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ABSTRACT

We study an inverse problem of recovering arbitrary order ordinary differential
operators on compact star-type graphs from a system of spectra. We establish
properties of spectral characteristics, and provide a procedure for constructing
the solution of the inverse problem of recovering coefficients of differential equa-
tions from the given spectra.

RESUMEN

Estudiamos un problema inverso de recuperar el orden de operadores diferen-
ciales ordinarios sobre graficos compactos de tipo estrellado a partir de un sis-
tema de espectro. Propiedades de la caracteristica espectral son establecidas
y es dado un procecimiento para construir la solucién del problema inverso de
recuperar coeficientes de ecuaciones diferenciales a partir del espectro.
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1 Introduction

We study the inverse spectral problem of recovering arbitrary order differential operators on
compact star-type graphs from a system of spectra. We prove a corresponding uniqueness
theorem and provide a constructive procedure for the solution of this inverse problem. For
studying this inverse problem we develop the ideas of the method of spectral mappings
[1]. The obtained results are natural generalizations of the well-known results on inverse
problems for the differential operators on an interval ([1]-[4]). We note that boundary value
problems on graphs (networks, trees) often appear in natural sciences and engineering (see
[5] and the references therein).

Consider a compact star-type graph 7' in R™ with the set of vertices V' = {vo, ..., vp}
and the set of edges € = {eu,...,ep}, where vy, ..., vp_1 are the boundary vertices, v, is the
internal vertex, and e, = [vo, vp], €j = [vp, vj], 7 = 1,p — 1, e1N...Ne, = {v,}. For simplicity
we suppose that the length of each edge is equal to 1 (it follows from the proofs that the
results remain true for arbitrary lengths of the edges). Each edge e; € £ is parameterized
by the parameter z: € [0, 1]. It is convenient for us to choose the following orientation: z = 0
corresponds to the boundary vertices vg,...,vp—1, and £ = 1 corresponds to the internal
vertex vp. An integrable function Y on 7' may be represented as Y (x) = {y;(z)},_15
x € [0, 1], where the function y;(x) is defined on the edge e;.

Fix n > 2. Let ¢, (2) = {q,;(2)};—15, v = 0,n — 2 be integrable complex-valued func-

tions on 7. Consider the following n-th order differential equation on T":

™ (@) + i i @)y (z) = My (2), j=Tp, (1)
v=0

where A is the spectral parameter, g,;(x) are complex-valued integrable functions, and
yEV)(x) € AC[0,1], j = 1,p, v = 0,n — 1. Denote by q¢ = {g,},_g7—5 the set of the coeffi-
cients of equation (1); ¢ is called the potential. Consider the linear forms

Up(y) =Y vy (1), j=Tp—1,v=0n-1,
n=0

where ;,,, are complex numbers, and 7;, := ;. # 0. The linear forms Uj,, will be used in
matching conditions in the internal vertex v, for for special solutions of equation (1).
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Fixs=1,p—1, k=1,n—1, u=k,n. Let Ak := {Niskp }1>1 be the set of the eigen-
values of the boundary value problem Ly, for equation (1) with the boundary conditions

yg/—l)(o)zo’ V:Lk_la,u

BV =0 ¢=Tn—F j=Tp\s,

and with the matching conditions

UJV(yJ)+yII(7V)(1):Ov .]Zlap_lv V:Oak_lv

- 2)
S U ) +y"1) =0, v=Fkn—1

j=1

The inverse problem of recovering the potential from the system of spectra is formulated as
follows.

Inverse Problem 1. Given the spectra A := {Ag,}, s=1,p—1,1 <k < pu<mn,

construct the potential q.

This inverse problem is a generalization of the well-known inverse problems for differen-
tial operators on an interval from a system of spectra (see [1-4]). For example, if n = p = 2,
then Inverse Problem 1 is the classical Borg’s inverse problem of recovering Sturm-Liouville
operators from two spectra.

