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ABSTRACT
We produce Fuzzy Taylor formulae with integral remainder in the univariate

and multivariate cases, analogs of the real setting.

RESUMEN
Se presentan versiones Fuzzy análogas a las reales de fórmulas de Taylor con

resto integral en el caso univariado y multivariado.
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1 Background

We need the following

Definition A (see [10]). Let µ : R → [0, 1] with the following properties.

(i) is normal, i.e., ∃x0 ∈ R; µ(x0) = 1.
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(ii) µ(λx + (1− λ)y) ≥ min{µ(x), µ(y)}, ∀x, y ∈ R, ∀λ ∈ [0, 1] (µ is called a convex
fuzzy subset).

(iii) µ is upper semicontinuous on R, i.e., ∀x0 ∈ R and ∀ε > 0, ∃ neighborhood
V (x0): µ(x) ≤ µ(x0) + ε, ∀x ∈ V (x0).

(iv) The set supp(µ) is compact in R (where supp(µ) := {x ∈ R; µ(x) > 0}).

We call µ a fuzzy real number. Denote the set of all µ with RF .
E.g., X{x0} ∈ RF , for any x0 ∈ R, where X{x0} is the characteristic function at x0.
For 0 < r ≤ 1 and µ ∈ RF define [µ]r := {x ∈ R: µ(x) ≥ r} and

[µ]0 := {x ∈ R : µ(x) > 0}.

Then it is well known that for each r ∈ [0, 1], [µ]r is a closed and bounded interval of
R. For u, v ∈ RF and λ ∈ R, we define uniquely the sum u⊕ v and the product λ�u
by

[u⊕ v]r = [u]r + [v]r, [λ� u]r = λ[u]r, ∀r ∈ [0, 1],

where [u]r +[v]r means the usual addition of two intervals (as subsets of R) and λ[u]r

means the usual product between a scalar and a subset of R (see, e.g., [10]). Notice
1 � u = u and it holds u ⊕ v = v ⊕ u, λ � u = u � λ. If 0 ≤ r1 ≤ r2 ≤ 1 then
[u]r2 ⊆ [u]r1 . Actually [u]r = [u(r)

− , u
(r)
+ ], where u

(r)
− ≤ u

(r)
+ , u

(r)
− , u

(r)
+ ∈ R, ∀r ∈ [0, 1].

For λ > 0 one has λu
(r)
± = (λ� u)(r)± , respectively.

Define
D : RF × RF → R+

by
D(u, v) := sup

r∈[0,1]

max{|u(r)
− − v

(r)
− |, |u(r)

+ − v
(r)
+ |},

where [v]r = [v(r)
− , v

(r)
+ ]; u, v ∈ RF . We have that D is a metric on RF . Then (RF , D)

is a complete metric space, see [10], with the properties

D(u⊕ w, v ⊕ w) = D(u, v), ∀u, v, w ∈ RF ,

D(k � u, k � v) = |k|D(u, v), ∀u, v ∈ RF , ∀k ∈ R,

D(u⊕ v, w ⊕ e) ≤ D(u, w) + D(v, e), ∀u, v, w, e ∈ RF .

Let f, g : R → RF be fuzzy number valued functions. The distance between f, g is
defined by

D∗(f, g) := sup
x∈R

D(f(x), g(x)).

On RF we define a partial order by “≤”: u, v ∈ RF , u ≤ v iff u
(r)
− ≤ v

(r)
− and

u
(r)
+ ≤ v

(r)
+ , ∀r ∈ [0, 1].

We mention
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Lemma 2.2 ([5]). For any a, b ∈ R : a, b ≥ 0 and any u ∈ RF we have

D(a� u, b� u) ≤ |a− b| ·D(u, õ),

where õ ∈ RF is defined by õ := X{0}.

Lemma 4.1 ([5]).

(i) If we denote õ := X{0}, then õ ∈ RF is the neutral element with respect to ⊕,
i.e., u⊕ õ = õ⊕ u = u, ∀u ∈ RF .

