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ABSTRACT
This article gives a detailed introduction to symmetric spaces of non-compact

type and their relation to corresponding semisimple lie groups. This is done more
or less from scratch and explicitely without the reader having to know large parts
of modern differential geometry.

RESUMEN

Este art́ıculo entrega una detallada introducción a espacios simétricos de tipo
no compacto y su relación con los correspondientes grupos de Lie semisimples.
Esto es hecho mas o menos en términos generales y expĺıcitamente sin que el
lector tenga gran conocimiento de la geometŕıa diferencial moderna.
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1 Introduction

In this article we shall give an introduction to symmetric spaces of noncompact
type. This subject, largely the creation of Élie Cartan (1869-1951), is of fundamental
importance both to geometry and Lie theory. Indeed, one of the great achievements
of the mathematics of the first half of the twentieth century was E. Cartan’s discovery
of the fact that these two categories correspond exactly. Namely, given a connected,
centerless, real semisimple Lie group G without compact factors there is associated
to it a unique symmetric space of noncompact type. This is G/K, where K is a
maximal compact subgroup of G and G/K takes the Riemannian metric induced
from the Killing form of G. Conversely, if one starts with an arbitrary symmetric
space, X , all of whose irreducible constituents are neither compact nor IRn, then
X = G/K, where G is the identity component of the isometry group of X . Here
G is a centerless, real semisimple Lie group without compact factors. Thus, we
have a bijective correspondence between the two categories and this fact underlies an
important reason why differential geometry and Lie theory are so closely bound. As
one might expect, this close relationship between the two will show up in some of the
proofs. For the details of all this, see S. Helgason [4] and G.D. Mostow [9]. Also,
[4] has a particularly convenient and useful early chapter on differential geometry.
Concerning this correspondence, the same may be said of Euclidean space and its
group of isometries, or of compact semisimple groups and symmetric spaces of com-
pact type, which were also studied by E. Cartan. However, we shall not deal with
these here. Taken as a whole Cartan’s work on symmetric spaces can be considered
as the completion of the well known “Erlangen Program” first formulated by F. Klein
in 1872. In particular, it ties together Euclidean, elliptic and hyperbolic geometry in
any dimension.

Before turning to our subject proper it might be helpful to consider a most
important example, namely that of G = SL(2, IR) and X the hyperbolic plane, which
we view here as the Poincaré upper half plane, H+, consisting of all complex numbers
z = x + iy, where y > 0. We let G act on H+ by fractional linear transformations,
g · z = az+b

cz+d ,

g =
(
a b
c d

)

where a, b, c and d are real and det g = 1. Since I(az+b
cz+d ) = I(z)

|cz+d|2 > 0, we see that
g · z ∈ H+. That this is an action is easy to verify. Now this action is transitive. Let
c = 0, then a �= 0 and d = 1

a . Then g · i = a2i+ ab. Evidently, by varying a > 0 and
b ∈ IR this gives all of H+. A moment’s reflection tells us that the isotropy group,
StabG(i), is given by a = d and c = −b. Since det g = a2 + b2 = 1, we see

StabG(i) = {g : g =
(

cos t sin t
− sin t cos t

)
: t ∈ IR}.

On H+ we place the Riemannian metric ds2 = dx2+dy2

y2 (meaning the hyperbolic
metric ds = dsEuc

Iz ) and check that G acts by isometries on H+ (for this see, for
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example, p. 118 of [8]). Since G is connected, its image, PSL(2, IR), is contained in
Isom0(H+). (Actually it is Isom0(H+), but that will not matter. Also, there are 2
connected components, the other is the anti-holomorphic automorphisms, but that
will not matter either. From the point of view of the symmetric space it does not even
matter whether we take SL(2, IR) or PSL(2, IR). However, we note that PSL(2, IR),
the group that is really acting, is the centerless version.)

Another model for this symmetric space is the unit disk, D ⊆ C, called the disk
model. It takes the metric ds2 = 4 dx2+dy2

(1−r2)2 and has the advantage of radial symmetry
about the origin, 0. Here r is the usual radial distance from 0. The point of the 4
is, as we shall see, to make D isometric with H+, or put another way, to normalize
the curvature on D to be −1. Now the Cayley transform c(z) = z−i

z+i maps H+

diffeomorphically onto D. Its derivative c′(z) = zi
(z+i)2 . A direct calculation shows

that for z ∈ H+

2|c′(z)|
1− |c(z)|2 =

1
I(z)

.

Using this we see that if w = c(z), then |dw| = |c′(z)||dz| and so

2|dw|
1− |w|2 =

2|c′(z)|
1− |c(z)|2 |dz| =

|dz|
|I(z)| .

Thus c is an isometry. Of course in the form of the disk, the group of isometries and
its connected component will superficially look different.

2 The Polar Decomposition

Explaining the reasons for the relationship mentioned above will take some time and
we shall begin by studying the exponential map on certain specific manifolds.

The n × n complex matrices will be denoted by gl(n,C) and the real ones by
gl(n, IR)). Denote by H the set of all Hermitian matrices in gl(n,C) and by H the
positive definite ones. It is easy to see that H is a real (but not a complex!) vector
space of dimn2. Similarly, we denote by P the symmetric matrices in gl(n, IR) and
by P those that are positive definite. P is a real vector space of dim n(n+1)

2 . As we
shall see, H and P and certain of their subspaces will actually comprise all symmetric
spaces of noncompact type.

Proposition 2.1 P and H are open in P and H, respectively. As open sets in a
real vector space each is, in a natural way, a real analytic manifold of the appropriate
dimension.

Proof. Let p(z) =
∑

i piz
i and q(z) =

∑
i qiz

i be polynomials of degree n with
complex coefficients, let z1 . . . zn and w1 . . . wn denote their respective roots counted
according to multiplicity and let ε > 0. It follows from Rouché’s theorem (see [8]) that
there exists a sufficiently small δ > 0 so that if for all i = 0, . . . , n if |pi− qi| < δ, then
after a possible reordering of the wi’s, |zi−wi| < ε for all i. Suppose H were not open
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in H. Then there would be an h ∈ H and a sequence xj ∈ H−H converging to h in
gl(n,C). Since h is positive definite, all its eigenvalues are positive. Choose ε so small
that the union of the ε balls about the eigenvalues of h lies in the right half plane.
Since the coefficients of the characteristic polynomial of an operator are polynomials
and therefore continuous functions of the matrix coefficients and xj converges to h,
for j sufficiently large, the coefficients of the characteristic polynomial of xj are within
δ of the corresponding coefficient of the characteristic polynomial of h. Hence all the
eigenvalues of such an xj are positive. This contradicts the fact that none of the
xj are in H , proving H is open in H. Intersecting everything in sight with gl(n, IR)
shows P is also open in P .

Proposition 2.2 Upon restriction, the exponential map of gl(n,C) = gl(V ) is a real
analytic diffeomorphism between H and H. Its inverse, is given by

Log h = log(tr h)I −
∞∑

i=1

(I − h

tr h
)i/i,

which is an analytic function on H.

As a consequence we see that the restriction of exp to any real subspace of H gives
a real analytic diffeomorphism of the subspace with its image. In particular, exp is
a real analytic diffeomorphism between between P and P . In particular, in all these
cases exp is a bijection.
Proof. We shall do this for H, the real case being completely analogous. Suppose
h ∈ H is diagonal with eigenvalues hi > 0. Then tr(h) > 0 and 0 < hi

tr(h) so log(tr(h))
is well defined and log( hi

tr(h) ) is defined for all i. But since 0 < hi

tr(h) < 1, we see
that 0 < (1 − hi

tr(h) )
k < 1 for all positive integers k. Hence Log( I−h

tr(h)) is given by an
absolutely convergent power series −∑∞

i=1(I − h
tr h)i/i. If u is a unitary operator so

that uhu−1 is diagonal, then tr(uhu−1) = tr(h) and since conjugation by u commutes
with any convergent power series, this series actually converges for all h ∈ H and is
a real analytic function Log on H . Because on the diagonal part of H this function
inverts Exp, and both Exp and this power series commutes with conjugation, it inverts
Exp everywhere on H . Finally, log(tr(h))I and Log( h

tr h ) commute and Exp of a sum
of commuting matrices is the product of the Exp’s. Since Log inverts Exp on the
diagonal part of H it follows that

Log(h) = log(tr(h))I + Log(
h

tr h
) = log(tr(h))I −

∞∑
i=1

(I − h

trh
)i/i.

We shall need the following elementary fact whose proof is left to the reader.

Lemma 2.3 For any g ∈ GL(n,C), g∗g ∈ H.



7, 2(2005)
Symmetric Spaces of Noncompact type 115

It follows that for all g ∈ GL(n,C), log(g∗g) ∈ H and since this is a real linear
space also 1

2 log(g∗g) ∈ H. This means we can apply exp and conclude the following:

Corollary 2.4 h(g) = exp(1
2 log(g∗g)) ∈ H is a real analytic function from

GL(n,C)→ H.

