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ABSTRACT
We give a upper bound of Lebesgue measure V (S(f, h, Q)) of the set S(f, h, )
of points ¢ € Q¢ for which the triple (h, g, Q) is dynamically robust when f is
monotonic and satisfies certain condition on some compact subset Q € R%.

RESUMEN
Damos una cota superior de la medida de Lebesgue V (S(f, h,)) del conjunto
S(f,h,Q) de puntos ¢ € Q¢ para los cuales el trio (h,q,Q) es dindmicamente
robusto cuando f es mondtona y satisface ciertas condiciones en algunos subcon-
juntos compactos Q € R%.
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1 Introduction

A discrete dynamical system on the state space R? is generated by the iteration of a
mapping f : R? — R?, that is 2,41 = f(zn),n =0,1,2,--- .
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Let QZ denote the h-cube in R? centered at origin, that is
d a D h .
Q5 ={x = (21,22, - ,xq) ER — <z < 5= 1,2,---,d}

and for each ¢ € Q;il, let Ly ={qg+hz:z¢€ Z%} be the uniform h-lattice in R?
centered at q.

For ¢ € QZ, we define the roundoff operator [.], from R? into Ly 4 by [z]nq =
Ly N (z+ Q%) for z € RY, or equivalently by

[]h,q = ([t1 — q@1]n +q1, -, [Ta — qaln + qa)

where © = (1,29, -+ .24),q¢ = (q1,92, "+ ,q4) and [y]p is scalar roundoff operator
defined by

1 1
yln = kh if (k—i)h§y<(k+§)h.
Let f be a dynamical system in R?. The map f 4 : Lnq — Ln 4 defined by
Jrg(@) = [f(@)]h.q; T € Lpg

is called Ly, 4-discretization of f.
Now we give the definition of dynamical robustness [2]:
Given h > 0, q € Q;il, and a compact set Q C R, we say the triple (h,q,Q) is dy-
namically robust if the discretization fj, ; has a single equilibrium xp, ¢ = f,q(Th,q) €
QN Ly, and
lim |f' (z) —2p,e[ =0 Vo € Ly 4N Q.
n—oo ’

In [2] the following question was raised: given f and a compact set 2 € RY, what
is the Lebesgue measure V (S(f, h,2)) of the set S(f, h,2) of points ¢ € Q} for which
the triple (h, g, Q) is dynamically robust?

They answered this question partially: when  is a parallel-polyhedron in R?,
f is monotonic on 2 and satisfies some condition, they give a lower bound for
V(S(f,h,Q)). In this paper we give a upper bound of V(S(f, h,?)) for f is monotonic
and satisfies certain condition on some compact subset Q € R<.

2 Main Results

We give the semi-ordering in R?: for z,y € R?, we say = < y if z; < y; for
i1=1,2,--- dand z < yifx; <y; fori =1,2,---, d. We shall say f is monotonically
increasing on a set S € R if f(x) < f(y) for all z,y € S with z < y.

In the following we restrict attention to monotonically increasing functions, noting
that the monotonic decreasing case is handled similarly.

By the definition of dynamically robust, we have

Proposition 1 Let f be monotonic on the compact set Q C R? and suppose that
(h,q,8) is a dynamically robust, xp 4 is the single equilibrium. ¥Yx € Ly, N Q, if
&> Thgs fng(®) = Tng; if @ < kg, there exists k € N such that fF (x) = xp.q-
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Proof. Because ) is a compact subset of R?, Ly, ;N is a finite set. For z € L; 4N,
if # < @p g, let frq(z) = 20, then 2V = fy (2) < frg(Thg) = Thg 20 =28,
it is proved with k = 1. Otherwise we consider (2 := f), ,(z(1) < f1, o (Th.q) = Thq-
If 2® = z3,, it is proved with k = 2. If () # ;, , we can continue this process.
But Ly, NQ is finite set there exists a k € N such that ff () = frg(x®=1) =y .
If © > xp 4, and fr q(x) # Thq, by the monotonicty, fr q(x) > fr,q(Thg) = Thg. sO
|fi (@) =Th.gl = [fn,q(x) —Thq| > 0 for any n € N, It is contradiction to the definition
of dynamically robust of (h,¢,). So we have fj 4(z) = xp 4.

In fact, V2 € Ly g NQ there exists k € N such that ff (z) = zp4. |

Now we can estimate V(S(f, h,)).

Theorem 1  is a compact subset of R? and satisfies: ¥q € Q%, there exist uy 4, us 4 €
Ly oM such that Vo € Ly, 4N, u1,q < < ugyg. Let f be monotonic on the compact
set @ C R? and f(Q) C ' where Q' C Q and satisfies Yo = (w1, ,24) € 09, the

boundary of , and V&' = (z},--- ,2}) € O, |z; — z}| > %, 1=1,2,---,d. we have

hd—Ll_lV({er:a:—ggf(a:)<x+g})

V(S(f,h,Q)) <
( (f7 ) ))_L_].
where L = Ly X Ly X+ -+ X Lg and L; is determined by following: letl; = |/mazx{z; : x =
(z1,- @i, xq) € QY —min{x; : x = (21, , x4, ,xq) € QY| and l; = rh +p,
0<p<hthen Liy=r+1.