(ii) With respect to õ, none of u ∈ RF , u 6= õ has opposite in RF .

(iii) Let a, b ∈ R : a · b ≥ 0, and any u ∈ RF , we have (a + b) � u = a � u ⊕ b � u.
For general a, b ∈ R, the above property is fale.

(iv) For any λ ∈ R and any u, v ∈ RF , we have λ� (u⊕ v) = λ� u⊕ λ� v.

(v) For any λ, µ ∈ R and u ∈ RF , we have λ� (µ� u) = (λ · µ)� u.

(vi) If we denote ‖u‖F := D(u, õ), ∀u ∈ RF , then ‖ ·‖F has the properties of a usual
norm on RF , i.e.,

‖u‖F = 0 iff u = õ, ‖λ� u‖F = |λ| · ‖u‖F ,

‖u⊕ v‖F ≤ ‖u‖F + ‖v‖F , ‖u‖F − ‖v‖F ≤ D(u, v).

Notice that (RF ,⊕,�) is not a linear space over R, and consequently (RF , ‖ · ‖F )
is not a normed space.

We need

Definition B (see [10]). Let x, y ∈ RF . If there exists a z ∈ RF such that x = y + z,
then we call z the H-difference of x and y, denoted by z := x− y.

Definition 3.3 ([10]). Let T := [x0, x0 +β] ⊂ R, with β > 0. A function f : T → RF
is H-differentiable at x ∈ T if there exists a f ′(x) ∈ RF such that the limits (with
respect to metric D)

lim
h→0+

f(x + h)− f(x)
h

, lim
h→0+

f(x)− f(x− h)
h

exist and are equal to f ′(x). We call f ′ the derivative or H-derivative of f at x. If
f is H-differentiable at any x ∈ T , we call f differentiable or H-differentiable and it
has H-derivative over T the function f ′.

The last definition was given first by M. Puri and D. Ralescu [9].
We need also a particular case of the Fuzzy Henstock integral (δ(x) = δ

2 ) introduced
in [10], Definition 2.1.

That is,
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Definition 13.14 ([6], p. 644). Let f : [a, b] → RF . We say that f is Fuzzy-Riemann
integrable to I ∈ RF if for any ε > 0, there exists δ > 0 such that for any division
P = {[u, v]; ξ} of [a, b] with the norms ∆(P ) < δ, we have

D

(∑
P

∗(v − u)� f(ξ), I

)
< ε,

where
∑∗ denotes the fuzzy summation. We choose to write

I := (FR)
∫ b

a

f(x)dx.

We also call an f as above (FR)-integrable.
We mention

Lemma 1 ([3]). If f, g : [a, b] ⊆ R → RF are fuzzy continuous functions, then the
function F : [a, b] → R+ defined by F (x) := D(f(x), g(x)) is continuous on [a, b], and

D

(
(FR)

∫ b

a

f(x)dx, (FR)
∫ b

a

g(x)dx

)
≤
∫ b

a

D(f(x), g(x))dx.

Lemma 2 ([3]). Let f : [a, b] → RF fuzzy continuous (with respect to metric D), then
D(f(x), õ) ≤ M , ∀x ∈ [a, b], M > 0, that is f is fuzzy bounded. Equivalently we get
χ−M ≤ f(x) ≤ χM , ∀x ∈ [a, b].

Lemma 3 ([3]). Let f : [a, b] ⊆ R → RF be fuzzy continuous. Then

(FR)
∫ x

a

f(t)dt is a fuzzy continuous function in x ∈ [a, b].

Lemma 5 ([4]). Let f : [a, b] → RF have an existing H-fuzzy derivative f ′ at c ∈ [a, b].
Then f is fuzzy continuous at c.