Hence h(g)n = exp(n
2 log(g∗g)) ∈ H for every n ∈ ZZ. In particular, h(g)−2 =

exp(2
2 log(g∗g)) = g∗g. So that

gh(g)−1(gh(g)−1)∗ = gh(g)−1h(g)−1∗g∗ = gh(g)−2g∗

and, since h(g)−1 ∈ H , g(g∗g)−1g∗ = I. Thus, gh(g)−1 = u(g) is unitary for each
g ∈ GL(n,C). Since group multiplication and inversion are analytic, u(g) is also a
real analytic function on GL(n,C) (as is h(g)). Now this decomposition g = uh,
where u ∈ U and h ∈ H is actually unique. To see this, suppose u1h1 = g = u2h2.
Then u−1

2 u1 = h2h
−1
1 so that h2h

−1
1 is unitary. This means (h2h

−1
1 )∗ = (h2h

−1
1 )−1

and hence h2
1 = h2

2. But since h1 and h2 ∈ H , each is an exponential of something in
H; hi = expxi. But then h2

i = exp 2xi and since exp is 1 : 1 on H, we get 2x1 = 2x2

so x1 = x2 and therefore h1 = h2 and u1 = u2. The upshot of all this is that we
have a real analytic map GL(n,C) → U(n,C) × H given by g �→ u(g)h(g). Since
g = u(g)h(g) for every g (multiplication in the Lie group GL(n,C)), this map is
surjective and has a real analytic inverse. We summarize these facts as the following
Polar Decomposition Theorem.

Theorem 2.5 The map g �→ u(g)h(g) gives a real analytic diffeomorphism
GL(n,C) → U(n,C) × H. Identical reasoning also shows that as a real analytic
manifold GL(n, IR) is, in the same way, diffeomorphic to O(n, IR)× P .

From this it follows that, since H and P are each diffeomorphic with a Euclidean
space, and therefore are topologically trivial, in each case the topology of the noncom-
pact group is completely determined by that of the compact one. In this situation,
one calls the compact group a deformation retract of the noncompact group. Since P
and H are diffeomorphic images under exp of some Euclidean space, one calls them
exponential submanifolds. For example, connectedness, the number of components,
simple connectedness and the fundamental group of the noncompact group are each
the same as that of the compact one. Thus for all n ≥ 1, GL(n,C) is connected
and its fundamental group is ZZ, while for all n, GL(n, IR) has 2 components and the
fundamental group of its identity component is ZZ2 for n ≥ 3 and ZZ for n = 2. These
facts follow from the long exact homotopy sequence for a fibration and are explained
in C. Chevalley [2].

3 The Cartan Decomposition of a Real Semi-simple

Lie Group of Noncompact type

What we have done so far may seem rather special. We now turn to more general
groups G and also streamline our notation. Instead of H, we shall consider certain
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real subspaces of H denoted by p whose exponential image will be P and make the
following definition.

Definition 3.1 Let G be a Lie subgroup of GL(n, IR) with Lie algebra g. We denote
by K = O(n, IR) ∩ G, by P the positive definite symmetric matrices in G, by p the
symmetric matrices of g, and by k the skew symmetric matrices in g. In the case
that G be a Lie subgroup of GL(n,C) we again denote the Lie algebra by g, but now
K = U(n,C) ∩G, P is the positive definite Hermitian matrices of G, p is Hermitian
matrices of g and k the the skew Hermitian matrices in g.

Lemma 3.2 Let q(t) =
∑n

j=1 cj exp(bjt) be a trigonometric polynomial, where
cj ∈ C, and bj and t ∈ IR. If q vanishes for an unbounded set of real t’s, then
q ≡ 0.

An immediate consequence is that for a polynomial p ∈ C[z1, . . . , zn] in n complex
variables with complex coefficients and (x1, . . . , xn) ∈ IRn, if p(exp(tx1), . . . , exp(txn))
vanishes for an unbounded set of real t’s, then it vanishes identically in t.
Proof. First we can assume that the t’s for which q vanishes tend to +∞. Otherwise,
they would have to tend to −∞ and in this case we just let p(t) = q(−t). Then p is also
a trigonometric polynomial and if p = 0, then so is q. Reorder the bj’s, if necessary,
so that they are strictly increasing by combining terms by adding the corresponding
cj ’s. Of course, we can now assume that all the cj ’s are nonzero. Let tk be a sequence
tending to +∞ on which q vanishes. Suppose there are two or more bj ’s. Since

q(t)
cn exp(bnt)

=
n−1∑
j=1

cj
cn

exp((bj − bn)t) + 1,

it follows that q(t)
cn exp(bnt) → 1 as k →∞. But since q is identically 0 in k so is this

quotient, a contradiction. This means that all the bj ’s are equal and so
q(t) = c exp(bt) for some c ∈ C and b ∈ IR. This function cannot have an infinite
number of zeros unless c = 0, that is q = 0.

Definition 3.3 One calls a subgroup G ⊆ GL(n,C) an algebraic group if it is the
simultaneous zero set within gl(n,C) of a family of polynomials with complex coeffi-
cients in the xi,j coordinates of the matrices in gl(n,C). Clearly, such a group is a
closed subgroup of GL(n,C) in the usual Euclidean topology and hence by a theorem
of E. Cartan is a Lie group. Further we shall call GIR = G ∩GL(n, IR) its IR-points.
Similarly, the IR-points GIR of an algebraic group G is also a Lie group. If the family
of polynomials defining G happens to have all its coefficients lying in some subfield F
of C, we then say G is defined over F .

Typical examples of algebraic groups are GL(n,C) itself (the empty set of poly-
nomials) and SL(n,C) itself (the single polynomial det−1 = 0). The respective real
points are GL(n, IR) and SL(n, IR). The reader should check that each of the complex
classical groups (see [4], or [2]) is an algebraic group.
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Proposition 3.4 Suppose M is an algebraic subgroup of GL(n,C) and G be a Lie
subgroup of GL(n, IR) (alternatively GL(n,C)) with Lie algebra g. Let G have finite
index in MIR (alternatively M). If x ∈ p and expx ∈ G, then exp tx ∈ P for all real
t. In particular, x ∈ g and hence x ∈ p.

Proof. To avoid circumlocutions we shall prove the complex case, the real case be-
ing completely analogous. Choose u ∈ U(n,C) so that uxu−1 is diagonal with real
eigenvalues λj . Replace G by uGu−1, a Lie subgroup of GL(n,C) which is contained
in uMu−1 with finite index. Now uMu−1 is an algebraic subgroup of GL(n,C) (and
in the real case uMIRu

−1 = (uMu−1)IR). Hence we can assume x is diagonal. Let
p(zij) be one of the complex polynomials defining M . Since expx ∈ G and G is a
group, expkx ∈ G ⊆ M for all k ∈ ZZ. But exp kx is diagonal with diagonal entries
exp(kλj). Applying p to expkx, we get p(exp kx) = 0 for all k. By the corol-
lary, p(exp tx) = 0 for all t. Because p was an arbitrary polynomial defining M , it
follows that exp tx ∈ M for all real t. Since G has finite index in M and the 1-
parameter group exp tx is connected, it must lie entirely in G and therefore in P .
Hence x ∈ g.

Definition 3.5 A subgroup G of GL(n, IR) (GL(n,C)) is called self-adjoint if it is
stable under taking transpose (∗). Here transpose and ∗ refer to any linear involution
(conjugate linear involution) on IRn (Cn).

For example, SL(n, IR) (SL(n,C)) are self-adjoint since det gt = det g (det g∗ =
det(g). The routine calculations showing O(n,C), SO(n,C), O(p, q) and SO(p, q)
are also self-adjoint are left to the reader. In fact, the reader can check that any
classical noncompact simple group in E. Cartan’s list (see [4]) is self-adjoint. Clearly
by their very definition these groups are either algebraic or have finite index in the real
points of an algebraic group (essentially algebraic). Now it is an important insight
of Mostow [10] that any linear real semisimple Lie group is self-adjoint under an
appropriate involution. Moreover, by the root space decomposition the adjoint group
of any semisimple group without compact factors is algebraic (actually over Q). Thus
here we are really talking about all the semisimple groups without compact factors
and, of course, this means our construction actually gives all symmetric spaces of
noncompact type. But even if we did not know this, since any classical noncompact
simple group is easily seen to be self-adjoint as well as essentially algebraic, we already
get a plethora of symmetric spaces from them.

Particular cases of Theorem 3.6 below are the following. We shall leave their
routine verification to the reader. SL(n, IR) is real analytically diffeomorphic with
SO(n)×P1, where the latter is the positive definite symmetric matrices of det 1, which
in turn is diffeomorphic under exp with the linear space of real symmetric matrices
of trace 0. Similarly, SL(n,C) is real analytically diffeomorphic with SU(n) × H1,
where the latter is the positive definite Hermitian matrices of det 1, which in turn is
diffeomorphic with the linear space of Hermitian matrices trace 0. As deformation
retracts, similar conclusions can be drawn about the topology of these, as well as the
other groups mentioned earlier.
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The following result is a special case of the Iwasawa decomposition theorem which
holds for an arbitrary Lie group with a finite number of components, but with a
somewhat more elaborate formulation (see G.P. Hochschild [5]). Here, we content
ourselves with the matter at hand. Namely, self-adjoint algebraic groups, or their real
points. In this context, it is called the Cartan decomposition. By a maximal compact
subgroup of G we mean one not properly contained in a larger compact subgroup of
G. Our next result is the Cartan decomposition.

Theorem 3.6 Let G be a self-adjoint subgroup of GL(n,C) (GL(n, IR)) with Lie
algebra g. Suppose that G has finite index in an algebraic subgroup M of GL(n,C)
(G has finite index in MIR, its real points). Then

1. G = K × P as real analytic manifolds.

2. g = k⊕ P as a direct sum of IR-vector spaces.

3. exp : P → P is a real analytic manifold diffeomorphism whose inverse is given
by the global power series of Proposition 2.2.

