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ABSTRACT

We produce Fuzzy Taylor formulae with integral remainder in the univariate
and multivariate cases, analogs of the real setting.

RESUMEN
Se presentan versiones Fuzzy analogas a las reales de férmulas de Taylor con
resto integral en el caso univariado y multivariado.
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1 Background

We need the following
Definition A (see [10]). Let p: R — [0, 1] with the following properties.

(i) is normal, i.e., xg € R; p(zo) = 1.
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(i) p(Ax+ (1 —=N)y) > min{p(x), u(y)}, Yo,y € R, YA € [0,1] (p is called a convex
fuzzy subset).

(iil) p is upper semicontinuous on R, i.e., Vzyg € R and Ve > 0, 3 neighborhood
V(zo): p(z) < p(zo) + &, Yo € V(xg).

(iv) The set supp(p) is compact in R (where supp(p) := {z € R; u(z) > 0}).

We call u a fuzzy real number. Denote the set of all p with R.
E.g., X{z0) € R, for any o € R, where X,y is the characteristic function at .
For 0 <r <1 and u € Ry define [u]” := {z € R: p(z) > r} and

1]° = {zx e R: u(x) > 0}.

Then it is well known that for each r € [0,1], [¢]" is a closed and bounded interval of
R. For u,v € Rz and A € R, we define uniquely the sum u @ v and the product A®u
by

[udv]” =[u"+[v]", [Aou]" = A", vr e [0,1],

where [u]” + [v]" means the usual addition of two intervals (as subsets of R) and \[u]”
means the usual product between a scalar and a subset of R (see, e.g., [10]). Notice
lou=wuwanditholdsu®v =vPu, A\Qu=u®A If0<r; <ry <1 then
[W]™ C [u]™r. Actually [u]” = [u”,u{"], where u'” < o) u" W) € R, vr € [0,1].

For A > 0 one has /\ug) =(\G u)(ir), respectively.

Define
D: R]: X R]: d R+
by
D(u,v) := sup max{|u(f) - vg)|, |u(+r) - U$)|},
re(0,1]

where [v]" = [U(T),UE:)}; u,v € Rr. We have that D is a metric on Rz. Then (Rz, D)

is a complete metric space, see [10], with the properties

Dudw,vdw) = D(u,v), Yuv,wée€Rg,
Dkoukov) = |k|D(u,v), Yu,veRg VkeR,
Du®v,wde) < D(u,w)+ D(v,e), Yu,v,w,e€ Ry.

Let f,g: R — Rz be fuzzy number valued functions. The distance between f,g is
defined by

D*(f,g) =sup D(f(z),g(x)).
zeR
On Rz we define a partial order by “<”: u,v € Rr, u < v iff u(_r) < v(_T) and
u(f) < US:), Vr € [0,1].
We mention
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Lemma 2.2 ([5]). For any a,b € R: a,b >0 and any u € Rr we have
D(a®u,b®u) < |a—10|- D(u,0),

where 0 € Rx is defined by 6 := Xyoy.

Lemma 4.1 ([5]).

(i) If we denote 6 := Xyoy, then 6 € R is the neutral element with respect to @,
e, ubo=0d®u=u, Vu € Rr.

(ii) With respect to 6, none of u € Rg, u # 0 has opposite in Rg.

(iii) Let a,b € R:a-b >0, and any u € Rz, we have (a+b) Qu=a0udbO u.
For general a,b € R, the above property is fale.

(iv) For any A € R and any u,v € Rz, we have A\® (u®v) =AQud A O v.
(v) For any A\,p € R and u € Rr, we have A® (u @ u) = (A - p) ©u.

(vi) If we denote ||ul|x := D(u,0), Vu € R, then || - ||z has the properties of a usual
norm on Rz, i.e.,

lulz = 0iffu=0o,[xOullz=]Al-ullz,
lu@ovllz < lullz+llvllz, lulz—lvlr < D(u,v).

Notice that (R, ®, ®) is not a linear space over R, and consequently (Rg, || - || )
is not a normed space.

We need

Definition B (see [10]). Let =,y € Rz. If there exists a z € Rz such that z = y + z,
then we call z the H-difference of x and y, denoted by z := x — .