2 Auxiliary propositions

Let Weg(2,\) = {¢skj(x, N} 15, s = Lp—1, k = L,n, be solutions of equation (1)
satisfying the boundary conditions

v 00) = 64, v =T1,F,
(3)

yV0) =0, e=Tn—F j=Tp\s

and the matching conditions (2). Here and in the sequel, d, is the Kronecker symbol.
The function Wy, is called the Weyl-type solution of order k with respect to the boundary

vertex vs. We introduce the matrices Ms(\) = [Msk (Mg ,—17, s = 1,p—1, where
My (N) := 9% 719(0, A). Tt follows from the definition of ¢k, that Mg, (X) = 0, for k > v,

and det Mg(A) = 1. The matrix M (A) is called the Weyl-type matrix with respect to the
boundary vertex vs. Denote by M = {Ms},_17— the set of the Weyl-type matrices.
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s

Let A = p". The p - plane can be partitioned into sectors S of angle T (argp €
(ﬂ w), v=0,2n— 1) in which the roots Ry, Ro, ..., Ry, of the equation R" —1 =10

n’ n

can be numbered in such a way that
Re(pR1) < Re(pR2) < ... < Re(pR,), p€S. (4)

We assume that the regularity condition for matching from [6] is fulfilled. The following
assertion was proved in [6].

Lemma 1. Fiz a sector S with the property (4). For z € (0,1), v =0,n—1, s =
1,p—1, k=1,n, the following asymptotical formula holds

v w v
DU (2, 0) = =2 (pRy,)” exp(pRyx)[1], p €S, |p| — oo,

where q
k—1 — v—1
Wy = N k=1,n, Qp:=det[R{ ], 77 Qo:=1

Fors=1,p—1,k=1n—-1, u=k+1,n,
MS’W()‘) = mkupu_k[l]v pES, |p| — o0, (5)
where my,, are constants which do not depend on the potential.

Let {Crj(x, M)} p—17, = 1,p be the fundamental system of solutions of equation (1)
on the edge e; under the initial conditions C(V 1)(O A) = ky, k,v = 1,n. For each fixed

€ [0,1], the functions C,g; 1)(96,)\), k,v = 1,n, j = 1,p, are entire in A of order 1/n.

Moreover,
det[C ™ (@, Nyt = 1. (6)

2w=1n

Using the fundamental system of solutions {Ck; (7, \)};_77, one can write

Yk (T, A) ZMskw Cuj(@,A), j=Lp s=Lp-1 k=1n, (7)

where the coefficients Mg;,(A) do not depend on z. In particular, Mggsu(X) = Mgu(N),
and

wsks(xa/\) Cks .I' )\ Z MSkH HS(I‘,)\). (8)
p=k+1

It follows from (6) and (8) that det[t; " (z, )], 1=

Il
—
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Fix k =1,n, s=1,p— 1. According to (2) and (3),

Uj”(z/]skj(xa/\)) wskp( )_Oa j=1Lp-1,v=0k-1,

L (9)
ZUW/ wskj x, )\))—i_wskp( )—0, V:k,n—l,

j=1

@;”mxy—@m v=TF,

(10)
50,0 =0, ¢=Tn—Fk j=Tp\s

skj

Substituting the representation (7) into (9) and (10) we obtain a linear algebraic system
with respect to Mg, (). Solving this system by Cramer’s rule one gets

Askju (/\)

MSij(/\) = A k()\) )

where the functions Agyj,(X) and Agi(A) are entire in A of order 1/n. Thus, the functions
Mj,.(X) are meromorphic in A, and consequently, the Weyl-type solutions and the Weyl-

type matrices are meromorphic in A. In particular,

AS’W()‘)
Ag(N) 7

M (N) = s=1,p—1,k=1,n—-1, u=k+1,n, (11)

where Agpp(A) = Agrsu(N), Ask(A) := Agir(N). The function A, (A) is the characteristic
function of the boundary value problem Ly, and its zeros coincide with the eigenvalues
Ask,u = {)\lsk,u}IZI of Lsk,u-

The functions Ay, () are entire in A of order 1/n. By Hadamard’s factorization theo-
rem, the functions Agp, () are uniquely determined up to multiplicative constants ¢, by

VI (S

(the case when Ay, (0) = 0 requires evident modifications). Then, by virtue of (11),

Mg (A ku H (

their zeros:

~1
)(1‘ A) L s=Tp-T k=Tn—1, p=k+1Ln
Alskp Alskk

(12)

Using (5) we obtain

Msokuz‘l‘lm Mmp ™ kH( A )(1— A )71. (13)

Pl Alskk Alskp
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Thus, using the given spectra A, one can construct uniquely the Weyl-type matrices M by
(12) and (13). In other words, the following assertion holds.

