
A Mathematical Journal
Vol. 7, No 3, (87 - 94). December 2005.

Convergence rates in regularization for
ill-posed variational inequalities

Nguyen Buong 1

Vietnamse Academy of Science and Technology, Institute of Information Technology
18, Hoang Quoc Viet, q. Cau Giay, Ha Noi, Vietnam

nbuong@ioit.ncst.ac.vn

ABSTRACT
In this paper the convergence rates for ill-posed inverse-strongly monotone

variational inequalities in Banach spaces are obtained on the base of choosing
the regularization parameter by the generalized discrepancy principle.

RESUMEN

En este art́ıculo se obtienen tasas de convergencia para desigualdades varia-
cionales en problemas inversos mal puestos fuertemente monótonos en espacios
de Banach, sobre la base de la elección del parámetro de regularización por medio
del principio de discrepancia generalizada.
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1 Introduction.

Let X be a real reflexive Banach space having the E-property and X∗, the dual space
of X, be strictly convex. For the sake of simplicity, the norms of X and X∗ will be
denoted by the symbol ‖.‖. We write 〈x∗, x〉 instead of x∗(x) for x∗ ∈ X∗ and
x ∈ X. Let A be a hemi-continuous and monotone operator from X into X∗, and
K be a closed convex subset of X.

For a given f ∈ X∗, consider the variational inequality: find an element x0 ∈ K
such that

〈A(x0)− f, x− x0〉 ≥ 0, ∀x ∈ K. (1.1)

Variational inequalities and their approximations have been extensively studied in the
last two decates. Existence and approximations of solutions of variational inequalities
for various classes of operators in Hilbert and Banach spaces have been considered in
[1]-[5], [7], [8], [10], [11] and [13]. We mention, in particular, the paper [3], [11], where
the operator method or iterative method of regularization are considered. Further, in
[7] the convergence rates of the operator method of regularization is investigated under
the inverse-strongly monotone A in Hilbert space when the parameter of regularization
α is chosen a priory.

In the Banach space X, the operator method of regularization is the following
variational inequality

〈Ah(xτ
α) + αU(xτ

α − x0)− fδ, x− xτ
α〉 ≥ 0, xτ

α ∈ K, ∀x ∈ K, (1.2)

where Ah are also monotone operators from X into X∗ and approximate A in the
sense

‖Ah(x)−A(x)‖ ≤ hg(‖x‖) (1.3)

with a nonegative continuous and bounded (image of bounded set is bounded) function
g(t), U is the normalized duality mapping of X, i.e., U is the mapping from X onto
X∗ satisfying the condition (see [14])

〈U(x), x〉 = ‖x‖2, ‖U(x)‖ = ‖x‖,

fδ are the approximations of f : ‖fδ − f‖ ≤ δ, τ = (h, δ), and x0 is some element
in X playing the role of a criterion selection. By the choice of x0, we can influence
which solution we want to approximate.

In [11], it is showed the existence and uniqueness of the solution xτ
α for every α > 0

and for arbitrary Ah, fδ. And, the regularized solution xτ
α converges to x0 ∈ S0, the

set of solutions of (1.1) which is assumed to be nonempty, with

‖x0 − x0‖ = min
x∈S0

‖x− x0‖,

if (h+δ)/α, α → 0. Moreover, for each fixed τ = (δ, h) the papameter of regularization
α can be chosen by the discrepancy principle

ρ(α) = (k − 1)(δ + h)p + δp + g(‖xτ
α‖)hp, 0 < p < 1, k > 1,
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where ρ(α) = α‖xτ
α − x0‖, under the conditions: x0 ∈ int K and

‖Ah(x0)− fδ‖ > (k − 1)(δ + h)p + δp + g(‖x0‖)hp

for 0 < δ < δ < 1, 0 < h < h < 1. The case x0 ∈ ∂K also is considered when xτ
α ∈

int K.
In this paper, under the condition x0 ∈ K\S0 without the restriction xτ

α ∈ int K
we shall show that the parameter of regularization α = α(δ, h) can be chosen by the
generalized discrepancy principle

ρ(α) = (δ + h)pα−q, p, q > 0, (1.4)

for arbitrary monotone operator A, and on the base of the result we can estimate the
convergence rates when A is an inverse-strongly monotone operator, i.e., A possesses
the property

〈A(x)−A(y), x− y〉 ≥ 1
β
‖A(x)−A(y)‖2, ∀x, y ∈ X, (1.5)

where β is some positive constant. In facts, variational inequalities with inverse-
strongly monotone operator belong to a class of nonlinear ill-posed problems (see
[7]).