Proof. The method of this proof is following that in [2]. Let F'(h,q) = Lp N {x :
T — % < flz)<az+ %} and k(h, q) = #{F(h,q)}. In order to carry on proof, we need
following

Lemma 1 /3]

k(h,q)dg=V({x:x— g < flz) <z+ g})
Q5

We also need the following special case of the Birkhoff-Tarski Theorem

Lemma 2 [1]. Let g be a monotonic map of a finite set I' € R? into itself. If g
satisfies g(x) > x or g(x) < x for x € T', then the iterative sequence x,11 = g(xy)
with xo = © converge to the fized point g(z*) = 2* € T.

Remark:

(1). We can get the fixed point by following: take any « € I with g(x) > z or g(z) < x
and iterate x,41 = g(z,) with g = x, because T is finite, after a finite number of
steps we can get a fixed point.

(2). If fa,q has only one fixed point z*, then &* = f (u1,4) and z* = f} (ua4) for
some k,l € N. Since u1,q <@ < ugq it is easy to see f}' (z) = 2, Vo € L N Q for
large n € N.

The condition on f guarantees that f , is a mapping of L , N 2 into itself. The
elements of F}, 4 are precisely the fixed points of fj, 4. So it is easy to see k(h,q) > 1
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from the lemma 2 because fp, 4(u1,4) > u1,4. By the definition of dynamically robust
and remark (2), we have ¢ € S(f, h,Q) if and only if k(h,q) = 1. So V(S(f,h,Q)) =
V({q: k(h,q) =1}). But

V({q:k(h,q) =1}) +V({q: k(h,q) > 1}) =
and k(h,q) at most equal to L = L1 X --- X Lg. By lemma 1, we have

MID‘

<) <o+ 5h) = [ ko

h

= V({q:khq) =1} + szV{q k(h,q) = i})

=2
< V({g:k(h,q) =1})+ L xV({q:k(h,q) >1})
= V({q:k(h,q) =1})+ Lh* = L x V({q : k(h,q) = 1})
= Lhd (L=1)V({q:k(h,q)=1})
= — (L =1V(S(f, h,Q)).
So,
VIS(f,h, Q) < Lf - Li V({renr- g < f@)<az+ g}).

Under the condition of Theorem 2, the result of Theorem 1 in [2] still holds.
Combining with the Theorem 1 in [2], we get

Corollary 1 Under the condmon of Theorem 2 below we have
Maz{0,2h? = V({z € Q:a— & < f(z) <z + L1} < V(S(f, h,Q))
< Lhl- L Vv{zeQ -1 <f( )<x+g}).

Remark: It is easy to see h* < V({z € Q:a— 2 < f(2) <z +L2}) < Lhd.

If f is not monotonic, the situation is complex. Followmg we give a special exam-
ple.

For ¢ is a map from (Q into itself, we say = is a periodic point of g, if there exist
n € N such that g"(x) = x. The least n which satisfies g"(x) = z is called period of
g at x.

Now we give the example.

Theorem 2 Let f be a map from a compact set 2 into Q. where Q' C Q and
satisfies Vm = (z1, - xd) € 99, the boundary of Q, and Va' = (af,--- ,2)) € &,
lo; —af| > 2 5,1=1,2,---,d. IfVq € Q%, fn.q has no periodic point with period more
than 1, then

L 1
h,Q)) < h? —
where L = Ly X Ly X -+ X Lg and L; is determined by following: letl; = |/max{z; : x =

(z1,-++ 24, ,xq) € QA —min{z; : x = (x1,- , @i, ,xq) € QY| and [; = rh + p,
0<p<hthen Liy=r+1.

V({er:x—ggf(x)<x+g})
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Proof. We note
V({g:k(h,q) =0} +V({g: k(h,q) = 1}) + V({g : k(h,q) > 1}) = A,

V({g: k(h.q) > 1}) < h! = V({q: k(h,q) = 1}).

Now we only need to prove following.

Lemma 3
q€S(f,hQ) if and only if k(h,q) = 1.

Proof. Let q € S(f,h,9), but k(h,q) # 1. Then k(h,q) = 0 or k(h,q) > 1. That
means dynamical system f5, 4 has no equilibrium or has at least two distinct equilibria,
it is contradition to ¢ € S(f, h, ).

If k(h,q) =1, let zy, 4 is the unique fixed point of f 4 in Ly NQ. Vo1 € Lj ¢ NQ,
the condition of f guarantee fp, 4(z1) € Lp,q N Q. Let Fy o(x1) 1= 2, if o # x1, we
consider fp, q(z2) := xs. If x3 # x2 then xg # 21 since fp 4 has no periodic point with
period more than 1. We continue this process and get x1, 2, -+ ,€ Lp 4 N €2, which
are pairwise distinct. But Ly , N € is finite, so after finite number of steps, say NV
steps, we have f}i\fq(xl) = frnq(xn) = zn. But oy, 4 is the unique fixed point, we get
TN = Tn,q and f}{\fq(xl) = Tp,q. So fi (1) = xp,q for any m > N, that is

lim f3' (z) = zpq, Vo € Ly 4N Q.
ie, g€ S(f,h,Q).
The next step of the proof is the same as that in Theorem 2. [ |
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