Theorem 1. The specification of the system of spectra A := {Ag,}, s = 1,p—1,
1 <k < p <n, uniquely determines the Weyl-type matrices M = {Ms},_15—1 by (12)-(13).

Fix s =1,p — 1, and consider the following inverse problem on the edge e;.

Inverse Problem 2. Given the Weyl-type matrix My, construct the functions g,
v =0,n — 2 on the edge es.

It was proved in [6] that this inverse problem has a unique solution, i.e. the specification
of the Weyl-type matrix M, uniquely determines the potential on the edge es. Moreover,
using the method of spectral mappings one can get a constructive procedure for the solution
of Inverse Problem 2. It can be obtained by the same arguments as for n-th order differential
operators on a finite interval (see [1, Ch.2] for details).

Now we define an auxiliary Weyl-type matrix with respect to the internal vertex v,.
Let ¢pi(x, ), k = 1,n, be solutions of equation (1) on the edge e, under the conditions

VW) = 0, v=1k, V0,0 =0, E=T,n—k. (14)
We introduce the matrix My(X\) = [Mpr, (N)]y 17, Where M, (A) := 1/)1(72_1) (1, A). Clearly,
Mpir(A) = 0y for k > v, and det M,(A) = 1. The matrix M,()) is called the Weyl-type
matrix with respect to the internal vertex v,. Consider the following inverse problem on the
edge ep,.

Inverse Problem 3. Given the Weyl-type matrix M, construct the functions g,
v =0,n — 2 on the edge e,.

This inverse problem is the classical one, since it is the inverse problem of recovering
n-th order differential equation on a finite interval from its Weyl-type matrix. This inverse
problem has been solved in [1]. In particular, it is proved that the specification of the
Weyl-type matrix M, uniquely determines the potential on the edge e,. Moreover, in [1]
an algorithm for the solution of Inverse Problem 3 is given, and necessary and sufficient
conditions for the solvability of this inverse problem are provided.

3 Solution of the inverse problem from spectra

In this section we obtain a constructive procedure for the solution of Inverse Problem 1.
Our plan is the following.
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Step 1. Using (12)-(13) construct the Weyl-type matrices M = {M,}

s=1,p—1°

Step 2. Solving Inverse Problem 2 for each fixed s = 1,p — 1, we find the functions

Qus, v =0,n—2, s=1,p—1, i.e. we find the potential ¢ on the edges e1,...,ep_1.
Step 3. Using the knowledge of the potential on the edges ey, ..., e,—1, we construct

the Weyl-type matrix M),.

Step 4. Solving Inverse Problem 3 we find the functions g,,, ¥ = 0,7 — 2, i.e. we find
the potential on the edge e,,.

Steps 1, 2 and 4 have been already studied in Section 2. It remains to fulfil Step 3.

Suppose that Steps 1-2 are already made, and we found the functions g,s, v = 0,n — 2, s =
1,p—1, i.e. we found the potential ¢ on the edges e1,...,e,_1. Fix s =1,p — 1. All calcu-
lations below will be made for this fixed s. Using the knowledge of the potential on the edge
es, we calculate the functions Cys(x, A), k = 1,7, and the functions ks (z, ), k = 1,n, by

(8)-

Now we are going to construct the Weyl-type matrix M, using ¥qps(x, A), k = 1, n. Fix

s =1,p — 1. Denote

¢s1p($7)\)
zp1 (2, ) = ———2=.
Pl( ) 1Z)slp(lv)\)
The function z,1(x,A) is a solution of equation (1) on the edge e,, and zp1(1,A) = 1.