4. K is a maximal subgroup of G. In particular, P is simply connected and G is a
deformation retract of K.

Proof. Here again we deal with the complex case, the real case being similar. First we
show each g ∈ G can be written uniquely as g = k expx, where k ∈ K and x ∈ p. By
Theorem 2.5, g = up, where u ∈ U(n,C) and p ∈ H. Now g∗ = (up)∗ = p∗u∗ = pu−1,
so g∗g = pu−1up = p2. Since G is self-adjoint, p2 ∈ G, and therefore so is p2k for
every k ∈ ZZ. Now p = expx for some Hermitian x. Hence p2k = exp 2kx = exp k2x.
Since 2x is Hermitian, exp 2x ∈ G and exp k2X ∈ P for all k. By Proposition 3.4,
exp t2x ∈ P for all real t. Now, just as above, taking t = 1

2 we get expx = p ∈ P ⊆ G.
But then gp−1 = u ∈ G. Therefore u ∈ K. Also, since exp tX ∈ P for all real t,
x ∈ p. Thus g = kp where k ∈ K and p = expx for x ∈ p. Thus we have a
map g �→ (k, p) from G to K × P . As above, if we can show uniqueness of the
representation g = kp, then the map is onto. But since K ⊆ U(n,C) and P ⊆ the
positive definite Hermitian matrices, this follows from the uniqueness result proven
earlier. Since multiplication inverts this map it is 1:1 and has a smooth inverse. The
formula, p(g) = exp(1

2 log(g∗g)) ∈ P derived in the case of GL(n,C) is still valid, if
suitably interpreted, and gives a real analytic map G→ P . Arguing exactly as in the
case of GL(n,C) we see that part 1 is true. Part 3 follows immediately from the case
of GL(n,C) treated earlier.

For part 2, write x = x−x∗
2 + x+x∗

2 . Since the first term is skew Hermitian, the
second is Hermitian and each is an IR-linear function of x ∈ gl(n,C), this proves part
2 for the case gl(n,C). To prove it in general we need only show that x−x∗

2 ∈ k and
x+x∗

2 ∈ p. Now for x and y ∈ gl(n,C), [x∗, y∗] = −[x, y]∗. Hence the map θ sending
x �→ −x∗ is an involutive automorphism of the Lie algebra gl(n,C) called a Cartan
involution. If we show g is stable under this map, then x �→ x∗ also leaves g stable
since it is an IR subspace of gl(n,C). Hence x−x∗

2 ∈ k and x+x∗
2 ∈ p. Now for x ∈ g,
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exp tx ∈ G for all t. Since G is self-adjoint and (exp tx)∗ = exp t(x)∗, it follows that
x∗ ∈ g.

To prove part 4, we first consider the basic cases, GL(n, IR) and GL(n,C).

Proposition 3.7 Let L be a compact subgroup of GL(n,C) (GL(n, IR)). Then some
conjugate gLg−1, g ∈ GL(n,C) (GL(n, IR)) is contained in U(n,C) (O(n, IR)). In
particular, U(n,C) is a maximal compact subgroup of GL(n,C) and O(n, IR) a
maximal compact subgroup of GL(n, IR). In GL(n,C) and GL(n, IR) any two maximal
compact subgroups are conjugate.

Proof. We deal with the complex case, the other being completely analogous. For
an exposition of the existence of Haar measure see, for example, [5]. If (, ) is a
Hermitian inner product on Cn, using (finite) Haar measure dl on L we can form an
L-invariant Hermitian inner product on Cn given by 〈v, w〉 =

∫
L(lv, lw)dl. Thus for

some g ∈ GL(n,C), gLg−1 is contained in U(n,C).
If L ⊃ U(n,C), then it would have to have larger dimension, or if not, U(n,C)

would be an open subgroup. As such, it would be the identity component of L since
it is connected. Because L is compact it would consist of a finite number of open
components of U(n,C). But some conjugate, gLg−1 is contained in U(n,C) so L can
not have larger dimension. Similarly, by continuity, there can only be one component.
This is a contradiction, so L = U(n,C). In the real case we just work with the compact
connected group SO(n, IR) instead of U(n,C). Thus U(n,C) and O(n, IR) are maximal
compact subgroups of GL(n,C) and GL(n, IR), respectively. That any other maximal
compact subgroup is conjugate to one of these now follows from the first statement
of the proposition.

In particular, if L is any compact subgroup of GL(n,C), all its elements have
their eigenvalues on the unit circle. From this we see that if an element l ∈ L has
all its eigenvalues equal to 1, then l = I. This is because glg−1 is unitary. Hence for
some u we know uglg−1u−1 is diagonal and also has all eigenvalues equal to 1. Thus
uglg−1u−1 = I and hence l itself equals I.

Finally, we turn to the proof of part 4 itself.
Proof. First suppose L is any compact subgroup of G. Then L ∩ P = (1). To see
this just observe that, by the theorem below, since L is compact, all its elements have
all their eigenvalues on the unit circle. But the eigenvalues of elements of P are all
positive. Hence all the elements of L have all their eigenvalues equal to 1 and so, as
above, each l = I. Now let L ⊇ K. Then each l ∈ L can be written l = kp, where
k ∈ K and p ∈ P . But since k ∈ L, so is p. Hence by the above p = I and l = k.
Hence L ⊆ K, so that actually L = K. Thus K is a maximal compact subgroup of
G.

We have essentially used the conjugacy of maximal compact subgroups in GL(n,C)
and GL(n, IR) to show that K is a maximal compact subgroup of G, in general.
However to prove, in general, that any two maximal compact subgroups of G are con-
jugate will require something more. For this we will rely on the important differential
geometric fact, called Cartan’s fixed point theorem, that a compact group of isometries
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acting on a complete simply connected Riemannian manifold of nonpositive sectional
curvature at every point (Hadamard manifold) always has a unique fixed point and,
for the reader’s convenience, we will prove Cartan’s result as well in the next section.
However, we will only prove it for symmetric spaces of noncompact type. This will
also establish the fact that for each p ∈ P , StabG(p) is a maximal compact subgroup
of G.

We note that the Cartan involution of g is given by k + p �→ k − p. It is an
automorphism of g whose fixed point set is k. We also mention the Cartan relations,
which were also proved earlier. If the Cartan decomposition of g is g = k⊕ p, since k
is a subalgebra and [x∗, y∗] = −[x, y]∗ and [xt, yt] = −[x, y]t it follows that

1. [k, k] ⊆ k,

2. [k, p] ⊆ p,

3. [p, p] ⊆ k.

We conclude this section by observing that for all the G we are dealing with there
is a natural smooth action of G on P given by (g, p) �→ gtpg. Now this action is
transitive. To see this, consider the G orbit of I ∈ P , OG(I) = {gtg : g ∈ G}. As we
saw earlier, this is {p2; p ∈ P}. But since everything in P is exp of a unique element
x of p, it follows that everything in P has a unique square root in P , namely exp 1

2x.
This means the action is transitive. What is the isotropy group of StabG(I) of I?
This is {g ∈ G : gtg = I} = G∩O(n, IR) = K. Hence, by general principles, (G,P ) is
G-equivariantly diffeomorphic with G acting by left translation on G/K. As we shall
see, this transitive action will be of great importance in what follows.

Observe that this action does not have the two-point homogeneity property. That
is, given p, q and p′, q′, all in P , there may not be a g ∈ G so that g(p) = p′ and g(q) =
q′, even when dimP = 1. Note also that gt(expx)g is not equal to exp(gtxg) so this
is not equivariant with the IR-linear representation of G acting on p by (g, x) �→ gtxg,
x ∈ p. Concommitantly, the latter is not a transitive action because it is linear, so 0
is a single orbit. In fact, here the orbit space can be parametrized by the number of
positive, negative and zero eigenvalues of a representative.

4 The case of Hyperbolic Space and the Lorentz
Group

We now make explicit the Cartan decomposition in an important special case and give
the Lorentz model for hyperbolic n space, Hn. We consider O(n, 1) the subgroup of
GL(n+ 1, IR) leaving invariant the nondegenerate quadratic form q(v, t) = v2

1 + . . .+
v2

n − t2, where v ∈ IRn and t ∈ IR. Equivalently, by polarization, this means leaving
invariant the nondegenerate symmetric bilinear form 〈(v, t), (w, s)〉 = (v, w) − ts,
where (v, w) is the usual (positive definite) inner product in IRn. Thus G is defined
by the condition g−1 = gt (with respect to 〈, 〉). It is easy to check that G is the set
of IR-points of a self-adjoint algebraic group and, in particular, is a Lie group. Now
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G is not compact. For example, SO(1, 1) ⊆ O(1, 1), which sits inside O(n, 1), is given
as follows.

g =
(
a b
c d

)

One checks easily that g ∈ SO(1, 1) if and only if a2 − c2 = 1, ab − cd = 0
and b2 − d2 = −1. In particular, taking an arbitrary a and c = (a2 − 1)

1
2 , where

a2−1 = c2 > 0 and letting b and d be determined by the remaining two equations we
see that b = (a2−1)

1
2 = c and d = a. Now consider the identity component SO0(1, 1).

Since the locus a2 − c2 = 1 has two connected components, if g ∈ SO0(1, 1), then
a > 0 and so there is a unique t ∈ IR for which a = cosh t and b = sinh t. Thus

g(t) =
(

cosh t sinh t
sinh t cosh t

)

Because these hyperbolic functions are unbounded, we see even SO0(1, 1) is not
compact. The identities satisfied by the hyperbolic functions show that this is an
abelian subgroup. However, we shall see this without these identities; in fact, we will
derive the identities. Let

X =
(

0 1
1 0

)

A direct calculation using the fact that X2 = I shows that exp tX = I cosh t +
X sinh t = g(t), from which it follows that g(s+ t) = g(s)g(t). This equation gives all
the identities satisfied by the hyperbolic functions sinh and cosh and g is a smooth
isomorphism of SO0(1, 1) with IR. The geometric importance of such 1-parameter
subgroups will be seen in a moment.