We need

Theorem 3.2 ([7]). Let f : [a, b] → RF be fuzzy continuous. Then (FR)
∫ b

a
f(x)dx

exists and belongs to RF , furthermore it holds[
(FR)

∫ b

a

f(x)dx

]r

=

[∫ b

a

(f)(r)− (x)dx,

∫ b

a

(f)(r)+ (x)dx

]
, ∀r ∈ [0, 1]. (1)

Clearly f
(r)
± : [a, b] → R are continuous functions.

We also need

Theorem 5.2 ([8]). Let f : [a, b] ⊆ R → RF be H-fuzzy differentiable. Let t ∈ [a, b],
0 ≤ r ≤ 1. (Clearly

[f(t)]r =
[
(f(t))(r)− , (f(t))(r)+

]
⊆ R.) (2)
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Then (f(t))(r)± are differentiable and

[f ′(t)]r =
[
((f(t))(r)− )′, ((f(t))(r)+ )′

]
. (3)

The last can be used to find f ′.

Here Cn([a, b], RF ), n ≥ 1 denotes the space of n-times fuzzy continuously H-
differentiable functions from [a, b] ⊆ R into RF . By above Theorem 5.2 of [8] for
f ∈ Cn([a, b], RF ) we obtain

[f (i)(t)]r =
[
((f(t))(r)− )(i), ((f(t))(r)+ )(i)

]
, (4)

for i = 0, 1, 2, . . . , n and in particular we have

(f (i)
± )(r) = (f (r)

± )(i), ∀r ∈ [0, 1]. (5)

Definition 1. Let a1, a2, b1, b2 ∈ R such that a1 ≤ b1 and a2 ≤ b2. Then we define

[a1, b1] + [a2, b2] = [a1 + a2, b1 + b2]. (6)

Let a, b ∈ R such that a ≤ b and k ∈ R, then we define,

if k ≥ 0, k[a, b] = [ka, kb],
if k < 0, k[a, b] = [kb, ka]. (7)

Here we use

Lemma 1. Let f : [a, b] → RF be fuzzy continuous and let g : [a, b] → R+ be continu-
ous. Then f(x)� g(x) is fuzzy continuous function ∀x ∈ [a, b].

Proof. The same as of Lemma 2 ([1]), using Lemma 2 of [3].

2 Main Results

We present the following fuzzy Taylor theorem in one dimension.

Theorem 1. Let f ∈ Cn([a, b], RF ), n ≥ 1, [α, β] ⊆ [a, b] ⊆ R. Then

f(β) = f(α) ⊕ f ′(α)� (β − α)⊕ · · · ⊕ f (n−1)(α)� (β − α)n−1

(n− 1)!

⊕ 1
(n− 1)!

� (FR)
∫ β

α

(β − t)n−1 � f (n)(t) dt. (8)

The integral remainder is a fuzzy continuous function in β.

Proof. Let r ∈ [0, 1]. We have here [f(β)]r = [f (r)
− (β), f (r)

+ (β)], and by Theorem 5.2
([8]) f

(r)
± is n-times continuously differentiable on [a, b]. By (5) we get

(f (i)
± (α))(r) = (f (r)

± (α))(i), all i = 0, 1, . . . , n, (9)
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and
[f (i)(α)]r =

[
(f (r)
− (α))(i), (f (r)

+ (α))(i)
]
.

Thus by Taylor’s theorem we obtain

f
(r)
± (β) = f

(r)
± (α) + (f (r)

± (α))′(β − α)

+ · · ·+ (f (r)
± (α))(n−1) (β − α)n−1

(n− 1)!
+

1
(n− 1)!

∫ β

α

(β − t)n−1(f (r)
± )(n)(t)dt.

Furthermore by (9) we have

f
(r)
± (β) = f

(r)
± (α) + (f ′±(α))(r)(β − α)

+ · · ·+ (f (n−1)
± (α)(r)

(β − α)n−1

(n− 1)!
+

1
(n− 1)!

∫ β

α

(β − t)n−1(f (n)
± )(r)(t)dt.