Note that the generalized discrepancy principle for parameter choice is presented
first in [6] for the ill-posed operator equation

A(x) = f (1.6)

when A is a linear and bounded operator in Hilbert space. Recently, it is considered
and applied in estimating convergence rates of the regularized solution for equation
(1.6) involving an m-accretive (in general nonlinear) operator (see [9]).

Later, the symbols ⇀ and → denote weak convergence and convergence in norm,
respectively, and the notation a ∼ b is meant that a = O(b) and b = O(a).

2. Main result

To obtain the result on the convergence rate for {xτ
α(δ,h)} as in [6] we need the

following lemmas.
Lemma 1. For each p, q, δ, h > 0, there exists at least a value α such that (1.4) holds.
Proof. It follows from [11] that ρ(α) is a continuous and nondecreasing function on
[α0,+∞), α0 > 0. Moreover, ρ(α) > 0 ∀ α 6= 0. Indeed, if α1 6= 0 with ρ(ατ

1) = 0,
then xτ

α1
= x0 and from (1.2) it follows

〈Ah(x0)− fδ, x− x0〉 ≥ 0, ∀x ∈ K.

After passing δ and h to zero in this inequality we see x0 ∈ S0. This contradicts the
assumption x0 ∈ K\S0. Therefore, αqρ(α) → +∞, as α → +∞. On the other hand,
since

0 ≤ ρ(α) = α‖xτ
α − x0‖

≤ δ + hg(‖x0‖‖) + 2α‖x0 − x0‖
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(see also [11]), we have αqρ(α) → 0, as α → +0. Hence, there exists a value α such
that (1.4) holds.

Lemma 2. limδ,h→0 α(δ, h) = 0.

Proof. Let δn, hn → 0, and αn = α(δn, hn) →∞ as n →∞. From (1.3),

〈Ahn
(xτn

αn
) + αnU(xτn

αn
− x0)− fδn

, x− xτn
αn
〉 ≥ 0, ∀x ∈ K, (2.1)

the monotone property of Ahn and x0 ∈ K it follows

‖xτn
αn
− x0‖ ≤ ‖Ahn

(x0)− fδn
‖/αn → 0,

as n → ∞. Therefore, xτn
αn

→ x0, as n → ∞. On the other hand, by using the
monotone property of Ahn

and the property of U we can write (2.1) in the form

〈Ahn(x)− fδn , x− xτn
αn
〉 ≥ −αn〈U(xτn

αn
− x0), x− xτn

αn
〉

≥ −αn‖xτn
αn
− x0‖‖x− xτn

αn
‖

≥ −ρ(αn)‖x− xτn
αn
‖

≥ −(δn + hn)pα−q
n ‖x− xτn

αn
‖ → 0,

as n →∞. It means that

〈A(x0)− f, x− x0〉 ≥ 0, ∀x ∈ K,

i.e., x0 is a solution of (1.1). It contradicts x0 /∈ S0.
Thus, α(δ, h) remains bounded as δ, h → 0. Let δn, hn → 0 as n → ∞, and

meantime αn → c > 0. Since α1+q
n ‖xτn

αn
− x0‖ = (δn + hn)p, we have ‖xτn

αn
− x0‖ → 0,

as n →∞. Again, x0 ∈ S0. Hence, limδ,h→0 α(δ, h) = 0.

Lemma 3. If 0 < p < q, then limδ,h→0(δ + h)/α(δ, h) = 0.

Proof. It is easy to see that[
δ + h

α(δ, h)

]p

[(δ + h)pα(δ, h)−q]α(δ, h)q−p

= ρ(α(δ, h))α(δ, h)q−p = α(δ, h)‖xτ
α(δ,h) − x0‖α(δ, h)q−p

≤
[
δ + hg(‖x0‖) + 2α(δ, h)‖x0 − x0‖

]
α(δ, h)q−p → 0

as δ, h → 0. Therefore,

lim
δ,h→0

[
δ + h

α(δ, h)

]p

= 0.

The lemma is proved.
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Lemma 4. Let 0 < p < q. Then, there exist constants C1, C2 > 0 such that, for
sufficiently small δ, h > 0, the relation

C1 ≤ (δ + h)pα(δ, h)−1−q ≤ C2

holds.
Proof. From

(δ + h)pα(δ, h)−1−q = α(δ, h)−1ρ(α(δ, h)) = ‖xτ
α(δ,h) − x0‖

≤ δ

α(δ, h)
+

h

α(δ, h)
g(‖x0‖) + 2‖x0 − x0‖

and lemma 3, it implies the existence of a positive constant C2 in the lemma.
On the other hand, as X is reflexive and {xτ

α(δ,h)} is bounded, there exists a
subsequence of the sequence {xτ

α(δ,h)} that converges weakly to some element x̃0 in
K such that

‖x̃0 − x0‖ ≤ lim inf ‖xτ
α(δ,h) − x0‖.