By Theorem 3.6 a maximal compact subgroup ofG is given by O(n+1, IR)∩O(n, 1).
Because subgroups of GL(n, IR) can be regarded as subgroups of GL(n + 1, IR) via
the imbedding g �→ diag(g, 1), we may regard O(n, IR) as a subgroup of GL(n+ 1, IR)
and, in fact, of O(n, 1). Thus O(n, IR) ⊆ O(n + 1, IR) ∩ O(n, 1). Clearly these are
equal. Since O(n, IR) has two components, so does O(n, 1) which equals O(n, IR)×
an exponential submanifold, P . Therefore, O(n, 1)0 = SO(n, IR) × P . To identify
this connected group, we note that g−1 = gt, ggt = I and so (det g)2 = 1. Thus
det g = ±1, a discrete set. It follows that SO(n, 1) is open in O(n, 1) and hence has
the same P . The same is true of SO0(n, 1) because we are dealing with Lie groups.
Thus SO0(n, 1) = SO(n, IR)× P = G and we now work with this connected group. 2

As with a Lie group defined by any nondegenerate bilinear form, the Lie algebra
g of G = SO0(n, 1) is

{X ∈ gl(n+ 1, IR) : Xt = −X}.
This Lie algebra evidently has dim = (n+1)n

2 . Now consider the subspace of
gl(n+ 1, IR) consisting of

2Actually, SO(n, 1) is connected if n is even, and has two components if n is odd.
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(
k v
v 0

)
,

where k is the Lie algebra of SO(n, IR) and v ∈ IRn. It is clearly a subspace and
has dimension (n−1)n

2 + n = (n+1)n
2 . Now a direct calculation, which we leave to the

reader, shows that this is a subspace of g, i.e., it consists of skew symmetric matrices
with respect to 〈, 〉. Hence it must coincide with g. Here the Cartan decomposition
is perfectly clear. The k part is

(
k 0
0 0

)
,

while the p part is
(

0 v
v 0

)
.

Consider the locus of points,

H = {(v, t) ∈ IRn+1 : q(v, t) = −1}.
For g ∈ O(n, 1), q(g(v, t)) = q(v, t). In particular, if q(v, t) = −1, then q(g(v, t)) = −1.
Thus H is invariant under O(n, 1). Now H is a hyperboloid of two sheets: 1+ ‖ v ‖2=
t2. So t = ±(1+ ‖ v ‖2) 1

2 . Write H = H+ ∪H−, a disjoint union of the upper and
lower sheet. Both sheets are open subsets of H since they are the intersection of
the sheet with a half space. Each is diffeomorphic with IRn. In particular, each is
connected and simply connected. We show that G = SO0(n, 1) leaves both H+ and
H− invariant.

If g ∈ G, then g(H+) and g(H+) ⊆ H . So

g(H+) = (g(H+) ∩H+) ∪ (g(H+) ∩H−).

But H+ is connected and g is continuous. Hence g(H+) is connected. Therefore
g(H+) ⊆ H+ or g(H+) ⊆ H−. Since g itself is a diffeomorphism, g(H+) = H+

or g(H+) = H−. We show the former must hold. Since G is itself connected and
therefore arcwise connected, let gt be a smooth path in G joining g = g1 to I = g0 and
let T+ = {t ∈ [0, 1] : gt(H+) = H+} and T− = {t ∈ [0, 1] : gt(H+) = H−}. Suppose
g(H+) = H−. Since I(H+) = H+, we have [0, 1] = T+ ∪ T−, a disjoint union of
nonempty sets. Each of these is closed. For if tk → t and say gtk

(H+) = H+, for all
k, but gt(H+) = H−, then for x ∈ H+, gtk

(x) → gt(x). This is impossible as the
distance between H+ and H− is 2.

We now know G operates on H+ which we shall call Hn, the Lorentz model of
hyperbolic n-space. Consider the lowest point, p0 = (0, . . . , 0, 1) ∈ Hn. What is
StabG(p0)? This is clearly a subgroup which does not change the t coordinate and
is arbitrary in the other coordinates since it is linear and so always fixes 0. Hence,
StabG(p0) = SO(n, IR), a maximal compact subgroup of G. Next we look at G-orbit
O(p0) and show G acts transitively on Hn. Let p = (v,t), where t = (1+ ‖ v ‖2) 1

2 , be
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any point in Hn and apply SO(n, IR) to bring it to (‖ v ‖, 0, ...0, t). Since we are now
essentially in a two-dimensional situation, let us consider (x, y), where y2 − x2 = 1.
We want to transform (0, 1) to p by something on the 1-parameter group

g(s) =
(

cosh s sinh s
sinh s cosh s

)
.

But this is just the fundamental property of the right hand branch of the hyperbola
mentioned earlier. Therefore, G acts transitively and Hn is equivariantly equivalent
to SO0(n, 1)/ SO(n, IR).

Now consider the hyperplane t = 1 in IRn+1. This is the tangent space T (p0) to
Hn at p0. Thus there is a positive definite metric, namely (, ) on T (p0). If p is another
point of Hn, choose g ∈ G such that g(p) = p0. Then dg(p) maps T (p) to T (p0).
Since g comes from a group, it is invertable. By the chain rule so is its derivative
dg(p), so it maps T (p) to T (p0) bijectively. Use this to transfer the inner product
from T (p0) to T (p). Now if h(p) also equals p0, then gh−1 ∈ StabG(p0) = SO(n, IR).
Therefore dg(p)dh(p)−1 is a linear isometry in T (p0). This shows the inner product
on T (p) is independent of g and is well defined. Hence we get a Riemannian metric
on Hn because G is a Lie group acting smoothly on Hn. Evidently, G acts by
isometries, the action is transitive and Hn can be identified with G/ StabG(p0) =
SO0(n, 1)/ SO(n, IR).

Notice that SO(n, IR) = StabG(p0) acts transitively on k-dimensional subspaces
for all 1 ≤ k ≤ n. In particular, this is so for 2-planes in IRn = T (p0)(Hn). Since it
acts by isometries, this means the sectional curvature is constant as both the point
and the plane section vary.

5 The G-invariant Metric Geometry of P

Here we introduce a Riemannian metric on any P and study its most basic differential
geometric properties. From now on we will write exp and log instead of Exp and Log.

Lemma 5.1 If A and B are n × n complex matrices, then tr(AB) = tr(BA). Also
tr(B∗B) ≥ 0 and equals 0 if and only if B = 0. Evidently, tr(B)− = tr(B∗).

Proof. Suppose A = (ai,j) and B = (bk,l). Then (AB)i,l =
∑

j ai,jbj,l. Therefore
tr(AB) =

∑
i,j ai,jbj,i. But then tr(BA) =

∑
i,j bi,jaj,i =

∑
i,j aj,ibi,j =

∑
j,i ai,jbj,i =

tr(AB). Taking B∗ for A we get tr(B∗B) =
∑

i,j b
−
j,ibj,i ≥ 0 and equals 0 if and only

if B = 0.

This enables us to put a Hermitian inner product on gl(n,C) called the Hilbert
Schmidt inner product and a symmetric inner product on gl(n, IR) by defining

< Y,X >= tr(Y ∗X).

For X Hermitian (symmetric), we now study the linear operator adX on gl(n,C)
(gl(n, IR)). As we saw from the Cartan relations for T ∈ gl(n,C) and X Hermitian,
[X,T ]∗ = [T ∗, X ] = −[X,T ∗].
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Lemma 5.2 If X is Hermitian, < adX(T ), S >=< T, adX(S) > for all S and T ;
that is, adX is self-adjoint.

In particular, the eigenvalues of such an adX are all real. (This gives a direct proof
of the fact that d(exp)X is invertible for all X ∈ p.)
Proof. We calculate tr([X,T ]∗S) = tr(−[X,T ∗]S) = − tr((XT ∗ − T ∗X)S) =
tr(T ∗XS) − tr(XT ∗S). On the other hand, tr(T ∗[X,S]) = tr(T ∗XS) − tr(T ∗SX).
Thus we must show that tr(XT ∗S) = tr(T ∗SX). But this follows from the lemma
above.

A formal calculation, which we leave to the reader, proves the following:

Lemma 5.3 For each U ∈ gl(n,C), Lexp(U) = exp(LU ) and Rexp(U) = exp(RU ).

Definition 5.4 For X and Y ∈ gl(n,C) let

dX(Y ) =
d

dt
exp(−X/2) exp(X + tY ) exp(−X/2)|t=0.

Proposition 5.5 For X ∈ p, the operator dX is self-adjoint on gl(n,C). Using
functional calculus, this operator is given by the formula

dX = sinh(
adX

2
)/

adX

2
.

Proof. Let t ∈ IR, X , Y ∈ gl(n,C) and X(t) = X + tY . Then

dX(Y ) = exp(−X/2)
d

dt
exp(X(t))|t=0 exp(−X/2).

Now for all t,
X(t) · exp(X(t)) = exp(X(t) ·X(t).

Differentiating we get

X ′(t) · exp(X(t)) +X(t) · d
dt

exp(X(t)) =
d

dt
exp(X(t)) ·X(t) + exp(X(t) ·X ′(t).

