z 8ij,« e;
=0

It readily follows that

OF ], = Y €j*0nFr = (1) 0, Fve; = (—1)HEl
J J

Z@ijr ° €; + Z(‘)ij,« A €j.
J J

OF i1 = D ej A 0w Fr = (1)) 0u,F A ey = (=1)[F0lq1.
J J

Consequently, for an r-vector function F)., the notions of left monogenicity and right

monogenicity coincide.

Moreover, if for F' € £(Q) we put Fg = Z ea Fy and Fp = Z ea F4, then
|A|=even |A|=0dd

F' is monogenic in Q iff both Fr and Fp are monogenic in (2.

Commonly one introduces the notations:

o F., = [8Fr]r,1 , oNF = [8Fr]r+1
F.9 = [F.0,-1 , F. N0 = [F.041.

The action of the Dirac operator 9 on &, (£2) thus gives rise to two auxiliary differential
operators:

o~ : &) — &-19) : F.— O°F. = 0°F, = [0F/)r-1
and
ot o &) — &) : F.— 0TF. = 0 ANF., = [0F]41.

Symbolically these operators may be written as:

07 = (9°) = Y (ej*)os

and

ot = (ON) = ) (e Ao,
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Their action on &.(2) is two-fold in the sense that they act on the multi-vector by
means of the inner and outer product with basis vectors, and at the same time on the
function coefficients by partial differentiation.

As on &£:(€2) holds:
9 =0+ 0F

we obtain that a smooth r-vector function F). is left monogenic (as well as right
monogenic) in Q iff in

o F =0
OF, =0 < F.0=0 < {aJrFr — 0 98]
As the Dirac operator 0 splits the Laplace operator:
0?2 = 020+0 ND =00 = —<0,0>= -/

a monogenic function in €2 is also harmonic in €2, but the converse clearly is not true.

As moreover
07) = (07 =0
we have
AN (874—5‘*)2 = 9070t +9070".

The second order differential operators 9~0% and 09~ are scalar operators in the
sense that they keep the order of the multi-vector function, but the function coeffi-
cients, while being differentiated, are interchanged w.r.t. the basis multi-vectors.

Now observe that the system (I), expressing the monogenicity of an r-vector func-
tion, is also equivalent to

OF, = (9t —07)F. = 0
or

Fd = F(0t-07) = 0

where we have introduced the modified Dirac operator

0 =0t-0".

We directly have the basic formulae:

90 = 9-9+—oto
00 = 0t9- —9 ot

00 = -9t~ —-0"0" = A
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which leads to the modified Laplace operator
A = 979" —at9”

which clearly is a scalar operator in the sense that it keeps the order of the multi-
vector function on which it acts.

Taking into account the main involution, also called inversion, of the Clifford
algebra, for which

(€4, + - 61‘7,)* = (e; N - A 61‘7,)* = (=D"ey A A e,
we get the formulae:
OF, = F*0 and OF, = F0
~AF, = 00F, = O0F:d = (-1 0Fd
AF, = 09F, = 0F9 = (—1)" 0F.0
AF, = 99F, = O0F'9 = (=1 0F0
~AF, = 00F, = O0Fd = (-1) dF.0.

3 Differential forms: preliminaries

This section is also introductory; there is a vast literature on differential forms; we
may refer to e.g. [8], [15].

Let R™*+! be endowed with the standard Euclidean metric.

Denoting by A"R™*! the space of alternating (or skew-multilinear) real-valued 7-
forms (0 < 7 < m + 1), the Grassmann algebra or exterior algebra over R™*! is the
graded associative algebra

m—41

/\Rm-i-l _ Z @/\rRm—i-l

r=0

endowed with the exterior multiplication.

A basis for \"R™*! is obtained as follows. Let {dz®,dz!,--- ,dz™} be a basis for the
dual space (R™T1)* of R™TL. If again the set A = {i1,...,ir} C M ={0,1,--- ,m}
is ordered in the natural way, put

dz? = dx™ A dx2 A oo A dxir

and
dz® = 1.



e Differential Forms and/or Multi-vector Functions 147

Then for each r = 0,1,--- ,m + 1, the set {dz?: A C M and |A| = r} is a basis for
AR
Note that in particular

dzt A dzt =0, i=0,1,---,m+1

and . ' ' .
dz* A da? + da? A dz' =0, 0<i#j<m.

A smooth r-form in an open region Q of R™*! is a map
™
w' Q- /\ R™T Z W (x) dz?
|A|=r

where for each A, w’; is a smooth real-valued function in €.

We denote by A"(2) the space of smooth r-forms in Q and we put

m+1

A =Y e\ @.

r=0

The projection operator from A() onto A" (£2) is denoted by [ .]", and the notations
of the foregoing section are kept for the kernel and the image of a linear operator

T:N\'(92) — A9).