Definition 3.3 ([10]). Let T" := [z, 20+ ] C R, with 3 > 0. A function f: T — Rz
is H-differentiable at © € T if there exists a f/(x) € Rz such that the limits (with
respect to metric D)

o fEER = f@) @)~ S —h)

h—0+ h T pSo+ h

exist and are equal to f'(z). We call f’ the derivative or H-derivative of f at x. If
f is H-differentiable at any x € T, we call f differentiable or H-differentiable and it
has H-derivative over T the function f’.

The last definition was given first by M. Puri and D. Ralescu [9].

We need also a particular case of the Fuzzy Henstock integral (§(z) = $) introduced
in [10], Definition 2.1.

That is,
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Definition 13.14 ([6], p. 644). Let f: [a,b] — Rx. We say that f is Fuzzy-Riemann
integrable to I € Ry if for any € > 0, there exists § > 0 such that for any division
P = {[u,v];&} of [a,b] with the norms A(P) < 4, we have

D (Z*w ~u) @f(fm) <e,

P

where Y denotes the fuzzy summation. We choose to write

b
— (FR) / F)dz

We also call an f as above (F'R)-integrable.

We mention

Lemma 1 ([3]). If f,g: [a,b] C R — Rz are fuzzy continuous functions, then the
function F: [a,b] — Ry defined by F(x) := D(f(x), g(z)) is continuous on [a,b], and

<FR/f dx(FR)/ ) /D ))da.

Lemma 2 ([3]). Let f: [a,b] — RF fuzzy continuous (with respect to metric D), then
D(f(z),0) < M, Vx € [a,b], M > 0, that is f is fuzzy bounded. Equivalently we get
X—m < f(z) < xm, YV € [a,b].

(3]

Lemma 3 ([3]). Let f: [a,b] CR — Rz be fuzzy continuous. Then

(FR)/ f)dt s a fuzzy continuous function in x € [a,b].

Lemma 5 ([4]). Let f: [a,b] — Rx have an existing H-fuzzy derivative [’ at ¢ € [a, b].
Then f is fuzzy continuous at c.

We need

Theorem 3.2 ([7]). Let f: [a,b] — Rz be fuzzy continuous. Then (FR) f: f(z)dz
exists and belongs to Rz, furthermore it holds

b r b b
(FR)/ f(x)dx] - [/ (f)@(x)dx,/ (f)(f)(:v)dx], vrelo,1. (1)

Clearly fﬂ(tr): [a,b] — R are continuous functions.

We also need

Theorem 5.2 ([8]). Let f: [a,b] C R — Rz be H-fuzzy differentiable. Let t € [a,b],
0<r<1. (Clearly

) = [(FeNT, (Fe)] SR (2)
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Then (f(t))(ir) are differentiable and

L) = [((FENTY (Fen$)]. (3)
The last can be used to find f'.

Here C"([a,b],Rx), n > 1 denotes the space of n-times fuzzy continuously H-
differentiable functions from [a,b] C R into Rr. By above Theorem 5.2 of [8] for
f € C"™([a,b],Rz) we obtain

LD = [((FO) D, ((F) ) D), (4)
fori=0,1,2,...,n and in particular we have
(SO = (D, wr e 0,1, (5)

Definition 1. Let a1, as, b1, by € R such that a; < by and as < by. Then we define
[a1,b1] + [az, bo] = [a1 + a2, by + bs]. (6)
Let a,b € R such that a < b and k € R, then we define,

if k>0, kla,b]=[ka,kb],
if k<0, kla,b]=[kb,ka]. (M)
Here we use

Lemma 1. Let f: [a,b] — Rz be fuzzy continuous and let g: [a,b] — Ry be continu-
ous. Then f(x) ® g(x) is fuzzy continuous function Yz € [a, b].

Proof. The same as of Lemma 2 ([1]), using Lemma 2 of [3]. |

2 Main Results

We present the following fuzzy Taylor theorem in one dimension.

Theorem 1. Let f € C"([a,b],Rz), n > 1, [o, 8] C [a,b] CR. Then

fB)=fla) @ f’(a)Q(ﬂ—a)@-~®f(nU(@)@%
! FR ’ n—1 ™) () d
® mG( )/Q(ﬂ—t) ® fM(t) dt. (8)

The integral remainder is a fuzzy continuous function in 3.