Evaluating at t = 0 and subtracting gives X · d
dt exp(X(t))|t=0− d

dt exp(X(t))|t=0 ·
X = exp(X)Y −Y exp(X). Multiplying on both the left and right by exp(−X/2) and
taking into account the fact that exp(−X/2) and X commute, we get

X · exp(−X/2)
d

dt
exp(X(t))|t=0 exp(−X/2) − exp(−X/2)

d

dt
exp(X(t))|t=0 exp(−X/2)X =

exp(X/2)Y exp(−X/2) − exp(−X/2)Y exp(X/2). Substituting for dX(Y ), the left hand
side becomes XdX(Y )− dX(Y )X = adX dX(Y ), while the right hand side is

Lexp(X/2)Rexp(−X/2)(Y )− Lexp(−X/2)Rexp(X/2)(Y ).

But by the lemma above

Lexp(U) = exp(LU ) and Rexp(U) = exp(RU ).
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Substituting we get

adX dX(Y ) = exp(LX/2) exp(R−X/2)(Y )− exp(L−X/2) exp(RX/2)(Y ).

Since LU and RU ′ commute for all U and U ′, we see that

exp(LX/2) exp(R−X/2) = exp(LX/2 +R−X/2) = exp(LX/2 −RX/2) = exp(adX /2).

Similarly,

exp(L−X/2) exp(RX/2) = exp(L−X/2 +RX/2) = exp(− adX /2).

So for all Y ,

adX ·dX(Y ) = (exp(adX /2)− exp(− adX /2))(Y ).

Now let

f(z) = ez/2 − e−z/2 = z + 2(z/2)3/3! + 2(z/2)5/5! + . . . .

Then f is an entire function and 0 is a removable singularity with f(0) = 0. In
terms of f , the equation above says adX dX = f(adX). This means if we let

g(z) = f(z)/z = 1 + (z/2)2/3! + (z/2)4/5! + . . . ,

with g(0) = 1, then g is also entire and dX = g(adX). Now sinh z = z + z3/3! +
z5/5! + . . . so g(z) = sinh(z/2)/(z/2) and hence the conclusion. Finally, because
dX = g(adX), adX is self-adjoint and the Taylor coefficients of g are real, dX is also
self-adjoint.

Corollary 5.6 For X ∈ p, Spec( sinh(adX)
adX

) consists of real numbers greater than or
equal to 1. The same is so for the operator dX .

Proof. Since for t ∈ IR, sinh t
t = 1 + t2/3! + t4/5! + . . ., we see that sinh t

t > 1 unless
t = 0. Now

Spec(
sinh(adX)

adX
) = { sinh(λ)

λ
: λ ∈ Spec adX} ⊆ { sinh(λi − λj)

λi − λj
} : λi, λj ∈ SpecX}.

If λ = λi − λj for distinct eigenvalues of X , then sinh(λ)
λ > 1. If λi and λj are

equal, then λ = 0 and sinh(λ)
λ = 1.

We now work exclusively over IR. The same type of arguments also work just as
well over C.

Corollary 5.7 For X ∈ p and Y ∈ gl(n, IR), tr(Y 2) ≤ tr(dX(Y ))2). Equality occurs
if and only if [X,Y ] = 0.
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Proof. Because adX is self-adjoint, we can choose an orthonormal basis of real
eigenvectors of adX , Y1, . . . Yj ∈ gl(n, IR) which, since dX = g(adX) are also eigen-
vectors for dX with corresponding real eigenvalues μ1, . . . μj . Then dX(Yk) = μkYk

for all k. If Y =
∑

k ak(Y )Yk, then dX(Y ) =
∑

k ak(Y )dX(Yk) =
∑

k ak(Y )μkYk.
Since the Yk form an orthonormal basis, we see tr(dX(Y )2) =

∑
k ak(Y )2μ2

k, while
tr(Y 2) =

∑
k ak(Y )2. Thus we are asking whether

∑
k ak(Y )2 ≤∑k ak(Y )2μ2

k. Since
each μk ≥ 1, this is clearly so and equality occurs only if μk = 1 whenever ak(Y ) �= 0.
Rearrange the eigenvectors so that the μk = 1 come first and for k ≥ k0, μk > 1.
Hence gl(n, IR) = W1 ⊕W∞ is the orthogonal direct sum of two adX -invariant sub-
spaces. Here W1 is the 1-eigenspace, and W∞ the sum of all the others. But since
ak(Y ) = 0 for k ≥ k0, Y ∈W1. But on W1 all eigenvalues of g(adX) = dX are 1, and
the eigenvalues of adX are 0 so adX = 0 on W1 and hence [X,Y ] = 0.

Conversely, if [X,Y ] = 0, then adX(Y ) = 0. Therefore dX = g(adX) = I. Hence
W1 = gl(n, IR) and W∞ = (0). Therefore all μk = 1 and equality holds.

Theorem 5.8 Along any smooth path p(t) in P we have

tr((
d

dt
log p(t))2) ≤ tr(p−1p′(t))2).

with equality if and only if p(t) and p′(t) commute for that t. In particular,
tr(p−1p′(t))2) ≥ 0 since if X(t) = log p(t) ∈ p, then X ′(t) ∈ p· = p. Hence
tr(X ′(t)tX ′(t)) ≥ 0.

Proof. For each t, it is easy to see that

p
1
2 p−1p′p−

1
2 = (p−

1
2 p′p−1p−

1
2 )2.

It follows that tr(p−1p′(t))2) = tr(p−
1
2 p′p−1p−

1
2 )2). Set X(t) = log p(t). Then X(t)

is a smooth path in p and p−
1
2 (t) = exp(−X(t)/2). Let t be fixed and Y = X ′(t).

Since dX(Y ) = exp(−X/2) d
ds exp(X + sY ))|s=0 exp(−X/2), this is p−

1
2 p′p−

1
2 , where

p′ = d
ds exp(X + sY ))|s=0 (the tangent vector to curve p(t) at p = expX). Hence

tr(p−
1
2 p′p−

1
2 2 = tr(dX(X ′))2. Also tr( d

dt log p(t))2 = trX ′(t)2. Now by the corollary,
for each t, trX ′(t)2 ≤ tr(dX(t)(X ′(t))2 with equality if and only if X(t) and X ′(t)
commute for that t. Finally we show that if expX(t) = p(t), then for fixed t, X(t)
and X ′(t) commute if and only if p(t) and p′(t) commute. For by the chain rule and
the formula for d(exp) (see L.S. Varadarajan [11]),

p′(t) = d(exp)X(t)X
′(t) = φ(− adX(t))X ′(t),

where φ is the entire function given by φ(z) =
∑∞

n=0
zn

(n+1)! .
IfX ′ commutes withX for fixed t, then since φ(0) = 1, we see that φ(− ad(X))X ′ =

X ′ so that p′ = X ′. In particular, p′ commutes with X and therefore with expX = p.
On the other hand, if φ(− ad(X))X ′ commutes with expX = p, then since log : P → p
is given by a convergent power series in p (see Theorem 3.6, part 3), it must also com-
mute with log p = X . Looking at the specific form of the function φ, it follows that

[X,X ′ − ad(X)(X ′)/2! + ad2(X)(X ′)/3! . . .] = 0.
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That is, ad(X)(X ′) − ad2(X)(X ′)/2! + ad3(X)(X ′)/3! . . . = 0. Hence
exp(− ad(X)(X ′)) = X ′. Taking exp(adX) of both sides tells us exp(adX)(X ′) = X ′.
Therefore Adexp X(X ′) = X ′ so X ′ commutes with expX . But then, reasoning as
above, X ′ must commute with log(expX) = X .

Since what is inside the square root is real and positive, we make the following
definition.

Definition 5.9 Let p(t) be a smooth path in P , where a ≤ t ≤ b. Then its length
l(p) =

∫ b

a tr(p−1p′(t))2)
1
2 dt. The Riemannian metric is given by ds2 = tr((p−1p′)2)dt2.

We call this metric d.

Proposition 5.10 G acts isometrically on P .

Proof. We calculate that

(gtpg)−1(gtpg)′ = g−1p−1(gt)−1gtp′g = g−1p−1p′g.

Hence ((gtpg)−1(gtpg)′)2 = g−1(p−1p′)2g. Taking traces we get

tr((gtpg)−1(gtpg)′)2) = tr(p−1p′)2).

On p we place the metric given infinitesimally by ds2 = tr(( d
dt log p(t))2)dt2, that

is, if X(t) is a smooth path in p, then ds2 = tr(X ′(t)2)dt2. We call this metric dp.
Earlier we defined an inner product on gl(n, IR) by < Y,X >= tr(Y tX). Hence the
linear subspace p has an inner product on it by restriction, namely< Y,X >= tr(Y X).
The associated norm is ‖ Y ‖2= tr(Y 2). This, together with the formula above, shows
dp is the Euclidean metric. If we transfer dp to P , then dp(p, q) =‖ log p − log q ‖.
This will give us the opportunity to compare dp and d on P . Since along any smooth
path p(t) in P we have tr( d

dt log p(t))2) ≤ tr(p(t)−1p′(t))2, we see that infinitesimally
and hence globally dp ≤ d.

Now for X ∈ p, dX = sinh(adX /2)
adX /2 . It follows that

Spec dX = { sinh(λ/2)
λ/2

: λ ∈ Spec adX}.