A fundamental linear operator on the space of smooth forms is the exterior deriv-
ative d. Tt is first defined on A\"(Q) (r < m + 1) by

a: N — N @

wh o= Z wh dz?t  —  dw" = ZZ@x‘jwz ded A dz?
|Al=r A ]

and this definition is then extended to A(2) by linearity.
The kernel of the exterior derivative d ,

ker d = {w" € /\T(Q) :dw” = 0}

consists of the so-called closed r-forms in €, while its image of A"~ (Q) in A" ()

1
md = {d 0w e U@}
consists of the so-called exact r-forms in Q.

The quotient space

T r—1
H"(Q) = kerd /im d
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is the so-called de Rham r-th cohomology space.

The well-known Poincaré Lemma (see also section 5) asserts that if € is con-
tractible to a point, then for each r > 0, H"(2) = 0, in other words: if Q is con-
tractible to a point and w™ € A"() is closed, then w” is exact. The converse, i.e.
that any exact r-form in an open region of R™*! is also closed, follows at once from
the observation that d(dw) = 0.

A second fundamental linear operator on the space of smooth forms is the Hodge
co-derivative d*. For A = {i;,--- ,i,} C M we denote

de™sh = dpt A oA datir A [dat A datitt A - A dat

and in a first step we put:

d* (wadz®) = Z(—l)j Op,wa da\},

J=1

Then d* is defined on A"(Q) (r > 0) by

o N — N @

w' = Z Wl dzt —  dF(W") = Z d* (W' dz?)
|Al=r |A|=r
and this definition is extended to A(€2) by linearity.
The kernel of the co-derivative d* acting on A(Q):

ker d = {w'e N (Q): d'w, = 0}

consists of the so-called co-closed r-forms in €, while its image of A" (Q) in A”()

r+1 +1
m 4 = {dw o e AT ()

consists of the so-called co-exact r-forms in .
By observing that for any smooth form in Q, d*(d*w) = 0, it follows that each co-exact
r-form in € is also co-closed. The quotient space

r r+1
H.(2) =ker d* / im d*

is the so-called de Rham r-th homology space.

It could be confusing to use the term "homology” here, since it usually refers to the
complex associated with the algebra of chains subject to the action of the boundary-
operator; in the space of currents however there is a connection (see [8], p.313).
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By virtue of the Weyl duality we have for a region 2 which is contractible to a
point, and for each r < m + 1, that H,(Q) = 0, in other words: if € is contractible
to a point, then each co-closed r-form in € is also co-exact; this is dealt with in the
so-called Dual Poincaré Lemma (see section 5).

A smooth r-form in Q which is at the same time closed and co-closed is called
harmonic in Q (in the sense of Hodge). Introducing the operator D = d + d*, a
necessary and sufficient condition for a smooth r-form w" in 2 to be harmonic in
thus reads:

\
o

ro_ ®\, T _ dw” =
Dw" = (d+d)Ww" = 0 < {d*w’“ _ 0 (I1)
The system (II) is called the Hodge-de Rham system.

Note that if w” is harmonic in an open region £ of R™*! then automatically w”
satisfies Aw”™ = 0 in (2, since

D? = (d+d*)? = dd" +d"d = —A.

The converse is however not true.

The action of the operators d and d* on differential forms is two-fold in the sense
that they act on the form itself as well as on the function coefficients by partial
differentiation. In order to explicit this double action we introduce the following
symbolic notations for the operators d and d*. For d the following notation is rather
obvious:

d =Y (da/ 1) On,.
i=0
We then indeed have

dw” = Z(dxj/\)amj Z wh dx?
J |Al=r
= Zza%.wg dzd A dz?
i A

illustrating the above mentioned double action and the fact that d acts in an ” exterior”
way.

But this raises the question whether there exists a differential operator on forms acting
in an ”inner” way, to which end an ”inner product” in the Grassmann algebra should
be defined. Inspired by the inner product in the Clifford algebra, we put by definition:

det e dr! = — < da' da? > = -0y, 0<4,5<m.

In fact this scalar product in the Grassmann algebra already tacitly exists. Indeed,
as R™*! is endowed with the standard Euclidean metric, there is a canonical isomor-
phism between the tangent space 7,2 = R™*! and its dual T;Q = (R™T1)* given
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ej &2 <ej,*>=¢; = da?
and hence
<da:i,da:j>:<eZ,e;>=<ei,ej>= dij, 0<i,j<m.
So we introduce the operator
m
Z(di{,’j ¢ ) 89’3]
§=0
clearly an operator with a double action.
In a next step we put
T
da? e dz? = da’ e (dz™ A oo A dair) = Z(—l)k 8 iy, dz M},
k=1
We then get, by linearity, for a smooth r-form w":
m T
> (da? * )0, ST whdet | = >0 (=1)F (0, wh) da N
7=0 |Al=r k=1|A|=r

in which we recognize the action of the co-derivative d* on w;..
Consequently this co-derivative may be written as:

m

d* =) (da )0,

j=0
also nicely illustrating the double action of d*. From this point of view the co-
derivative d* might as well have been called ”interior derivative”.