Proof. Let r € [0,1]. We have here [f(5)]" = [f(_r) 8), _E_T) (8)], and by Theorem 5.2
(8 j(tr) is n-times continuously differentiable on [a,b]. By (5) we get

(@) = (D @)®, all i=0,1....m, )
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and ‘ . A
FO@) = [ (@)D, (£ (@) @]
Thus by Taylor’s theorem we obtain

D) = 1)+ (@) (8- )

— o)1 B
bt (e B L [ g ) g

(n—1)! (n—1

Furthermore by (9) we have
12G) = 1)+ (@) - a)

—«a n—1 B8 n
e (D@0 T L [0 ) O

Here it holds 8 —a >0, 8—t >0 for t € o, 3], and
@) < (FEN, i€ fab]

alli=0,1,...,n, and any r € [0, 1].

We see that
@), 1)) = [fir)(a)-k(f’_(a))(r)(ﬁ_a)+._._~_(f£n1)(a))(r)([3(;iy)17;!_
! ’ n— M)\ (r (r)
oty [ G- O 0, 1)
+ (fi@)VB-a)++ (fi”‘l)(a))(r)%
B
oy L o wal,

To split the above closed interval into a sum of smaller closed intervals is where we
use 0 —a > 0. So we get

B = [F78), 178)] = £ (), £ ()] + (£ (@), (1) ](8 - a)

o [T @O, (£ () 1 e

o B =0 O W, [2(8 - 0 ()0 byt

1—1

= [F@F + @) (B=a) +- -+ [frD(a)]r Ezal

oy [ (B =t e fw) D, 18 -0 o £ (1) D]
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By Theorem 3.2 ([7]) we next get

(8 =y

FE = @)+ @) (8 =0+ [ @) 2,

ﬁ s
) [ (ﬂt)"lGJf(”)(t)dt] |

Finally we obtain

For = {f(a)@f'(a)G(5—04)69---69f("—1)(a)®(5(71—04)17;!_

16
& 7(71_1 57 © (FR)/Q

By Theorem 3.2 of [7] and Lemma 1 we get that the remainder of (8) is in Rz, and by
Lemma 3 ([3]) is a fuzzy continuous function in (. The theorem has
been proved. [ ]

B-t)"1o f(”)(t)dt]r, all 7 € [0, 1].

Next we present a multivariate fuzzy Taylor theorem.

We need the following multivariate fuzzy chain rule. Here the H-fuzzy partial
derivatives are defined according to the Definition 3.3 of [10], see Section 1, and the
analogous way to the real case.

Theorem 3 ([2]). Let ¢;: [a,b] CR — ¢;([a,b]) :=1; CR,i=1,...,n, n € N, are
strictly increasing and differentiable functions. Denote x; := x;(t) := ¢;(t), t € [a,b],
t =1,...,n. Consider U an open subset of R"™ such that x}_,I; C U. Consider
f:U — Rg a fuzzy continuous function. Assume that fy,: U — Rgp, i =1,...n,
the H-fuzzy partial derivatives of f, exist and are fuzzy continuous. Call z := z(t) :=
f(z1,...,x,). Then % exists and

dz i 9 53 e lay) (10)
= — a
dt 4= dx; — dt’ ’
where %, %, i, = 1,...,n are the H-fuzzy derivatives of f with respect to t, x;,
respectively.

The interchange of the order of H-fuzzy differentiation is needed too.

Theorem 4 ([2]). Let U be an open subset of R™, n € N, and f: U — Rx be a
fuzzy continuous function. Assume that all H-fuzzy partial derivatives of f up to
order m € N exist and are fuzzy continuous. Let x := (x1,...,2,) € U. Then the
H-fuzzy mized partial derivative of order k, Dy, ... zekf(x) 18 unchanged when the
indices L1, ..., 0, are permuted. Fach ¢; is a positive integer < n. Here some or all
of ;’s can be equal. Also k =2,...,m and there are n* partials of order k.