As sinh t
t is analytic, by continuity sinh t

t → 1 as t→ 0. This tells us that from the
formulas for tr(dX(Y ))2 and tr(Y 2), if X → 0, then independently of Y , tr(dX(Y ))2

can be made as near as we want to tr(Y 2). This last statement implies that for p and
q in a sufficiently small neighborhood of a point p0, which by transitivity of G we may
assume to be I, the nonpositively curved symmetric space and Euclidean distances
approach one another.

lim
p,q→p0

d(p, q)
dp(p, q)

= 1.
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This has the interesting philosophical consequence that in the nearby part of the
universe that man inhabits, because of experimental error in making measurements,
nonpositively curved symmetric space distances and Euclidean ones are indistinguish-
able. As we shall show below, angles at I are in any case identical. This means no
experiment can tell us if we “really” live in a hyperbolic or Euclidean world.

Corollary 5.11 If p = logX ∈ P , the 1-parameter subgroup exp tX is the unique
geodesic in (P, d) joining I with p. Moreover, any two points of P can be joined by
a unique geodesic. (We shall see rather explicitly and directly how this geodesic is
determined by its initial and terminal points.)

This Corollary also follows from more general facts in differential geometry. This
is because as a 1-parameter subgroup every geodesic emanating from I has infinite
length. Since G acts transitively by isometries, this is true at every point. Hence by
the Hopf-Rinow theorem (see J. Milnor [7]) P is complete. In particular, any two
points can be joined by a shortest geodesic (also Hopf-Rinow). Being diffeomorphic
to Euclidean space, P is simply connected. If P had nonpositive sectional curvature
in every section and at every point, then this geodesic would be unique. This last
fact is actually valid for any Hadamard manifold and is called the Cartan-Hadamard
theorem. We will give a direct proof of completeness of P shortly.
Proof. Consider a path p(t) in P which happens to be a 1-parameter subgroup.
Since p(t) = exp tX , log p(t) = tX and its derivative is X . Thus for each t, log p(t)
and its derivative commute. Hence, as we showed, p(t) and p′(t) also commute. This
tells us that all along p(t), dp and d coincide. But the 1-dimensional subspaces of p
are geodesics for dp. Hence if p = logX ∈ P , the 1-parameter subgroup exp tX is
the unique geodesic in (P, d) joining I with p. Let p and q be distinct points of P .
Since G acts transitively on P , we can choose g so that g(q) = I. Connect I with
g(p) by its unique geodesic γ. Since G acts isometrically, g−1(I) = q, g−1(g(p)) = p
and g−1(γ) is the unique geodesic joining them.

Corollary 5.12 A curve p(t) in P is a geodesic through p0 ∈ P if and only if p(t) =
g(exp tX)gt, where X ∈ p and g ∈ G.

Proof. Since G acts transitively by isometries on P , choose g ∈ G so that gIgt = p0.
The result follows from the above since the 1-parameter subgroup exp tX is the unique
geodesic in (P, d) beginning at I in the direction X .

Corollary 5.13 At I the angles in the two metrics coincide.

Proof. Let X and Y be two vectors in p and p(t) and q(t) be curves in P passing
through I with tangent vectors X and Y , respectively, and let p0(t) = exp tX and
q0(t) = exp tY be two 1-parameter groups in P . Then since X and Y are also
the tangent vectors of p0 and q0, respectively, the angle between p and q equals that
between p0 and q0. We may therefore replace p and q by p0 and q0. Now p−1p′q−1q′(0)
is just XY so that tr(p−1p′q−1q′(0)) = tr(XY ).
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Corollary 5.14 For X ∈ p, d(I, expX) = tr
1
2 (X2).

Proof. The 1-parameter group exp tX is a geodesic in P passing through I at t = 0.
Hence, infinitesimally along this curve, d = dp. This implies the same is true globally
along it. Put another way, at each point of exp tX , for 0 ≤ t ≤ 1, the theorem tells us
the metric is tr( d

dt (tX)2) = tr(X2). Since this is independent of t, integrating from 0
to 1 gives tr(X2).

Corollary 5.15 For X and Y ∈ p, d(expX, expY ) ≥ tr
1
2 ((X − Y )2).

Corollary 5.16 P is complete.

Proof. Let pk be a Cauchy sequence in (P, d). By the inequality above, Xk = log pk

is a Cauchy sequence in (p, dp) which must converge to X since Euclidean space is
complete. By continuity, pk converges to expX = p.

Corollary 5.17 (Law of Cosines). Let a, b and c be the lengths of the sides of a
geodesic triangle in P and A, B and C be the corresponding vertices. Then

c2 ≥ a2 + b2 − 2ab cosC

and the sum of the angles A + B + C ≤ π. Moreover, if the vertex C is at I then
equality holds if and only if

1. The triangle lies in a connected abelian subgroup of P , or equivalently,

2. A+B + C = π.

Proof. Put C at the identity via an isometry from G. Then the Euclidean angle at
C equals the angle in the metric d. Also, lp(c) ≤ c and lp(a) = a and lp(b) = b. The
inequality now follows from the Euclidean Law of Cosines. Equality holds if and only
if lp(c) = c. This occurs if and only if log takes side c to a geodesic in p (i.e. a straight
line) of the same length. This is also equivalent to tr(( d

dt log p(t))2) = tr(p−1p′(t)2),
for all t, where p(t) denotes the geodesic side of length c. This occurs if and only if
p(t) satisfies the condition that p(t) and p′(t) commute for all t which, as we showed,
is equivalent [X,Y] = 0, where X and Y are the infinitesimal generators of the sides a
and b. Thus equality in the Law of Cosines holds if and only if the Euclidean triangle
lies in a two-dimensional abelian subalgebra of g contained in p. Equivalently, the
geodesic triangle lies in a two-dimensional abelian subgroup of G contained in P .
Such a subgroup is called a flat of P .

Next we show that in general the sum of the angles ≤ π. Since d is a metric
and c = d(A,B), etc., it follows that each length a, b, or c is less than the sum of
the other two. Therefore there is an ordinary plane triangle with sides a, b and c.
Denote its angles by A′, B′ and C′. Then A ≤ A′, B ≤ B′ and C ≤ C′. For by
the Law of Cosines c2 ≥ a2 + b2 − 2ab cosC and c2 = a2 + b2 − 2ab cosC. This
means cosC′ ≤ cosC. But then because C and C′ are between 0 and π and cos is



130 Martin Moskowitz
7, 2(2005)

monotone decreasing there, we see C ≤ C′. Similarly, this holds for the others. Since
A′ +B′ + C′ = π, it follows that A+B + C ≤ π.

If c2 > a2 + b2 − 2ab cosC, then, as above, construct an ordinary plane triangle
with sides a, b and c and angles A′, B′ and C′. Then since here we have strict
inequality, it follows as above that C < C′. But it is always the case that A ≤ A′

and B ≤ B′. Hence A+ B + C < A′ + B′ + C′ = π. Conversely, if A+ B + C = π,
then c2 = a2 + b2− 2ab cosC and [X,Y ] = 0. Therefore X and Y generate an abelian
subalgebra, and the triangle lies in a flat.

Our next result is of fundamental importance. Nonpositive and positive sectional
curvature distinguish the symmetric spaces of noncompact type from those of compact
type.

Corollary 5.18 The sectional curvature of P is ≤ 0 and strictly < 0 off flats. In
particular, P is a Hadamard manifold.

Before turning to the proof we remark that when X,Y ∈ p and are orthonormal
with respect to the Killing form, one actually has K(X,Y ) = − ‖ [X,Y ] ‖2 (see J.
Cheeger and D. Ebin [1]). However, we shall not need this formula.
Proof. Each geodesic triangle lies in a plane section. We have just shown that each
geodesic triangle in each such section has the sum of the angles ≤ π and the sum of the
angles < π if we are off a flat. It is a standard result of two-dimensional Riemannian
geometry (Gauss-Bonnet theorem) that these conditions are equivalent to K ≤ 0 and
K < 0, respectively, where K denotes the Gaussian curvature of the section, that is,
the sectional curvature.

Definition 5.19 A submanifold N of a Riemannian manifold M is called totally
geodesic if given any two points of N and a geodesic γ in M joining them, γ lies
entirely in N .

Corollary 5.20 P is a totally geodesic submanifold in the set of all positive definite
symmetric matrices.

Proof. Let p and q ∈ P . Since p
1
2 and p−

1
2 are self-adjoint, p−

1
2 qp−

1
2 is positive

definite and symmetric. But as we showed earlier, p−
1
2 ∈ G. Hence p−

1
2 qp−

1
2 ∈ G.

Because p−
1
2 is self-adjoint we see that p−

1
2 qp−

1
2 ∈ P . Let X ∈ p be its log. Then

exp tX lies in P , for all real t. Therefore γ(t) = p
1
2 (exp tX)p

1
2 is a geodesic in P .

Clearly, γ(0) = p and γ(1) = q. Since there is a unique geodesic joining these points
in both P and in the positive definite matrices, this completes the proof.

We conclude this section with the standard definition of a Symmetric Space.

Definition 5.21 A Riemmanian manifold M is called a Symmetric Space if for each
point p ∈M there is an isometry σp of M satisfying the following conditions.

1. σ2
p = I, but σp �= I
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2. σp has only isolated fixed points among which is p. (In our case, p is actually
the only fixed point.)

3. d(σp) on Tp(M) = −I.
Thus the main feature of the definition is that for each point p there is an isometry

which leaves p fixed and reverses geodesics through p.

Corollary 5.22 P is a symmetric space.

Proof. Since G acts transitively and by isometries, we may restrict ourselves to the
case p = I. Take σI = σ(p) = p−1, for each p ∈ P . This map is clearly of order
2. If p is σ fixed, then p2 = I. Hence every conjugate of p also has order 2. This
means p ∈ K ∩ P , which as we saw earlier = (I), Thus I is the only fixed point. Let
p = expX , then σ(p) = exp(−X) so that d(σp)p = −I, where here we identify TI(P )
with p.