Finally for the operator D = d + d* we obtain the expressions

L m

(dz/ A )0y, + Z(dmj ® )0q;

Jj=0

(da/ N + dz? )0y,

D = d+d =

1M:

I
NE

<.
I
o

(D2’V )0,

Il
.MS

<
I
o

where
DxlVv = dx? * + di/A
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is the so-called ”vee-product”-operator, which was introduced in e.g. [7] and [12] in
the more general context of a metric with (p, ¢)-signature on R™*1.

In the sequel we will deal with the operators d and d* on the same footing and
systematically mention the properties of d* next to those of d, for the sake of aes-
thetical symmetry. However, from the mathematical point of view this is superfluous;
considering the operator d* only leads to new results when it appears in connection
with the operator d. Note in this context the interesting operators dd* and d*d, which
are the ”components” of the Laplace operator (—A).

4 Differential forms and multi-vector functions: an
identification

In becomes clear from sections 2 and 3 that the world of differential forms in an open
region © of R™*! and the world of multi-vector functions in €2, may be identified in
a natural way. If for each A C M, f4 is a smooth real-valued function in €2, then the
following correspondence table may already be drawn (see next page).

This identification is now further developed. First one may wonder what the
counterpart is of the Hodge  (star) operator. On the one hand one has

*(dl‘jl A o A dxjr) = o'dxjr‘*'l A oo A dxjm-%—l
Wherejl < <jr ! jr+1 < <jm+1 ’ {jlv"' ,jr}U{errl,"' ajerl} =M=

{0,1,--- ,m} and o is the signature of the permutation (Jy41, - ,Jm+1,71s°"" s Jr)-
This corresponds, for A = {j1,---,j-} C M to

xeqy = (=1)" eMef4
where epf =eg A exr A -+ A e is the so-called pseudoscalar and 1 stands for the

main anti-involution of the Clifford algebra, also called reversion, given by

r(r—1)
2

el = (e A Ae) =6 A Aey = (-) ea.

Next we identify some differential operators and establish similar formulae in both
worlds.

To start with, the Euler operator

E = Z Xy 8;3]
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da? €;

dz' A da? e; N\ej

dz’ * da’ ei®ej
wr:ZfAdxA FTZZfAeA

|Al=r

m

d=> (d2’ \)o,,
j=0

7=0
d' =7 (da’ *)ds, 0" = (e *)o,
Jj=0 j=0
D=d+d =) (Da'V)d,, 0=0"+0" = ¢; Oa,
j=0 =0

w" harmonic in Q ¢ R™*!

F, monogenic in Q ¢ R™+!

d*>=dd=0 ot2 =0Tt =0
d*? =d*d* =0 02=0"0"=0
dd* oto-
d*d Forons

D?>=(d+d)? =dd* +d'd= -\

92 = (0" +07)2 =070 +0-0+ = —A

D=d—d*

D=0t -0

D? = (d—d*)?=—dd* —d*d = A

P2 =—0%0"—0-0" = A

DD = —DD =d*d—dd* = A

00 = —00=0-0t —9to— = A

7, 2(2005)
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defined by
m m
Ew" = Z T Opw” = Z dxAZ T Op,wh
J=0 |A|=r j=0
and

EF, = Y ;0. F, = Y ey w0y Fra
J=0 |[Al=r  §=0

is a scalar operator, measuring the degree of homogenicity of a function, and not af-
fecting the order of a differential form or a multi-vector function. The Euler operator
thus has the same defining expression in both worlds.

From the world of differential forms we now focus on the contraction operators
Oz;], 7 = 0,1,---m, acting only on the basis elements of the differential form, but
not on the function coefficients, and given by

T
Op, )z = Oy, | (da™ A -+ A da't) = > (1P Gy, daNUH
k=1
Apparently the contraction operator J,, | is, up to a minus sign, nothing else but the
”inner product”-operator (dz? ® ) :

On;] = (=da?®), j=0,1,---,m.

However bear in mind that contractions are more fundamental than dot products. In-
deed, they can be introduced independently of a scalar product, and their behaviour
is invariant under diffeomorphisms, which is not the case for the dot product.

m
For a first order operator v = Z v () Oz;, v; being a scalar-valued smooth func-
=0
tion, mostly called a vector field, one may consider the associated contraction operator
m
o = Y @) o)
§=0
which also takes the form

v] = Z v;(z)(—dx? o).
7=0

This inspires an associated ”inflation” operator

m

v] = vj(w) Oz ] = Z vj(z) (—dz/ N)

j=0 Jj=0

[

where the action of 9,,] = (—da’A) is given by

Op,] dz? = —da? A dz?.
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So from the Euler operator ' we deduce the operators

E| = Z T Op,| = Z zj(—dzl *)

J
and

E|l = Z zi(—dz? A)
J
which are in a sense complementary to the operators d and d* — think of replacing

x; by do? and dx? by z;. So the operators E| and E] must show properties similar
to those of the operators d en d*, which they indeed do, as shown in the next lemma.