Here it holds β − α ≥ 0, β − t ≥ 0 for t ∈ [α, β], and

(f (i)
− (t))(r) ≤ (f (i)

+ (t))(r), ∀t ∈ [a, b]

all i = 0, 1, . . . , n, and any r ∈ [0, 1].
We see that[

f
(r)
− (β), f (r)

+ (β)] = [f (r)
− (α) + (f ′−(α))(r)(β − α) + · · ·+ (f (n−1)

− (α))(r)
(β − α)n−1

(n− 1)!

+
1

(n− 1)!

∫ β

α

(β − t)n−1(f (n)
− )(r)(t)dt, , f

(r)
+ (α)

+ (f ′+(α))(r)(β − α) + · · ·+ (f (n−1)
+ (α))(r)

(β − α)n−1

(n− 1)!

+
1

(n− 1)!

∫ β

α

(β − t)n−1(f (n)
+ )(r)(t) dt

]
.

To split the above closed interval into a sum of smaller closed intervals is where we
use β − α ≥ 0. So we get

[f(β)r] = [f (r)
− (β), f (r)

+ (β)] = [f (r)
− (α), f (r)

+ (α)] + [(f ′−(α))(r), (f ′+(α))(r)](β − α)

+ · · ·+ [(f (n−1)
− (α))(r), (f (n−1)

+ (α))(r)] (β−α)n−1

(n−1)!

+ 1
(n−1)!

[∫ β

α
(β − t)n−1(f (n)

− )(r)(t)dt,
∫ β

α
(β − t)n−1(f (n)

+ )(r)(t)dt
]

= [f(α)]r + [f ′(α)]r(β − α) + · · ·+ [f (n−1)(α)]r (β−α)n−1

(n−1)!

+ 1
(n−1)!

[∫ β

α
((β − t)n−1 � f (n)(t))(r)− dt,

∫ β

α
((β − t)n−1 � f (n)(t))(r)+ dt

]
.
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By Theorem 3.2 ([7]) we next get

[f(β)]r = [f(α)]r + [f ′(α)]r(β − α) + · · ·+ [f (n−1)(α)]r
(β − α)n−1

(n− 1)!

+
1

(n− 1)!

[
(FR)

∫ β

α

(β − t)n−1 � f (n)(t)dt

]r

.

Finally we obtain

[f(β)]r =
[
f(α)⊕ f ′(α)� (β − α)⊕ · · · ⊕ f (n−1)(α)� (β − α)n−1

(n− 1)!

⊕ 1
(n− 1)!

� (FR)
∫ β

α

(β − t)n−1 � f (n)(t)dt

]r

, all r ∈ [0, 1].

By Theorem 3.2 of [7] and Lemma 1 we get that the remainder of (8) is in RF , and by
Lemma 3 ([3]) is a fuzzy continuous function in β. The theorem has
been proved.

Next we present a multivariate fuzzy Taylor theorem.
We need the following multivariate fuzzy chain rule. Here the H-fuzzy partial

derivatives are defined according to the Definition 3.3 of [10], see Section 1, and the
analogous way to the real case.

Theorem 3 ([2]). Let φi : [a, b] ⊆ R → φi([a, b]) := Ii ⊆ R, i = 1, . . . , n, n ∈ N, are
strictly increasing and differentiable functions. Denote xi := xi(t) := φi(t), t ∈ [a, b],
i = 1, . . . , n. Consider U an open subset of Rn such that ×n

i=1Ii ⊆ U . Consider
f : U → RF a fuzzy continuous function. Assume that fxi

: U → RF , i = 1, . . . , n,
the H-fuzzy partial derivatives of f , exist and are fuzzy continuous. Call z := z(t) :=
f(x1, . . . , xn). Then dz

dt exists and

dz

dt
=

n∑∗

i=1

dz

dxi
� dxi

dt
, ∀t ∈ [a, b] (10)

where dz
dt ,

dz
dxi

, i = 1, . . . , n are the H-fuzzy derivatives of f with respect to t, xi,
respectively.