Moreover, by virtue of (10), one has zz(ﬁil)((), A) =0,¢=1,n— k. Taking (14) into account
we conclude that the solutions zp1(z, A) and ¥y (z, A) satisfy the same boundary conditions,
and consequently, zp1(x, A) = ¥p1(x, A). Thus,

1/1511)( ) )
T, A 15
V(@A) = (L) (15)
Similarly, we calculate
det[ s (LA, o 0D (1), Y (2, A
a0 DAY 6 Wty oy
det[ts;ip (17/\)]5,M:1,k
Since Mg, () = 1/11()1,; 1)(1 A), it follows from (15)-(16) that
(1, ) —
MV/\:L, v=2n, 17
pl ( ) 1/}511)(1’ ) ( )
det[thsun (1, N), ..o, b2 @), vl D (1, 0] _—
Mo (V) = [thspup (1, A) wp (LA), Ysup " (LN, 15 (1)

1 9
det[v:$ip " (1, )] 15
k=2n-1, v=k+1,n.
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Using the matching conditions (9) we get

Uﬁ’(djskj) = Usu(wsks)a 0 S v<k S n—1. (19)

Since the functions s were already calculated, the right-hand sides in (19) are known.

For each fixed k = 1,n — 1, we successively use (19) for v = 0,1,...,k — 1, and calculate

recurrently the functions

PN, k=Tn-1,v=0k-1j=Tp—1\s. (20)

Furthermore, it follows from (7) and (10) that Mg, (A) = 0 for p = 1,n—k, j =
1,p— 1\ s, and consequently,

Garj (@A) = > Maju(NCyj(x,A), k=Tn—1, j=T,p—1\s.
p=n—k+1

This yields

1/)223(1,)\) = Z Mskj#()\)cl(g)(l,)\), v=0n—-1,k=1,n-1,j=1,p—1\s.
p=n—k+1
(21)
Fix k =1,n—1, j = 1,p—1\ s, and consider a part of the relations (21), namely, for

v =0,k — 1. They form a linear algebraic system with respect to the functions Myy;,(N),
i =n—k+ 1,n. Solving this system by Cramer’s rule we find these functions. Substituting
them into (21) for v > k, we calculate the functions

YDA, k=Tn-Lv=kn—1,j=Tp-1\s. (22)

Substituting now the functions (20) and (22) into (9) we find

’l/ng];;(l,A), k:l,n—l7 V:O’n_]“ (23)

Since the functions (23) are known, one can calculate the Weyl-type matrix M, via (17)-(18).

Thus, we have obtained the solution of Inverse Problem 1 and proved its uniqueness,
i.e. the following assertion holds.

Theorem 2. The specification of the spectra A uniquely determines the potential q on
T. The solution of Inverse Problem 1 can be obtained by the following algorithm.
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Algorithm 1. Given the spectra A.

1) Construct the Weyl-type matrices M = {M},_15— via (12)-(13).

2) Find the functions qus, v = 0,n—2, s = 1,p—1, by solving Inverse Problem 2 for
each s=1,p—1.

3) Fizs=1,p—1, andcalculateC,iZ (LX) fork=1,n,v=0,n— 1.

4) Construct the functions z/JSkS(l, A, k=1,n—1,v=0,n—1 by the formula

W (1,0) = (1,0 + Z My (NC (1, 0).

sks
p=k+1

5) Find the functions 1/)22)7(1, A), k=

recurrent formulae (19).

I,n—1,v=0,k—1,j=1,p—1\s, by using the

6) Calculate Msiju(N), k= 1,n—1, p=n—k+1,n,j =1,p—1\s, by solving the

linear algebraic systems

S MapWCY 1N =)L), v =0F-T,
p=n—k+1

for each fited k=1,n—1,j=1,p—1)\s.

7) Construct the functions wskj( AN, k=1n—-1,v=kn—1j=1,p—1\s, by the
formula

AN = S MgV (L), vk

skj
p=n—k+1

8) Find the functions 1/)222)(1,)\), k=1n—-1,v=0,n—1, by (9).
9) Calculate the Weyl-type matriz M, via (17)-(18).

10) Construct the functions qup, v = 0,n — 2, by solving Inverse Problem 3.
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