Lemma 4.1

The operators E| and E| enjoy the following fundamental properties:
(i) (E])* =0

(ii) (E1)* = 0

(iii) E| + E] = Zx] (Dz; v
Jj=

(iv) (E] +E))? = E|E|+E|E] = —[af?

The counterparts in the Clifford setting of the operators (—dz? *) and (—dz’A)
clearly are (—e; *) and (—e;A). The properties of the operators

ij(—ej °) = ) and ij —ejN) = (—zN)
7=0

corresponding to the ones in Lemma 4.1, are then straightforward:

(@) (—ze)(-z*) =0
(#3) (—zA )(—zN) =0
(i5i) (—x* )+ (—zN) = —z (Clifford product understood)
(i) ((—z*)+(—an )’ = (—z*)(—an)+(-an)(-z*) = —Jz°
Note that the operators (e; ®) and (e;A), j=0,1, ..., m, coincide with the so-
called de Witt basis of the algebra of endomorphisms on the Clifford algebra R 1.
Indeed, if e; and €5, j = 0,1,...,m denote the endomorphisms, given for an arbitrary

Clifford number a, by

eja — eja

gjra +—— €;a04=ae;
then the Witt basis is formed by

1

1 ‘
Si=5les—ei), § =56 +5), j=01,....m
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and apparently §; = (e; ) and §; = (e;N).

In the same order of ideas and starting from the operators d and d*, we introduce
the contraction and ”inflation” operators

dl =) (da7n) 0y, =Y (da’ N)(—da’ *)
j=0 §=0

A= (da? ) 0,1 = (da? *)(—daN)
j=0 j=0

The operators d| and d*] have £7(Q2) as an eigenspace since
djw" =r " and dlw"=(m+1-r) .

In other words: they measure the order of a differential form. They are sometimes
called fermionic Euler operators.
In the Clifford analysis setting we get

O] =) (e;N)(—e;0)  and 9] => (e *)(—¢;N)
=0 =0

J J

for which indeed:
O | F.=rF, and 07| F=(m+1-r) F..

Now we turn our attention, still in the world of differential forms, to a so-called
Lie-derivative of differential forms. For a given scalar vector field v = Zvj(‘)xj we

J
define

Low=dv|w+v|dw.
It is clear that the operators £, and d, as well as £, and v|, commute, since
dL,=dv|d=L,d

and

v|Ly =v] dv| =L, v].

This implies that closedness and exactness of differential forms are preserved under
7 Lie-derivation”.
We now prove a fundamental formula about the Lie-derivative of the Euler operator.

Lemma 4.2
For any smooth differential form w € N\(Q2) one has

Lrw=(E|ld+dE])w=(E+d]) w.



156 F. Brackx, R. Delanghe and F. Sommen

7, 2(2005)
Proof.
First we have
Eldw= Za:j(—dxj *) (Z(dmk/\)ﬁka)
j k
:ZZ Zj Ojk Oy w—l—Zij dz® A Op, da’ ® w
ik ik
:ij Oz; —I—ZZ zj dz® A O, (da? e w)
J j k
while
dElw = Z (dz® A) Oy, Z zj (—dz; * w)
k J
= ZZ dz® A (—da? * w) Sk —ZZ dz® A x; (da? ¢ 9y, w)
j k ik
= —Z dx? A (da? 'w)—zz xj de® A Oy, (da? e w).
J j k
Hence '
E| dw:Ew—i—ZZ zj dz® A Oy, (da? e w)
ik
while .
dE|w=d| w—zz xj dz® A Oy, (da? e w)
ik
and the desired result follows. |

By transposing the identity of Lemma 4.1 into Clifford analysis language we get
Corollary 4.3.
For any smooth multi-vector function F € £(2) one has
<(—x )t + 0" (—x °)>F =(E+0T)) F.
Corollary 4.4.
(i) For w™ € \"(Q2) one has
Lrw =(F|d+dE|)w" =(E+r)w.

(it) For F,. € £.(Q?) one has

<(—x *) 0" + 0" (—x -)> F,=(E+7) F,.
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Corollary 4.5.
(i) If vy € N"(Q) is homogeneous of degree k, then
Lrw,=(E|d+dFE])w,=((k+r)w.

(i1) If F ) € & (Q) is homogeneous of degree k, then
((—a: ) ot + 0t (~= ')) For=(k+r) Frg.