The interchange of the order of H-fuzzy differentiation is needed too.

Theorem 4 ([2]). Let U be an open subset of Rn, n ∈ N, and f : U → RF be a
fuzzy continuous function. Assume that all H-fuzzy partial derivatives of f up to
order m ∈ N exist and are fuzzy continuous. Let x := (x1, . . . , xn) ∈ U . Then the
H-fuzzy mixed partial derivative of order k, Dx`1 ,...,x`k

f(x) is unchanged when the
indices `1, . . . , `k are permuted. Each `i is a positive integer ≤ n. Here some or all
of `i’s can be equal. Also k = 2, . . . ,m and there are nk partials of order k.

We give
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Theorem 2. Let U be an open convex subset of Rn, n ∈ N and f : U → RF be a
fuzzy continuous function. Assume that all H-fuzzy partial derivatives of f up to order
m ∈ N exist and are fuzzy continuous. Let z := (z1, . . . , zn), x0 := (x01, . . . , x0n) ∈ U
such that xi ≥ x0i, i = 1, . . . , n. Let 0 ≤ t ≤ 1, we define xi := x0i + t(zi − z0i),
i = 1, 2, . . . , n and gz(t) := f(x0 + t(z − x0)). (Clearly x0 + t(z − x0) ∈ U .) Then for
N = 1, . . . ,m we obtain

g(N)
z (t) =

( n∑∗

i=1

(zi − x0i)�
∂

∂xi

)N

f

 (x1, x2, . . . , xn). (11)

Furthermore it holds the following fuzzy multivariate Taylor formula

f(z) = f(x0)⊕
m−1∑∗

N=1

g
(N)
z (0)
N !

⊕Rm(0, 1), (12)

where

Rm(0, 1) :=
1

(m− 1)!
� (FR)

∫ 1

0

(1− s)m−1 � g(m)
z (s)ds. (13)

Comment. (Explaining formula (11)). When N = n = 2 we have (zi ≥ x0i, i = 1, 2)

gz(t) = f(x01 + t(z1 − x01), x02 + t(z2 − x02)), 0 ≤ t ≤ 1.

We apply Theorems 3 and 4 of [2] repeatedly, etc. Thus we find

g′z(t) = (z1 − x01)�
∂f

∂x1
(x1, x2)⊕ (z2 − x02)�

∂f

∂x2
(x1, x2).

Furthermore it holds

g′′z (t) = (z1 − x01)2 �
∂2f

∂x2
1

(x1, x2)⊕ 2(z1 − x01) · (z2 − x02) (14)

� ∂2f(x1, x2)
∂x1∂x2

⊕ (z2 − x02)2 �
∂2f

∂x2
2

(x1, x2).

When n = 2 and N = 3 we obtain

g′′′z (t) = (z1 − x01)3 �
∂3f

∂x3
1

(x1, x2)⊕ 3(z1 − x01)2(z2 − x02)

� ∂3f(x1, x2)
∂x2

1∂x2
⊕ 3(z1 − x01)(z2 − x02)2 ·

∂3f(x1, x2)
∂x1∂x2

2

⊕ (z2 − x02)3 �
∂3f

∂x3
2

(x1, x2). (15)
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When n = 3 and N = 2 we get (zi ≥ x0i, i = 1, 2, 3)

g′′z (t) = (z1 − x01)2 �
∂2f

∂x2
1

(x1, x2, x3)⊕ (z2 − x02)2 �
∂2f

∂x2
2

(x1, x2, x3)

⊕ (z3 − x03)2 �
∂2f

∂x2
3

(x1, x2, x3)⊕ 2(z1 − x01)(z2 − x02)

� ∂2f(x1, x2, x3)
∂x1∂x2

⊕ 2(z2 − x02)(z3 − x03)

� ∂2f(x1, x2, x3)
∂x2∂x3

⊕ 2(z3 − x03)(z1 − x01)�
∂2f

∂x3∂x1
(x1, x2, x3),(16)

etc.