We give
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Theorem 2. Let U be an open convexr subset of R", n € N and f: U — Rx be a
fuzzy continuous function. Assume that all H-fuzzy partial derivatives of f up to order
m € N exist and are fuzzy continuous. Let z := (z1,...,2,), To := (To1,-..,Ton) €U
such that x; > xo;, t = 1,...,n. Let 0 < t < 1, we define x; := xo; + t(z; — 20i),
1=1,2,...,n and g,(t) := f(xo +t(z — x0)). (Clearly xo +t(z — x9) € U.) Then for

N =1,...,m we obtain

n N
* 0
ggN)(t) = (Z (Zi_$0i)®(9$'> f (xl,xg,...,xn). (11)
i=1 ¢
Furthermore it holds the following fuzzy multivariate Taylor formula
m—1 (N)
* gy 0
&)= fan ey LD om0, (12)
N=1
where
1 ! )
- - _g)ym— (m)
R0 1= g © (FR)/O (1= )™ @ g™ (s)ds. (13)

Comment. (Explaining formula (11)). When N = n = 2 we have (z; > zg;, i = 1, 2)
9:(t) = f(xo1 + (21 — xo1), To2 + t(22 — x02)), 0<t<1.

We apply Theorems 3 and 4 of [2] repeatedly, etc. Thus we find

g.(t) = (z1 —201) ® gff(ﬂﬁﬂfz) ® (22 —202) © gff(l‘hxz)
T €2

Furthermore it holds

82
gi(t) = (z21—20)’ 0 37;;(%1,152) @ 2(21 — z01) - (22 — T02) (14)
1
62‘]"(.13173)2) 9 82f
© C Ox1019 @ (22 = 202)" O Tx%($17$2).

When n = 2 and N = 3 we obtain

33
gl't) = (z1-201)*@ 67;;(331712) ©3(21 — 201)*(22 — 202)
1
03 f(x1,22) s OPf(x1,22)
© 0120, ®3(21 = wor) (22 = 202)” 01013
83
@ (22 — 11702)3 © J(l’l,l’z)- (15)

3
Ox3
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When n =3 and N =2 we get (z; > zg;, i = 1,2,3)

PO = (o101 © DL (1, 2,20) & (22 — 202 © T (21,23, )
2 1 01 022 1,%2,T3 2 02 922 1,%2,%3
s O°f
© (23 — w03)" © 922 (w1, 72, 23) ® 2(21 — 01)(22 — To2)
3
O*f (1,22, 3)
(0 — — e
© 921024 @ 2(z2 — xo2)(23 — T03)
52f(5817$2,$3) 82f
S AL L Y TP - 16
© D207 ® 2(23 — x03)(21 — T01) © D220, (w1, 2,23),(16)
etc.
Proof of Theorem 2. Let z := (21,...,2n), To := (To1,-.-,2Zon) € U, n € N, such

that z; > xg;, 1 = 1,2,...,n. We define
xi = ¢i(t) = woi +t(zi —woi), 0<t<1; i=1,2,...,n.

Thus d(ft" = z; — x9; > 0. Consider

Z:=g,(t) = f(ro+t(z—z0)) = f(zor+t(z1 —x01)s.- Ton +t(zn — Ton))
= [(e1(t),....¢n(1)).

Since by assumptions f: U — Ry is fuzzy continuous, also f;, exist and are fuzzy
continuous, by Theorem 3 (10) of [2] we get

dZ(x1,...,xn) s 0Z(x1, .. x)  dag
dt o iz::l Ox; © dt
o Of (w1, )
= ;1 a,’L‘i O) (Zl 1’01).

Thus

g.(t) = Z* i@, 2n) © (zi — x0q)-

. Ox;
=1

Next we observe that

2Z L d (= Of(ar, .. a)
prol gz<t)_dt<z 8—xi®(22—9€m)

=1
N d (0f(w1,....w0)
= X g (Y
x " 02 f (21, .., T
= (2 —20:) © | %Q(%*%j)
=1 j=1 J ?
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That is o
B flz,... ,xn)

The last is true by Theorem 3 (10) of [2] under the additional assumptions that f,,;
2

af-gz- , 1,7 =1,2,...,n exist and are fuzzy continuous.
30w

Working the same way we find

3z ” d A flz,. .. zp)
ﬁ = 9 (t)_£ LZZ ZZ WQ(Zl_xOZ)'(zJ_J;OJ)