The similar fundamental identity involving the operators E'] and d* is now proven
in the language of multi-vector functions.

Corollary 4.6.

For any smooth multi-vector function F € £(2) one has
((—a: N) O +0 (—= /\))F =(E+07]) F.

Proof.

On the one hand we have

(4)
where F' denotes that part of F' containing the basis vector e;.
On the other hand we have

O (@AF)=> (er®) Ou, Y 7€ AF

k

=Y (g NeNF+Y " xj (er *)(ejA) 0, F
5 Tk

=—071F+Y_ (¢ 9)(e;A) O, F+ Y xj (ex *)(e;N) Ou, F
J J#k
co(j)
=—07] F- Z rj Op, F +Z zj (ex *)(ejN) Op F
J J#k
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co(J) o )
where F  denotes that part of F' not containing the basis vector e;.
Adding both expressions yields the desired result. |

Corollary 4.7.
For any smooth differential form w € A\(2) one has
(Eld*"+d" F]) w=(E+d"]) w.
Corollary 4.8.
(i) For w™ € \"(Q2) one has
(Eld"+d'E))w"=(E+m+1—7)w".

(it) For F,. € £.(Q?) one has
<(—x A) 07 +07 (—:C/\)) F,=(E+m+1—-r) F,.

Corollary 4.9.
(i) If wj, € \ () is homogeneous of degree k, then
(Eld"+d'E)) wy=(k+m+1—71) wg.

(i) If P € & () is homogeneous of degree k, then
<(—{E /\) 0~ + 0~ (—(E /\)) Fr,k = (]f +m+1-— 7’) Fr,k~

The above considerations lead to the completion of our identification table set up
at the beginning of this section.

E:ij 8xj EZZJ?]‘ 89cj
J J

2

] = —da? e —¢j ®

Op,] = —da’ o —e; A

EJ = ij(—dxj ') ij(_ej o) —_q e

E] = ij(—dxj A) > mi(—eA) = —z A
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E|+E]|= ij (dz? V)

(— 9)+ (~xA) = —a

Clifford product understood

d| = (da? N)(—da’ )

J

o) = (ej A)(—e; *)

J

d*] = (da’ *)(—da )

J

071=> (e *)(—¢; A)

J

Lp =dE|+E|d=E+d|

Ot (—z *)+(—z *) 0T =E+07|

Ly =d* E|+E)d*=E+d"]

0~ (—xN)+(—zAN) 0" =FE+07|

5 The Poincaré and the dual Poincaré Lemmata re-

visited

In this section we formulate refinements of the classical Poincaré Lemma and its dual,
both in the language of differential forms and in the one of multi-vector functions,
exploiting the identification established in the previous section.
As it appears to us that these refinements are rarely cited in the literature, we add

their proofs.

We start with a classical result, which in the language of three dimensional vector
fields is usually called the Helmholtz decomposition.

Proposition 5.1.

For each r-form w™ € N'(Q) (0 < r < m + 1) there exist a™t* € N1 (Q) and

b=t e N"HQ) such that
(i) da™t =0 ;
(it) & bt =0 ;

(iii) W™ =d* o™ +d b

Proposition 5.2.

For each r-vector function F, € £.(Q) (0 <r < m+ 1) there exist Ary1 € Er41(Q)

and By_1 € £._1(2) such that
(Z) 8+ Ar+1 =0 3
(ii)) & By_1 =0 :
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(iii) F, =0~ Apy1+ 0% By
Proof.

As the Laplace operator A : &.(Q) — &,(Q) is surjective (see e.g. [14], there
ought to exist G, € &.(Q) such that (-A) G, =F, or (0~ 0t +0%797) G, =F,.
Put A,y 1 = 0% G, and B,_1 = 8~ G, to obtain the desired result. [ |

Note that dw” = 0 iff the (r + 1)-form a"*! in the above Helmholtz decomposition
is harmonic (in the sense of Hodge), while d*w” = 0 iff b"~! is harmonic. Similarly,
we have that 9T F,. = 0 iff A, is monogenic, while 9~ F,. = 0 iff B,_; is monogenic.
But there is more. The Poincaré Lemma and the Dual Poincaré Lemma will assert
that one of those harmonic forms a™*' and b"~!, respectively one of those monogenic
multi-vector functions A, ;1 and B,._1, is absorbed in the other remaining term.

Lemma 5.3. (Poincaré)
Let r > 1 and let 2 be an open region contractible to a point. Then
r r—1
ker d =d ( ker d* )

i.e. the following are equivalent:

(i) dw™ =0

(ii) there exists w™1 € N1 (Q) such that d*w™ ' =0 and w" = dw™L.
Lemma 5.4. (Poincaré)

Let r > 1 and let 2 be an open region contractible to a point. Then
ker 9% = 0% ( ker - )
i.e. the following are equivalent:
(i) 0T F, =0AN F.=0

(ii) there exists Fr._1 € £,-1(2) such that 0~ F,_1 =0 F,._1 =0
and F, = 8+Fr,1 =0ONF,._1.

