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ABSTRACT

We provide the extension of Dupire’s PDE, as the partial integro-differential equations
of market prices of call options with many maturities and strike prices for jump diffusion
model.

RESUMEN

Nosotros damos la extensién de Dupire PDE, como las ecuaciones parciales integro-
diferenciales de precios de mercado de opciones de llamada con muchos vencimientos y
golpe de precios para modelos de difusién con saltos.
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1 Introduction

Let (2, F, P) be a probability space. On the space (2, F, P) we set a standard Brownian motion
W = {Wi}iepo, 1) from Wy = 0 and a Poission random measure N (dtdx) on (0,7]x R with intensity
measure dtv(dx), where T € (0,00) and the measure v on R satisfies

/ (1+e**) A 2%v(dz) < cc. (1)
R

We consider a risk-neutral price process {7 }+¢cjo,7] of a risk asset satisfing

dsy = o(t,SY)SydWy + (r — 6)Sydt;
S = z€(0,00),

where r > 0 denotes the interest rate and § > 0 the dividend rate. The function o : [0,T]x (0, 00) —
[0,00) has the Lipschiz condition and is often called the volatility of the asset’s price. According
to the well-known discussion of option pricing model, if for each T, K € (0, 00) we have a unique
solusion u(t, z, T, K) to the parabolic equation and boundary condition

ou 1 2 2 0%u ou B '
5 + ia(t,:c) 5 + (r— 5)x% —ru=0, (t,z)€[0,T) x (0,00);
uw(t, 2, T,K)|t=r = (z — K)T, x € (0,00),

then a price of a call option with maturity T and strike price K is given by
u(t,r, T, K)|—o = e "T B[(S% — K)*].

Dupire[1] found that w(t,z,T, K) as a function of (T, K) satisfies the following dual equation to
the last parabolic equation:

ou 0%u ou
5 = 8K2_(T_5)K8—K_6u7 (T,K) € (t,00) x (0,00).

But his approach is not enough mathematically. There are some works justifing rigorously his idea,

1
5o(T. K)’K?

for example, Klebaner[4] etc. Klebaner[4] gives the last equation by the Meyer-Tanaka formula.
On the other hand, there are also works on option pricing model for jump-diffusion processes, for
example, geometric Lévy processes by Fujiwara and Miyahara[2]. Recently, Jourdain[3] provides
the extension of Dupire’s work for jump-diffusion processes by stochastic flow approch.

Now, we consider the following risk-neutral evolusion { X{ };¢[o, ] for the underlying risk asset’s

prices:
t ¢
Xy = a:—i—/ a(u,Xff)Xfdeu—l-(r—d)/ X du
0 0

+/ XZ_ (e — 1){N(dudz) — duv(dz)}, t€[0,T]
(0,t] xR
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where a(t, z) : [0,T] % (0,00) — [0, 00) satisfies the Lipschiz condition and has the second derivative
with respect to . Then {X[},cj0,7) has the extended diffusion operator(see Yoshida[5] p.408)

(Af)a) = galt,)af" () + (r — 6y (2)

+ [ Flee) = 1) = (€ = af @pd2).
R
For each maturity T and strike price K we denote
C(z,T,K) = ¢ "TE[(XF — K)] (2)

by a call option price with an asset price z. In particular, in the case a(-,-) = a the last definition
(2) is justified by Fujiwara and Miyahara[2]. If we moreover assume that a(-, -) belongs to the class

V=<f:10,T] x(0,00) = R| sup Z|x 7 (t,r)| < oo
(t,2)€[0,T]x(0,00) 1.

then Jourdain[3] provides the following equation of (7', K):

—g—g +ArC =0, (T,K) € (0,00) x (0,00),

where

(Arf)K) = sa(T, KK f"(K) - (r = 0K f/(K) ~ 61 (K)
+ [ L) = £0) (e = DES ) enide),
R

Here notice that the assumption a(-,-) € V satisfies the Lipschiz condition. In this note we provide
the same result of the above without a(-,-) € V by using not only stochastic flow approch but also

another one.

2 Main result

We fix z € (0,00) as follows. We have the following main theorem.