It remains to see that σ is an isometry. For a curve p(t) in P , since p(t)p(t)−1 = I,
differentiating tells us

d

dt
(p(t)−1) = −p(t)−1 dp

dt
p(t)−1.

Substituting we get

tr(p
dp−1

dt
)2 = tr(p− p(t)−1 dp

dt
p(t)−1p− p(t)−1 dp

dt
p(t)−1p).

Cancelling the minus signs and pp−1, we have tr(dp
dt p(t)

−1 dp
dt p(t)

−1). Since tr(AB) =
tr(BA), this is

tr(p(t)−1 dp

dt
p(t)−1 dp

dt
) = tr((p(t)−1 dp

dt
)2.

Thus for every t,

tr(p(t)
dp−1

dt
)2 = tr((p(t)−1 dp

dt
)2.

Hence σ is an isometry of P and the latter is a symmetric space.

6 The Conjugacy of Maximal Compact Subgroups

The theorem on the conjugacy of maximal compact subgroups of G in the present
context is due to E. Cartan. Actually, the result is true for an arbitrary connected
Lie group and is due to K. Iwasawa and the case of a finite number of components to
G.D. Mostow. In this more general context see [5]. We shall deal with this problem
in the present context by means of Cartan’s fixed point theorem which states that
a compact group of isometries acting on a complete, simply connected Riemannian
manifold of nonpositive sectional curvature (Hadamard manifold) has a unique fixed
point. However, here we will prove the fixed point theorem where we need it, namely,
in the special case when the manifold is a symmetric space of noncompact type.
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Theorem 6.1 Let f : C → (P, d) be a continuous map where d denotes the distance
on a symmetric space P of noncompact type and C is a compact space with a positive
finite regular measure, μ, on it. Then the functional

J(p) =
∫

C

d2(p, f(c))dμ(c), p ∈ P

attains its minimum value at a unique point of P called the center of gravity of f(C)
with respect to μ.

Proof. Without loss of generality we may normalize the measure so that μ(C) = 1.
We first prove the result for Euclidean space IRn. Then f(c) = (f1(c), . . . , fn(c)),
p = (p1, . . . , pn) and

J(p) =
∫

C

∑
i

(pi − fi(c))2dμ(c) =
∫

C

(
∑

i

p2
i − 2

∑
i

pifi(c) +
∑

i

fi(c)2)dμ(c).

By our normalization, this is |p|2 − 2(a, p) +
∑

i bi, where for i = 1, . . . , n, ai =∫
C
fi(c)dμ(c) and bi =

∫
C
fi(c)2dμ(c). Completing the square we get

J(p) = |p|2 − 2(a, p) + |a|2 − |a|2 +
∑

i

bi = |p− a|2 +
∑

i

bi − |a|2.

This is clearly minimized exactly at the point p = a.
Now let P be a symmetric space as above. We first show J is continuous on P .

If pn → p in P , then since d is continuous, d2(pn, f(c))→ d2(p, f(c)) for each c ∈ C.
Hence for fixed c ∈ C, d2(pn, f(c)) ≤ a constant independent of n. Since the measure
on C is finite this constant function is integrable and so by the dominated convergence
theorem J(pn)→ J(p).

We will now find a compact set K in M and an r > 0 so that J(p) > r2 on
M − K and J(p0) ≤ r2 at some point p0 ∈ K. Then the minimum value of J ,
if any, would have to be on K and there would be one since K is compact and
J continuous. This would prove existence of a fixed point. To do this, choose p0

arbitrarily in P − f(C) (since f(C) is compact and P is not, the complement of
f(C) is nonempty) and let infc∈C d(p0, f(c)) = r. Then r is finite and positive. Let
K = {p ∈ P : d(p, f(C)) ≤ r}. If B is a compact set in P , then since exp is a global
diffeomorphism, logB is compact in p. The formula d(exp x, exp y) ≥ dp(x, y) tells us
that

log{p ∈ P : d(p,B) ≤ r} ⊆ {x ∈ p : dp(x, logB) ≤ r}.
The right hand side is closed and bounded so since p is a Euclidean space, this set is
compact. Similarly, by elementary properties of the metric d, {p ∈ P : d(p,B) ≤ r} is
closed in P and, since we have a diffeomorphism, the left side is closed and therefore
is compact in p. But then exp of this set, i.e., K is compact in P . Evidently p0 ∈ K
and integrating and making use of the normalization of μ tells us J(p0) ≤ r2. If
p ∈M −K, then by compactness of f(C) there is a δ > 0 such that d(p, f(c)) > r+ δ
for all c ∈ C. Upon integration we get J(p) > r2.
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Turning to the uniqueness, let log ·f = fp. This is a continuous map C → p and
we can construct the functional Jp on p defined by

Jp(x) =
∫

C

d2
p(x, fp(c))dμ(c), x ∈ p.

For a point p ∈ P and x = log p, since dp(x, y) ≤ d(p, q) for all q = exp y ∈ P , we see
that dp(x, fp(c)) ≤ d(p, f(c)) for all c. Squaring and integrating tells us that

Jp(x) ≤ J(p), p ∈ P.
Let p0 be a point of P where a minimum value of J is attained and let p = log x ∈
P approach p0. Then Jp(log p0) ≤ Jp(x). For if for some x → log p0, Jp(x) <
Jp(log p0), which is, in turn, ≤ J(p0). Then since J and Jp involve integrating d and
dp, respectively, over a compacta and

lim
p,q→p0

d(p, q)/dp(log p, log q) = 1,

there is some sufficiently nearby point y to x for which J(log y) is near enough to
Jp(y) so that Jp(y) ≤ J(log y) and so is < J(p0), contradicting the minimality of
p0. Thus for all p→ p0, Jp(log p0) ≤ Jp(log p). This means log p0 is also a minimum
value for Jp. Therefore if log p1 is another point of P where the minimum value of J is
attained, then log p1 is also a minimum value for Jp. By uniqueness in the Euclidean
case log p0 = log p1 and so p0 = p1.

As usual, G is a self-adjoint essentially algebraic subgroup of GL(n, IR), or GL(n,C)
acting on P by (g, p) �→ gtpg.

Corollary 6.2 If C is a compact subgroup of G, then C has a simultaneous fixed
point acting on P .

Proof. Let μ = dc be normalized Haar measure on C, p0 a point of P and f : C → P
be the continuous function given by f(c) = c · p0. Then J(p) =

∫
C d

2(p, c · p0)dc.
Now for c′ ∈ C, J(c′p) =

∫
C
d2(c′p, c · p0)dc. Since C acts by isometries this is∫

C
d2(p, (c′)−1c ·p0)dc. By left invariance of dc we get

∫
C
d2(p, c ·p0)dc. Thus J(p0) =

J(c · p0) for all c ∈ C and p0 ∈ P . But by the fixed point theorem, J has a unique
minimum value at some p0 ∈ P . This means c(p0) = p0 for all c ∈ C.

We now prove the conjugacy theorem for maximal compact subgroups of G. The
proof in [5] is similar to the one given here, but rather than involve differential geom-
etry itself, it uses a convexity argument and a function which mimics the metric.

Theorem 6.3 Let G be a self-adjoint essentially algebraic subgroup of GL(n, IR), or
GL(n,C). Then all maximal compact subgroups of G are conjugate. Any compact
subgroup of G is contained in a maximal one.

Proof. Let C be a compact subgroup of G. By Corollary 6.2 there is a point
p0 ∈ P fixed under the action. Thus C ⊆ StabG(p0). But this action is transitive
so StabG(p0) = gKg−1 for some g ∈ G. Since K is a maximal compact subgroup
by Theorem 3.6, so is the conjugate gKg−1. This proves the second statement. If C
were itself maximal then C = gKg−1.
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7 The Rank and Two-Point Homogeneous Spaces

Let g be the real (or complex) linear Lie algebra of G, as above, and g = k ⊕ p be a
Cartan decomposition. By abuse of notation we shall call a subalgebra of g contained
in p a subalgebra of p. When abelian, such subalgebras will play an important role
in what follows. By finite dimensionality, maximal abelian subalgebras of p clearly
exist. In fact, any abelian subset of p is contained in a maximal abelian subalgebra
of p.

Consider the adjoint representation of K on g. Then the subspace p is invariant
under this action. Since Adk(p) ⊆ g, to see this we need only check that Adk(p) is
symmetric (Hermitian). We shall always deal with the symmetric case, unless the
Hermitian one is harder. So for p ∈ p and k ∈ K we have Adk(p) = kpk−1 = kpkt.
Hence the transpose is (kpkt)t = kpkt = Adk(p).

Theorem 7.1 In g any two maximal abelian subalgebras a and a′ of p are conjugate
by some element of K. In particular, their common dimension is an invariant of g
called r = rank(g).