Proof.

We prove Lemma 5.3.

(1) = (i0)

From the classical Poincaré Lemma follows the existence of a1 € A"~ '(Q) such
that w” = da" 1.

As A NTHQ) — ATTH(Q) is surjective, there ought to exist 571 € A7HQ)
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such that A g7t =a""1.
Put
wr—l —_ ar—l +dd*ﬁr_1.

Then clearly dw"™! =da" "' = w". Moreover

d*w"’l

d*ar—1 + d*dd*ﬂrfl = d*a" ! + d* (dd* + d*d) ﬂr71
—_ d* ar—l _ d*AﬁT_l = 0.

(i) = (i)
Trivial. ]
Lemma 5.5. (Dual Poincaré Lemma)

Let r <m+1 and let Q be an open region contractible to a point. Then

r+1

ker d* = d* (ker d)
i.e. the following are equivalent:
(i) d*w" =0
(ii) there exists w1 € N"THQ) such that dw™ =0 and w™ = d*w"™+?.
Lemma 5.6. (Dual Poincaré Lemma)
Let r <m+1 and let Q be an open region contractible to a point. Then

T r4+1
ker 7 =9~ ( ker 0 )

i.e. the following are equivalent:

(i) 0" F.=0° F.=0

(i1) there exists Fri1 € Er41(Q) such that T Fry 1 =0 and F. =0~ F,y1.
Proof.
We prove Lemma 5.6.
(i) = (i)
For each F, € £.(Q), Frey = Fy ese1...€m = Gpy1—r belongs to E,11-r (). As
0 Gmi1—r = (0 F,) epr, we get:

0~ Gerlfr =0° Gerlfr = [a Gerlfr]mfr = [a Fr]rJrl eM = (aJr Fr) EM

and also

ot Gm+1—7" =0A Gm—i—l—r = [8 Gm+1—r]m+2—r = [8 Fr]r—l eEM = (8_ Fr) €M-
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Hence F, will satisfy 0~ F,, = 0 iff 07 Gy1-» = 0. Lemma 5.4 then asserts the
existence of Gy, € Em_r () such that 0~ G =0 and Gry1 o = 07 Gy As
e2; =em, em = £ 1, we get, putting Gp—r ens enr = Fryq

Fr - Gerlfr €M EM = (aJr Gmfr) €M EM = [a Gmfr]erlfr €M EM
[8 Fr+1]r =0" Fr-{-l

while
0t Foy1 =0 Gy = 0.

(1) = (i)
Trivial. |
Corollary 5.7.

If the open region 2 is contractible to a point, then the differential operators:
T T
(i) =0T : ker 0~ — ker 0~
T T
(ii) 070~ : ker 9T — ker 9T
(iii) A E(Q) — £.()
are surjective.

Proof.

(i) Take F,. € ker ~. By Lemma 5.6 there exists F,;1 € &-11 Q such that 07 F, 1 =
0 and 0~ F,41 = F,.. So by Lemma 5.4 there exists G, € &,.(2) such that -G, =0
and 07 G, = F,. 1.

Tt follows that -9+ Gy = 9~ Fyi1 = Fy with G € ker 9.

(%) Similar to the proof of (i).

(7i1) Take F, € &.(Q2). By Proposition 5.2 there exist Ay41 € &41(Q) and
Br_1 € &_1(Q) such that 974,11 =0, 0B,y =0and F,, = 0" A, 41 + 0" B._1.
By (i) and (ii) there exist G, € ker 8~ and H, € ker % such that 90" G, =

T T
0" Ary1 € ker 9~ and 870~ H, = —0TB,_1 € ker 8. Hence 0-0%(G, + H,) =

0~ Ars1 and 970 (G, + Hy) = —97B,_y, and thus also A(G, + H,) = (9-9% —
8+8_)(G7" + Hv") = 8_Ar+1 + 8+Br_1 = F,. ]

Now combining the Poincaré Lemma and the Dual Poincaré Lemma, we obtain
the following structure theorem on monogenic multi-vector functions and its counter-
part on harmonic differential forms.
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Theorem 5.8.

If the open region §) is contractible to a point, then for each w™ € N\"(Q)
(0 <7 <m+1) the following are equivalent:

(i) w" is harmonic in Q, i.e. Dw" = (d+ d*) w" =0 in Q

(ii) there exists W™~ € A" (Q) such that d* W™ ' =0, A W' =0 and
wh=dw" !

~

(ii’) there exists w™™' € N""H(Q) such that d* ™1 =0, A w1 =0 and
W =dw" !