Theorem 2.1. C(x,T,K) as a function of (T, K) satisfies

—‘Z—g +ArC =0, (T,K) € (0,00) x (0, 00)

in weak sense; that is,
(o] o0 a
| [T cwrm{Gea a0 + arotr. ) farai o, v € (0,507,
where
/ / BT, K) A (T, K)dTdE = / / Agth(T, K)o(T, K)dTdK,
0 0 0 0

Vo,V € C3°((0,00)%).
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2.1 Lemmas

Lemma 2.1. It follows that
0<C(x, T,K) < e Tx, (T,K) € (0,00) x (0,00). (3)

For every () € C3((0, 00))
B = [ Ol TR)G IR, T € (0,50) (1)

holds.

Remark 2.1. It follows from (3) that C(x,T,K) as a function of (T, K) is locally integrable on
(0,00) x (0,00). Thus the right-hand side of (4) is well-defined.

proof: By (2) we have
0<e?C(2,T,K) < E[X%].

Moreover, since {ef(r";)tXt””}te[oyT} is a nonnegative local martingale with initial value x, the
right-hand side of the last inequality is

< e(rfé)TI'
Hence we get (3). Finally, we compute from (2) that the right-hand side of (4) is

— /OOO e "TE[(XE - K)T¢" (K)dK

= ¢TE UOOO(X% — K)""(K)dK
= e "TEp(X7)).

Hence we get (4).

Before we moreover introduce lemmas, for every ¢(-,-) € C5°((0, 00)) we set a family {®r}h0
of all functions

(I)h(Tv x) = %{E[QO(Tv XIzUrh)] - E[‘P(Tv X%)]}v (Tv K) € (Ov OO) X (07 OO)

Lemma 2.2.

3

oo 0o oo 9 ©
1 — rT
limp, o /O ®,(T, z)dT = /0 /O " C (. T, K) 5stees (T, K)dTdE.

proof: First, we set C(z,T,K) = ¢"TC(x,T, K). By using (4), we have

/°° @h(T’x)dT:/w {/OO C(x,T+hK)—Cx,T,K) % (T7K)dK} o
0 0 0

h 0K?
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where h > 0. Moreover we compute that the right-hand side of the last equality is

< | r°Cx,T+hK)—C(z,T,K) d*p
T,K)dT % dK
I i o1 )

o oo 1 32<p 32(,0

and so we have

> RO e 1 /0% 0%
/0 <I>h(T7x)dT—/0 /0 C(ZC,T,K)E <8K2(T_h’K)_8K2(T7K))deK'

Then, by using the dominated convergence theorem, ¢(-,-) € Cg°((0,00)%) and (3) imply that the
right-hand side of the last equality converges to

[e'e] oo 6390
—/O /0 Clo, T, K) 575 (T, K)dTdK

as h | 0. Hence we get the desired result.

We denote by the following operator depended on time ¢ € [0, c0) :
= . 1 2 " 9 2 /
(Af)@) = galt,2)af"(@) + {5 (alt;2)"a?) + (r = )z} f'(2)
62
{3’ + 0 -2) | 1@
+/ e** f(ze?) — (2¢* — 1) f(z) — (e* — Daf'(x)v(dz2).
R
Lemma 2.3.

oo 00 [e%s} N 2
limp o / &y (T, 2)dT = / / Tz, T, K) <AT%(T, K)> dTdK.
0 0 0

proof: First, we divide A. into two parts as follows:

(Af)@) = {a(-,xfx?f"(x)+<r—6>xf’<x>

N~

4 /|| f(ze?) - f(x) — 2af(x)(d2)
- / (€ —1— 2)af ()w(dz) - / f@) + (e 1)wf’(w)V(d2)}
|z]<1 |z]>1

4 /|Z|>1f(weZ)V(d2)
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Since ¢(-,-) € C5°((0,00)?) we can choose subintervals I; = [ay, 81] and I, = [ag, 82] of (0, 00)
such that supp ¢ C I1 x Is. We pick § > 0 and set I = {zlay <z < (146} and L= {z]|age ! <
z < fre}. We denote by || f ||y = supger|f(2)], where I' is a compact subset of (0, 00)? and
f € C(T) = {f is a real-valued continuous function on I'}. Then observe that A%p(T,-) belongs
to C2((0,00)), since ¢(-,-) € C3°((0,00)?) and a(T,-) has the second derivative, and