Proof of Theorem 2. Let z := (z1, . . . , zn), x0 := (x01, . . . , x0n) ∈ U , n ∈ N, such
that zi > x0i, i = 1, 2, . . . , n. We define

xi := φi(t) := x0i + t(zi − x0i), 0 ≤ t ≤ 1; i = 1, 2, . . . , n.

Thus dxi

dt = zi − x0i > 0. Consider

Z := gz(t) := f(x0 + t(z − x0)) = f(x01 + t(z1 − x01), . . . , x0n + t(zn − x0n))
= f(φ1(t), . . . , φn(t)).

Since by assumptions f : U → RF is fuzzy continuous, also fxi
exist and are fuzzy

continuous, by Theorem 3 (10) of [2] we get

dZ(x1, . . . , xn)
dt

=
n∑∗

i=1

∂Z(x1, . . . , xn)
∂xi

� dxi

dt

=
n∑∗

i=1

∂f(x1, . . . , xn)
∂xi

� (zi − x0i).

Thus

g′z(t) =
n∑∗

i=1

∂f(x1, . . . , xn)
∂xi

� (zi − x0i).

Next we observe that

d2Z

dt2
= g′′z (t) =

d

dt

(
n∑∗

i=1

∂f(x1, . . . , xn)
∂xi

� (zi − x0i)

)

=
n∑∗

i=1

(zi − x0i)�
d

dt

(
∂f(x1, . . . , xn)

∂xi

)

=
n∑∗

i=1

(zi − x0i)�

 n∑∗

j=1

∂2f(x1, . . . , xn)
∂xj∂xi

� (zj − x0j)


=

n∑∗

i=1

n∑∗

j=1

∂2f(x1, . . . , xn)
∂xj∂xi

� (zi − x0i) · (zj − x0j).
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That is

g′′z (t) =
n∑∗

i=1

n∑∗

j=1

∂2f(x1, . . . , xn)
∂xj∂xi

� (zi − x0i) · (zj − x0j).

The last is true by Theorem 3 (10) of [2] under the additional assumptions that fxi
;

∂2f
∂xj∂xi

, i, j = 1, 2, . . . , n exist and are fuzzy continuous.
Working the same way we find

d3Z

dt3
= g′′′z (t) =

d

dt

 n∑∗

i=1

n∑∗

j=1

∂2f(x1, . . . , xn)
∂xj∂xi

� (zi − x0i) · (zj − x0j)


=

n∑∗

i=1

n∑∗

j=1

(zi − x0i) · (zj − x0j)
d

dt

(
∂2f(x1, . . . , xn)

∂xj∂xi

)

=
n∑∗

i=1

n∑∗

j=1

(zi − x0i) · (zj − x0j)

[
n∑∗

k=1

∂3f(x1, . . . , xn)
∂xk∂xj∂xi

� (zk − x0k)

]

=
n∑∗

i=1

n∑∗

j=1

n∑∗

k=1

∂3f(x1, . . . , xn)
∂xk∂xj∂xi

� (zi − x0i) · (zj − x0j) · (zk − x0k).

Therefore,

g′′′z (t) =
n∑∗

i=1

n∑∗

j=1

n∑∗

k=1

∂3f(x1, . . . , xn)
∂xk∂xj∂xi

� (zi − x0i) · (zj − x0j) · (zk − x0k).

That last is true by Theorem 3 (10) of [2] under the additional assumptions that

∂3f(x1, . . . , xn)
∂xk∂xj∂xi

, i, j, k = 1, . . . , n

do exist and are fuzzy continuous. Etc. In general one obtains that for
N = 1, . . . ,m ∈ N,

g(N)
z (t) =

n∑∗

i1=1

n∑∗

i2=1

· · ·
n∑∗

iN=1

∂Nf(x1, . . . , xn)
∂xiN

∂xiN−1 · · · ∂xi1

�
N∏

r=1

(zir − x0ir ),

which by Theorem 4 of [2] is the same as (11) for the case zi > x0i, see also (14),
(15), and (16). The last is true by Theorem 3 (10) of [2] under the assumptions that
all H-partial derivatives of f up to order m exist and they are all fuzzy continuous
including f itself.