(iii) there exists ™ € N"TH(Q) such that d W™ =0, A W™ =0 and
w" = d*errl

(iii’) there exists w™t € N"T(Q) such that d W™t =0, A W™ =0 and
W' =drortL

Theorem 5.9.

If the open region S is contractible to a point, then for each F, € £.()
(0 <7 <m+1) the following are equivalent:

(i) F. is monogenic in 2, i.e. d F, = (0T +07) F, =0 in Q

(i1) there exists Fr._1 € £,_1() such that 0~ F,_1 =0, A F._; =0 and

F.=0"F,_

(ii’) there exists Fr_1 € E.—1(Q) such that 0~ F,._1 =0, ﬁ F._1 =0 and
F. = 8+Fr—1

(iii) there exists Fri1 € E-41(Q) such that 0T F.. 1 =0, A F.y1 =0 and
F, = 87Fr+1

(1ii’) there exists Fri1 € E-41(Q) such that O F,41 =0, A F.y1 =0 and
F,. = 8_FT+1.

Proof.

(#9) = (¢) and (i7') = (d): trivial
(#91) = (¢) and (zit") = (4) : trivial
(i) = (i) and (i) = (i7)
If F, is monogenic in  then 0T F, =0 and 0~ F, = 0 in . By Lemma 5.4 there
exists Fr._1 € &_1(Q) such that 9~ F,_1 =0 and 0" F,._; = F,. It follows that in :

8Fr—1:8+Fr+1:Fr
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and
(=) F,_1=0(0F,_1)=0F, =0.
It also follows that in )
DF, = (0" -0 ) Fy=F,
and N N
ANF,_1=00F_1)=0F,=0.
(1) = (¢i2) and (1) = (¢it))
By Lemma 5.6 there exists Fy.11 € E-41 () such that 01 F,.,1 =0
and 0~ F,11 = F,.. Tt follows that in Q :
8Fvv"—i—l =0" Fr+1 =F;
and
(—A) FT+1 - 8(8F7-+1) = 8F7- =0.
It also follows that in
5 Fr+1 - (5‘+ - 5‘7) Fr+1 == —(’9* Fr+1 == —Fr
and N N
A Fr+1 = 8(5‘Fr+1) == —5‘Fr = 0
[ |

Remarks 5.10.

(7) The above Theorems 5.8. and 5.9 may be rephrased as follows.
If the open region € is contractible to a point and 0 < r < m + 1, then

r r—1 r—1 r—1 r—1
ker D = d<ker d* N ker (d*d)) d (ker A N ker d*)

r—1 ~

r—1
= d (ker A N ker d%)

r+1 r+1
d* (ker A N ker d)

r r+1 r+1
ker D = d* (ker d N ker (dd*))
r+1 ~ r+1
= d* (ker A N ker d)

r r—1 r—1 r—1 r—1
ker 9 = 0t (ker 9~ N ker (8_8"’)) = 0% (ker A N ker 97)

r—1 ~ r—1
= 0% (ker A N ker 97)

r r+1 r+1 r—+1 r+1
ker 8 = 0~ <ker ot N ker (8*8)) = 0 (ker A N ker 91)

r4+1 ~ r4+1
= 0 (ker A N ker oT).
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(79) For the equivalence (i) <= (i¢) of Theorem 5.8 we also refer to [4].

6 From the Euler operator to the Poincaré Lemma

The proof of Lemma 5.3. heavily relies on the classical Poincaré Lemma. In this
section we reflect upon the proof of this classical Poincaré Lemma and we present
an alternative proof, however restricted to real-analytic differential forms in an open
ball.

The essence of the proof of the Poincaré Lemma for one-forms is easily grasped.
Indeed, one-forms may be integrated along curves and the integral of a closed one-
form from a fixed point to a variable endpoint, in a homologically trivial domain such
as a ball, only depends on this endpoint; in other words: for closed one-forms there
is a natural notion of primitive.

For higher-order forms the integral operators in the proof of the Poincaré Lemma, are
still one-dimensional. How is it possible that such a kind of method is still successful?
The answer to this question, at least for the case of a ball, lies in considering the
Euler operator E (see also section 4).

Let P be the algebra of polynomials generated by {zg,x1, ..., %} and let Py be the
subspace of homogeneous polynomials of degree k, k € N. Then it is clear

that
+oo
P= Z @ Py
k=0

is the eigenspace decomposition of P associated with the Euler operator E.
Next consider the algebra ® of polynomial differential forms, i.e. the free associative
algebra generated by {z¢,z1, ..., Tm,dz?, dzt, ... dz™}. If &} denotes the subspace
of r-forms with function coefficients in Py, then one has the decomposition

m—+1 +oco

=) > @

r=1 k=0

and the question arises with which operator this decomposition is associated. The
answer to this question is given by Corollary 4.5.(i): for each ¢}, € ® we indeed have

Lpep=(Eld+dE]) ¢ = (k+7) ¢

showing that ®j is an eigenspace of the operator Lg, which, for » > 1, has only
positive eigenvalues.
The injective linear operator Lg : & — ® thus has a left inverse E;Jl, given by

m+1 m—41

Ll o=> > Li'en) = > Zkirwi :
r=1 k r=1 k
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which is also a right inverse:
Egl Lgo=LEg Egl p =y, forall p€d.