Il
*
|
—
KN
|
8
o
1/
—
N
|
8
&
~—
S
VRS
Q’>
)
Kﬁ
o=
T8
< -
&
8
S
3
~—
N———

z":* Bf(x1,...,x0)
8xk8x]8xl

I
i[>
M

— Toj)

O (zx — Jﬁok)]
k=1

)

® (2i — moi) - (25 — @oj) - (2k — Tok)-

I
i[1]-
M
M*

Q
ol=
SlE
|
B
&
§

Therefore,
/// 1ye-eyTn
=X Z ) W@(“‘“‘Oi) (25 = 30) - (= = o).
That last is true by Theorem 3 (10) of [2] under the additional assumptions that
83f(331 ey T )
DT S L el Rt (V4 ik =1....
3:ck8xjaxz v b ’ A

do exist and are fuzzy continuous. Etc. In general one obtains that for
N=1,....meN,

- a f IR 'n,
oMt Z Z Z mwa;v o @71;[ %, — T0i,)s

’Ll 122 1

which by Theorem 4 of [2] is the same as (11) for the case z; > x¢;, see also (14),
(15), and (16). The last is true by Theorem 3 (10) of [2] under the assumptions that
all H-partial derivatives of f up to order m exist and they are all fuzzy continuous
including f itself.

Next let t5 — t, as m — +00, t, t € [0,1]. Consider

Timn, 1= To; + tw(2i — Toi)

and
.’ﬁi ::xOZ-—i—t(zZ-—in), i=1,2,...,n.
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That is
Tin = (T1m, Loy -+ - Tnm) and T = (Z1,...,Z,) in U.

Then z; — z, as m — +o00. Clearly using the properties of D-metric and under the
theorem’s assumptions, we obtain that

g™M(t) is fuzzy continuous for N = 0,1,...,m.

Then by Theorem 1, from the univariate fuzzy Taylor formula (8), we find

7 (m—1)
50 =00 0005 00— ar, 01,

where R,,,(0,1) comes from (13).
By Theorem 3.2 of [7] and Lemma 1 we get that R,,(0,1) € Rz. That is we get
the multivariate fuzzy Taylor formula

7 (m—1)
_ / 92(0) g '(0)
f(z) = f(@o) ®g.(0) @ o D@ =1 ® R (0,1),
when z; > xg;, 1 =1,2,...,n.
Finally we would like to take care of the case that some xy; = z;. Without loss of
generality we may assume that xg; = z1, and z; > xg;, ¢ = 2,...,n. In this case we
define

Z = §,(t) == f(zo1,xo2 + t(z2 — T02), ..., Ton + t(2n — Zon))-
Therefore one has

_ "« Of(x , L,y Ty

O (7 — z0i),
i=2

and in general we find

n

«  ONf(xor, T2y ..., 20) N
~(N) ) = § : 01,42, s n I | L )
&7 =2 N =2 0x;y0TN_1 -0, © T:g(% =0ir),

for N =1,...,m € N. Notice that all ggN), N =0,1,...,m are fuzzy continuous and

92(0) = f(xo1, %02, .-+ Ton)s  G=(1) = f(zo1, 22,23, .., 2n)-

Then one can write down a fuzzy Taylor formula, as above, for g,. But Q;SN)(t)

coincides with ggN)(t) formula at 21 = zg; = x1. That is both Taylor formulae in
that case coincide.

At last we remark that if z = z¢, then we define Z* := g} () := f(zo) =t c € Rr a
constant. Since ¢ = ¢+ 6, that is ¢ — ¢ = 6, we obtain the H-fuzzy derivative (¢)’ = 6.

Consequently we have that

gMty=6, N=1,...,m.
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The last coincide with the ggN) formula, established earlier, if we apply there
z = x9. And, of course, the fuzzy Taylor formula now can be applied trivially for
gs. Furthermore in that case it coincides with the Taylor formula proved earlier for
g-. We have established a multivariate fuzzy Taylor formula for the case of z; > x;,
i=1,2,...,n. That is (11)—(13) are true. |

Note. Theorem 2 is still valid when U is a compact convex subset of R™ such that
U C W, where W is an open subset of R”. Now f: W — Rz and it has all the
properties of f as in Theorem 2. Clearly here we take xg,z € U.

Received: March 2003. Revised: July 2003.
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