1 0%
|A%p(T, K)| < §Ha2 ||c(f1x12)H zaKg l I)lhxlz(T,K)
2
o) | K22 2, )111x12(T,K)
2
6 dp
2 2
K + K 1, ~(T.K
[ LG KGR (0K
b et |KGE N en(TE)
||<1 C(lelg)
EEIE ||c<,1xlz)1m (T, K)
+/||>1|e5—1|u< 2 | K22 2 s (T )
z|> 2

L, o, 2 0%
{§| a ||c(f1xlz)H K 0K? HC(11><12)

+(|r_5|+/ eZ—l—zu<dZ>+/ le* = 1] <dz))||K ||
|z|<1 [z|>1

IN

C(Il XIQ)

0%p dp
K>~ y K—XZ >1
+/|Zl<1z v K2 g + Kol el 2 >|w|c<hxm}

X 1[1><f2(T7 K)
= (Cpx 111Xf2(T’K)’ Yu € fl,

where C; < oo holds since ¢(-,-) € C5°((0,00)?), (1), and a(-, -) is continuous. Moreover, it is easy

/ o (T, Ke*)v(dz)

where C5 is a positive constant not depending on 7" and K. Therefore the inequality of the

that we have

< Colp (T),

observation and the last inequality imply
|[Aup(T,K)| < (Cy+ Co)1,(T), Yue€ L.

Here, fix T and by using Appendix 3.2 it follows from (-, -) € C°((0, 00)*) that

T+h
() = ¢ [ Pl )X

1

T+h
- L / ElAup(T, X2)]du,
h’ T
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for all 0 < h < 4. Then the last two inequality and equality imply

limp 0®x(T,2) = E[Are(T, X7);
|(I>h(T, I)| < (Cl + 02)111 (T), 0 <Vh <.

According to the dominated convergence theorem, the last two results imply
limy, 0 / By (T, 2)dT = / E[Aro(T, X2)|dT. (5)
0 0

On the other hand, by using (4) we have from the above observation

oo 2
e TEAYAT X)) = [ O TR 5 (A (T ) (KK
0
Moreover we have
TE[[ eT Xpewld) = [ e BT Xfe ()
|z[=1 |z1>1

N /||>1/00 O, T, K)%(w(T, Ke*))dKv(dz)

oo 2
— / Oz, T, K) / ¢ 0 (T, Ke*)u(dz)dK,
0 2>1 0K

where the second line of the last equality holds by (4). Therefore the last two equalities imply

e " TE[Arp(T, X%)] / C(x,T,K) 8‘9 (A%p(T, K))

8?
+/||>162 8;; (T, Ke*)v(dz) VK,

and so by computing the right-hand side of the last equality we have

2

e "M E[Arp(T, X7)] = /OOO C(z, T, K)(Ar 0y (T K))dK.

0K?

Hence (5) and the last equality imply the desired result.

2.2 Proof of Theorem 2.1

First, pick any (T, K) € Cg°((0,00)%). According to Lemma 2.2 and 2.3, for all o(T,K) €

C5°((0,00)°) such that "™ g;ﬁ =1, we have

/OO/OOGTTC(:Z? T,K) ﬂ(T K)+ A 82—%”(T K)$dTdK =0
0 0 sy Ly 6T(’“)K2 ’ T6K2 ’ — Y
and so

/OOO /OOO C(z,T,K) {g—;ﬁ(T, K) + Apy(T, K)} dTdK =0
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holds. On the other hand, we can compute the integral by parts

/ b / Oow(z: K)Aro(T, K)dTdK = / h / b Ar (T, K)p(T, K)dTdK,
0 0 0 0
Yo, Vih € C5°((0,00)7).

Hence the last two equalities imply the desired conclusion.

3 Appendix

Appendix 3.1. Let X C R4, where d is a positive integer, be a domain and C*(X), where
k=0,1,2,---,00, be a class of all real-valued functions on X which have continuous partial
derivatives of order < k if k < oo; of order < o< if k = co. Let C¥(X) be a class of all functions
which belong to CF(X) and compact supports.

Appendix 3.2. (Dynkin’s formula)
For every f € C3((0,0)),
B = 10+ B | (A0, (t.2) € 0.00) x (0.0

holds.
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