Moreover, as in the case for Lg, the operator Egl commutes with the operators d
and F| :
Lptd=dLy" and LG'E|= E|] L,

For any polynomial differential form ¢, not containing a scalar part, we thus have

¢ = L' Eldo+ Ly dE]p

= L Eldp+d Ly E|p
and, in particular, for any closed polynomial differential form .yscq Wwe find

Pelosed = d (ﬁglEJ @closed) =d (EJ 5;31 Saclosed)~

This proves the Poincaré Lemma for closed polynomial differential forms in any open
region of R™+1,
Finally, let w” be a closed real-analytic r-form in a ball centred at the origin, say

é(O, R). Then the series
@)=Y wi(e) , wpedf

together with all its derived series, converges uniformly on the compact subsets of
[e]

B(0, R). As for each k,
1

k+r

T

-1, r
Ly wy = W

and as the series

— 1

> wi (2)

— k+r
together with all its derived series, also converges uniformly on the compact subsets
of B(0, R), we may define

Hence - - -
W= Y wp = S d(E] L5 ) = d(E]Y Lptep)
k=0

k
=d(E] L;'w")

which concludes the proof of the Poincaré Lemma for closed real-analytic r-forms in
an open ball centred at the origin.
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Remark 6.1.

In a similar way the Dual Poincaré Lemma for co-closed real-analytic differential
forms in an open ball may be proved. The key steps in the proof are

(1) Corollary 4.8.(i) stating that for each ¢}, € @7, :
B vk = (Bl +d"E)) g =(k+m+1-r) & ;
(ii) the commutation rules:

'Ly = dE)d* = Lyd
E|Ly = E|d*E] = LLE] ;

(iil) the inversion formula for a polynomial differential form ¢ :
o= (LB + L ) ¢
(iv) and in particular for a co-closed polynomial differential form ¢co—ciosed :

Pco—closed = ‘C*E_l d*E—l Pco—closed = d* (‘C*E_lE]) Pco—closed-

7 Differential forms versus multivector functions

In the previous sections we established and illustrated a "natural” isomorphism be-
tween on the one hand the Cartan algebra of differential forms (extended with the
Hodge star operator and the inner product or dot product), with the underlying
structure of the Grassmann algebra, and on the other hand the algebra of multi-
vector functions in Clifford analysis with the underlying structure of Clifford algebra.
This could easily lead to the conclusion that either one of both is redundant. In-
deed it is true that the equations of Clifford analysis may often be rewritten using
vector calculus or more generally differential forms. This is nicely illustrated by the
correspondence table of section 4 and in particular by the correspondence between
the action of the Dirac operator 0 on multi-vector functions and the action of the
operator D = d + d* on differential forms. Historically this redundancy issue has led
to a long and repeated discussion between those who advocate the use of differential
forms and those who consider differential forms as an intermediate concept that can
be fully replaced by Clifford algebra. Examples of papers where Clifford algebra is
realized by means of Grassmann algebra are [7], [9] and [12].

A typical construct in these is the so-called ”vee-product” or Clifford product of dif-
ferential forms (see e.g. [2]). The Dirac operator D on the Cartan algebra A () may
then be defined by

Dvw=DVw |, we/\(Q).
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It turns out that D = d + d*.

On the other hand, in their book [6] Hestenes and Sobczyk recover most of the theory
and calculus of differential forms by interpreting them as alternating tensors which
may be represented by means of linear functions on the subspaces of r-vectors in a
Clifford algebra, an approach which was made more explicit in [5].

Strictly speaking both points of view are mathematically correct. What we do not

agree with is the conclusion that either the use of an extra Clifford basis (eg, €1, ..., €m)
next to (dx®,dx!, ..., dz™) or the use of the differential forms
dx0,dzt, ..., dx™ as basic elements of calculus, is redundant. Despite the similarities

as depicted in this paper, the dz? and e; are different calculus objects with a different
calculus behaviour, which will be fully demonstrated and illustrated in the forthcom-
ing paper [13].

Many examples illustrating the falsity of the "redundancy idea” could be given, but
the main counter-argument relies in the success and the richness of the results ob-
tained by considering both the basic differential forms da’/ and the Clifford algebra
generators e; as independent calculus elements. This is nicely demonstrated in e.g.
[11] where Chapter 9 focusses on the interplay between complex differential forms and
complez Clifford algebras and its usefulness for classical several complex variables
theory is shown.

Received: June 2004. Revised: August 2004.
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