Next let tm̃ → t̃, as m̃ → +∞, tm̃, t̃ ∈ [0, 1]. Consider

xim̃ := x0i + tm̃(zi − x0i)

and
x̃i := x0i + t̃(zi − x0i), i = 1, 2, . . . , n.
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That is
xm̃ = (x1m̃, x2m̃, . . . , xnm̃) and x̃ = (x̃1, . . . , x̃n) in U .

Then xm̃ → x̃, as m̃ → +∞. Clearly using the properties of D-metric and under the
theorem’s assumptions, we obtain that

g(N)
z (t) is fuzzy continuous for N = 0, 1, . . . ,m.

Then by Theorem 1, from the univariate fuzzy Taylor formula (8), we find

gz(1) = gz(0)⊕ g′z(0)⊕ g′′z (0)
2!

⊕ · · · ⊕ g
(m−1)
z (0)
(m− 1)!

⊕Rm(0, 1),

where Rm(0, 1) comes from (13).
By Theorem 3.2 of [7] and Lemma 1 we get that Rm(0, 1) ∈ RF . That is we get

the multivariate fuzzy Taylor formula

f(z) = f(x0)⊕ g′z(0)⊕ g′′z (0)
2!

⊕ · · · ⊕ g
(m−1)
z (0)
(m− 1)!

⊕Rm(0, 1),

when zi > x0i, i = 1, 2, . . . , n.
Finally we would like to take care of the case that some x0i = zi. Without loss of

generality we may assume that x01 = z1, and zi > x0i, i = 2, . . . , n. In this case we
define

Z̃ := g̃z(t) := f(x01, x02 + t(z2 − x02), . . . , x0n + t(zn − x0n)).

Therefore one has

g̃′z(t) =
n∑∗

i=2

∂f(x01, x2, . . . , xn)
∂xi

� (zi − x0i),

and in general we find

g̃(N)
z (t) =

n∑∗

i2=2,...,iN=2

∂Nf(x01, x2, . . . , xn)
∂xiN

∂xN−1 · · · ∂xi2

�
N∏

r=2

(zir
− x0ir

),

for N = 1, . . . ,m ∈ N. Notice that all g̃
(N)
z , N = 0, 1, . . . ,m are fuzzy continuous and

g̃z(0) = f(x01, x02, . . . , x0n), g̃z(1) = f(x01, z2, z3, . . . , zn).

Then one can write down a fuzzy Taylor formula, as above, for g̃z. But g̃
(N)
z (t)

coincides with g
(N)
z (t) formula at z1 = x01 = x1. That is both Taylor formulae in

that case coincide.
At last we remark that if z = x0, then we define Z∗ := g∗z(t) := f(x0) =: c ∈ RF a

constant. Since c = c+ õ, that is c− c = õ, we obtain the H-fuzzy derivative (c)′ = õ.
Consequently we have that

g∗(N)
z (t) = õ, N = 1, . . . ,m.
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The last coincide with the g
(N)
z formula, established earlier, if we apply there

z = x0. And, of course, the fuzzy Taylor formula now can be applied trivially for
g∗z . Furthermore in that case it coincides with the Taylor formula proved earlier for
gz. We have established a multivariate fuzzy Taylor formula for the case of zi ≥ x0i,
i = 1, 2, . . . , n. That is (11)–(13) are true.

Note. Theorem 2 is still valid when U is a compact convex subset of Rn such that
U ⊆ W , where W is an open subset of Rn. Now f : W → RF and it has all the
properties of f as in Theorem 2. Clearly here we take x0, z ∈ U .

Received: March 2003. Revised: July 2003.
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