This theorem was origianally proved by E. Cartan; however, here we will use the
following argument which is essentially due to G.A. Hunt [6].
Proof. Let (, ) be the Killing form on g. This is positive definite on p and negative
definite on k. Since K is compact and acts on g, by averaging with respect to Haar
measure on K we can, in addition, assume this form to be K-invariant. That is, each
Adk preserves the form. Let a ∈ a and a′ ∈ a′ and consider the smooth numerical
function on K given by f(k) = (Adk a, a

′). By compactness of K, this continuous
function has a minimum value at k0 and by calculus, at this point the derivative
is zero. Thus for each x ∈ k, d

dt(Adexp tx·k0 a, a
′)|t=0 = 0. But (Adexp tx·k0 a, a

′) =
(Adexp tx Adk0 a, a

′) = (Exp t ad(x)Adk0 a, a
′). Hence differentiating with respect to

t at t = 0 gives (ad(x)Adk0 a, a
′) = 0 for all x ∈ k. A calculation similar to the one

just given shows that the K-invariance of the form on k has an infinitesimal version,
([x, y], z) + (y, [x, z]) = 0, valid for all x ∈ k and y, z ∈ p. Hence, also for all x ∈ k, we
get (x, [Adk0 a, a

′]) = 0. Now Adk0 a and a′ ∈ p and [p, p] ⊆ k. Hence [Adk0 a, a
′] ∈ k

and because (x, [Adk0 a, a
′]) = 0 for all x ∈ k and (.) is nondegenerate on k, it follows

that [Adk0 a, a
′] = 0. Finally, since a and a′ are arbitrary, [Adk0(a), a′] = 0. Now

hold a ∈ a fixed. Because [Adk0 a, a
′] = 0 we see by maximality of a′ that Adk0 a ∈ a′

and since a is arbitrary Adk0 a ⊆ a′. Thus a ⊆ Adk−1
0

(a′). The latter is an abelian
subalgebra of p and by maximality of a they coincide. Thus Adk0(a) = a′.

It might be helpful to mention the significance of this theorem in the most ele-
mentary situation, namely, when G = GL(n, IR), or GL(n,C). As usual, we restrict
our remarks to the real case. Here p is the set of all symmetric matrices of order n.
Let d denote the diagonal matrices. These evidently form an abelian subalgebra of p.
Now d is actually maximal abelian. To see this, suppose there were a possibly larger
abelian subalgebra a. Each element of a is diagonalizable being symmetric. Since
all these elements commute they are simultaneously diagonalizable. This means, in
effect, that a = d. Thus d is a maximal abelian subalgebra of p. Now since any
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commuting family of symmetric matrices can be imbedded in a maximal abelian sub-
algebra of p, Theorem 7.1 tells us that this commuting family can be simultaneously
diagonalized by an orthonormal change of coordianates. Similarly, over C it says any
commuting family of Hermitian matrices is simultaneously conjugate by a unitary
matrix to the diagonal matrices. This is exactly the content of the theorem in these
two cases. Thus Theorem 7.1 is a generalization of the classic result on simultaneous
diagonalization of commuting families of quadratic or Hermitian forms.

We also note that the statement of Theorem 7.1 without the stipulation that
the subalgebras are in p is false. That is, in general, maximal abelian subalgebras
of g are not conjugate. For example, in g = sl(2, IR), the diagonal elements, the
skew symmetric elements and the unitriangular elements are each maximal abelian
subalgebras of g, but no two of them are conjugate (by an element of K or anything
else). We leave the verification of these facts to the reader.

Corollary 7.2 In g let a be a maximal abelian subalgebra of p. Then the conjugates
of a by K fill out p, that is, ∪k∈K Adk(a) = p. Of course, exponentiating and taking
into account that exp commutes with conjugation, this translates on the group level to
P = ∪k∈KkAk

−1, where A is the abelian analytic subgroup of G with Lie algebra a.

Proof. Let p ∈ p and choose a maximal abelian subalgebra a′ containing it. By our
theorem there is some k ∈ K conjugating a′ to a. In particular, Adk(p) ∈ a for some
k ∈ K and so p ∈ Adk−1(a).

Our next corollary, also called the Cartan decomposition, follows from this last
fact together with the usual Cartan decomposition, Theorem 3.6.

Corollary 7.3 Under the same hypothesis G = KAK.

An important use of this form of the Cartan decomposition is that it reduces the
study of the asymptotics at ∞ on G to A. That is, suppose gi is a sequence in G
tending to ∞. Now gi = kiaili, where ki and li ∈ K and ai ∈ A. Since both ki and li
have convergent subsequences, again denoted by ki and li, which converge to k and l,
respectively, the sequence ai must also tend to ∞. Thus in certain situations we can
assume the original sequence started out in A.
Proof. G = KP ⊆ KKAK = KAK ⊆ G

We now make explicit the notions of a homogeneous space and two-fold transi-
tivity from differential geometry mentioned earlier. If X is a connected Riemannian
manifold, we shall say X is a homogeneous space if the isometry group Isom(X) acts
transitively on X . Now even when the action may not be transitive it is a theorem
of Myers and Steenrod (see [4]) that Isom(X) is a Lie group and the stabilizer Kp

of any point p is a compact subgroup. In the case of a transitive action it follows
from general facts about actions that X is equivariantly equivalent as a Riemannian
manifold to Isom(X)/Kp with the quotient structure. Of course, if some subgroup
of the isometry group acted transitively then these same conclusions could be drawn
replacing the isometry group by the subgroup. Clearly, by its very construction, every
symmetric space of noncompact type is a homogeneous space.
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Now suppose in our symmetric space P we are given points p and q and p′ and
q′ of P with d(p, q) = d(p′, q′). We shall say a subgroup of the isometry group acts
two-fold transitively if there is always an isometry g in the subgroup taking p to p′ and
q to q′ for any choices of such points. When this occurs we shall say P is a two-point
homogeneous space. Clearly, every two-point homogeneous space is a homogeneous
space. As we shall see the converse is not true and learn which of our symmetric
spaces is actually a two-point homogeneous space. Before doing so, we make a simple
observation which follows immediately from transitivity.

Proposition 7.4 Let G be as above and K be a maximal compact subgroup. Then
G/K = P is a two-point homogeneous space if and only if K acts transitively on the
unit geodesic sphere U of P .

For example, when G = SO0(n, 1) and K = SO(n), then G/K = Hn, hyperbolic
n-space. Here K acts transitively on U . Hence SO0(n, 1) acts two fold-transitively
on Hn. As we shall see in Theorem 7.5, this fact is a special case of a more general
result. We also remark that this definition can be given for any connected Riemannian
manifold and indeed such a manifold is of necessity a symmetric space (see [4]).

Our last result tells us the significance of the rank in this connection. Before
proving it we observe that for all semisimple or reductive groups under consideration
dim p ≥ 2. The lowest dimension arising is the case of the upper half plane introduced
at the very beginning of this article. Indeed, suppose dim p = 1. Then since p is
abelian and exp is a global diffeomorphism p→ P , it follows easily from expx+ y =
expx exp y, where x, y ∈ p, that P is a connected one-dimensional abelian Lie group.
Now since K acts on P by conjugation and in this case these form a connected group
of automorphisms of P we see that this action is trivial because Aut(P )0 = (1).
Thus K centralizes P and we have a direct product of groups. Such a group is not
semisimple. It is clearly also not GL(n, IR) or GL(n,C) for n ≥ 2.

We now characterize two-point homogeneous symmetric spaces.

Theorem 7.5 Let G be as above, g be its Lie algebra and K be a maximal compact
subgroup. Then G/K is a two-point homogeneous space if and only if rank(g) = 1.

Proof. We first assume rank(g) = 1. By Proposition 7.4, to see that G/K is a two-
point homogeneous space, it is sufficient to show Int(K) acts transitively on geodesic
spheres of P . Of course, we know Ad(K) acts linearly and isometrically on p. Now by
Corollary 7.2 ∪k∈K Adk(a) = p. Hence each point p ∈ U is a conjugate by something
in K of a point on the unit sphere of a. Since the dimension of this sphere is zero,
it consists of two points, ±a0. Hence U = Ad(K)(a0) ∪Ad(K)(−a0). In any case, U
is a union of a finite number of orbits all of which are compact and therefore closed
since K itself is compact. Since these are closed, so is the union of all but one of
them. Hence U is the disjoint union of two nonempty closed sets. This is impossible
since U is connected because dim p ≥ 2. Thus there is only one orbit and therefore
K acts transitively on U .

Before proving the converse, the following generic example will be instructive. Let
G = SL(n, IR), n ≥ 2. We shall see SL(n, IR)/ SO(n) is a two-point homogeneous
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space if and only if n = 2. This suggests that unless the rank = 1, one can never have
a two-point homogeneous symmetric space.

To see this, observe that since G/K = P is the set of positive definite n × n

symmetric matrices of det 1, it follows that dimP = n(n+1)
2 −1. Also dimK = n(n−1)

2 .
Hence if U denotes the geodesic unit sphere in P , its dimension is n(n+1)

2 − 2. Let K
act on P and U by (k, p) �→ kpk−1 = kpkt. For p ∈ U the dimension of OK(p), the
K-orbit of p, is

dimOK(p) =
n(n− 1)

2
− (n− 1)(n− 2)

2
= n− 1.

Now if K were to act transitively on U , then dimOK(p) = dimU . That is, n− 1 =
n(n+1)

2 − 2. Alternatively, (n − 2)(n + 1) = 0. Since n ≥ 2, this holds if and only if
n = 2. We conclude by proving the converse.
Proof. Suppose (P,G) is a two-point homogeneous space and hence K acts transi-
tively (by conjugation) on the unit geodesic sphere U in p. Then U = OK(a0), where
a0 ∈ p and ‖ a0 ‖= 1. Since a0 is conjugate to something in a, we may assume a0 ∈ a.
In particular, everything in U ∩ a is K-conjugate to everything else. Because these
matrices commute, they can be simultaneously diagonalized by some u0 (which may
not be in K). By replacing these a’s by their u0 conjugates we may assume they
are all diagonal. Being conjugate under K these matrices have the same spectrum
S. Since S is finite and K is connected, K can not permute this finite set. Thus the
action of K leaves each of these matrices fixed. But K acts transitively on U ∩ a so
U ∩ a must be a point. Hence it has dim 0 and dim a = 1.
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