We can conclude that x̃0 6= x0. Indeed, if x̃0 = x0, then from the monotone hemi-
continuous property of Ah and (1.2) it follows

〈Ah(x) + αU(x− x0)− fδ, x− xτ
α〉 ≥ 0, ∀x ∈ K.

After passing δ and h in the last inequality to zero we obtain

〈A(x)− f, x− x̃0〉 ≥ 0, ∀x ∈ K

which is equivalent to (1.1). It is meant that x̃0 ∈ S0. It contradicts x0 /∈ S0.
Therefore, there exists a constant C1 in the lemma.

To estimate the convergence rates for {xτ
α(δ,h)} we assume that

〈U(x)− U(y), x− y〉 ≥ mU‖x− y‖s, mU > 0, s ≥ 2, ∀x, y ∈ X. (2.2)

It is well-known that when X ≡ H, the Hilbert space, mU = 1, s = 2, and when
X = Lp or Wp, mU = p− 1, s = 2 for the case 1 < p < 2. In the case p > 2 we have
to use the duality mapping Us satisfying the condition

〈Us(x), x〉 = ‖x‖s, ‖Us(x)‖ = ‖x‖s−1, s ≥ 2

instead of U . Then, mUs = 22−p/p and s = p in (2.2) (see [12]).

Theorem 1. Assume that the following conditions hold:
(i) A is an inverse-strongly-monotone operator in X with

‖A(x)−A(x0)−A′(x0)(x− x0)‖ ≤ τ̃‖A(x)−A(x0)‖, ∀x ∈ X,

where τ̃ is some positive constant;
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(ii) There exists an element z ∈ X such that A′(x0)∗z = U(x0 − x0);
(iii) The parameter α is chosen by (1.4) with p < q.
Then, we have

‖xτ
α(δ,h) − x0‖ = O((δ + h)θ), θ =

p

(1 + q)(2s− 1)
.

Proof. From (1.1) - (1.3) it follows

〈A(xτ
α(δ,h))−A(x0), xτ

α(δ,h) − x0〉+ α(δ, h)

× 〈U(xτ
α(δ,h) − x0)− U(x0 − x0), xτ

α(δ,h) − x0〉
≤ (δ + hg(‖xα(δ,h)‖))‖xα(δ,h) − x0‖

+α(δ, h)〈U(x0 − x0), x0 − xτ
α(δ,h)〉. (2.3)

Thus, by using (1.5) and the monotone property of U we obtain

‖A(xτ
α(δ,h))−A(x0)‖ ≤ O(

√
δ + h + α(δ, h))‖xτ

α(δ,h) − x0‖1/2.

On the other hand, from (2.2), (2.3) and the monotone property of A which is followed
from (1.5) we have

mU‖xτ
α(δ,h) − x0‖s ≤ 〈U(xτ

α(δ,h) − x0)− U(x0 − x0), xτ
α(δ,h) − x0〉

≤ δ + C̃0h

α(δ, h)
‖xτ

α(δ,h) − x0)‖+ 〈z,A′(x0)(x0 − xτ
α(δ,h))〉

where C̃0 is some positive constant, and∣∣〈z,A′(x0)(x0−xτ
α(δ,h))〉

∣∣ ≤ ‖z‖(τ̃ + 1)‖A(xτ
α(δ,h))−A(x0)‖

≤ ‖z‖(τ̃ + 1)O(
√

δ + h + α(δ, h))‖xτ
α(δ,h))− x0‖1/2.

Now, from lemma 4 it implies that

α(δ, h) ≤ C
−1/(1+q)
1 (δ + h)p/(1+q).

and

δ + h

α(δ, h)
≤ C2(δ + h)1−pα(δ, h)q

≤ C2C
−q/(1+q)
1 (δ + h)1−p(δ + h)pq/(1+q)

≤ C2C
−q/(1+q)
1 (δ + h)1−p/(1+q).

In final, we have

mU‖xτ
α(δ,h)−x0‖s−1/2 ≤ max{1, C̃0}C2C

−q/(1+q)
1 (δ + h)1−p/(1+q)

× ‖xτ
α(δ,h) − x0‖1/2 + O(

√
δ + h + α(δ, h))

≤ O((δ + h)1−p/(1+q)‖xτ
α(δ,h) − x0‖1/2 + O((δ + h)p/2(1+q)).
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Using the implication

a, b, c ≥ 0, s > t, as ≤ bat + c =⇒ as = O(bs/(s−t) + c)

we obtain
‖xτ

α(δ,h) − x0)‖ = O((δ + h)θ).

Received: July 2004. Revised: August 2004.
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