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ABSTRACT

Dynamic oligopolies are examined with continuous time scales and under the assump-

tion that the demand at each time period is affected by earlier demands and consump-

tions. After the mathematical model is introduced the local asymptotical stability of

the equilibrium is examined, and then we will discuss how information delays alter

the stability conditions. We will also investigate the occurrence of a Hopf bifurcation

giving the possibility of the birth of limit cycles. Numerical examples will be shown to

illustrate the theoretical results.

RESUMEN

Dinámica de oligopolios son examinados en escala de tiempo continuo y bajo la su-

posición que la demanda en todo tiempo periodico es afectada por la demanda e



86 Carl Chiarella and Ferenc Szidarovszky CUBO
11, 2 (2009)

consumo temprano. Es presentado el modelo matemático y examinada la estabili-

dad asintótica local y entonces discutiremos como la información de retrazo altera las

condiciones de estabilidad. También investigamos el acontecimiento de bifurcación de

Hofp dando la posibilidad de nacimiento de ciclos limites. Ejemplos númericos son

exhibidos para ilustrar los resultados teóricos.

Key words and phrases: Noncooperative games, dynamic systems, time delay, stability.

Math. Subj. Class.: 91A20, 91A06.

1 Introduction

Oligopoly models are the most frequently studied subjects in the literature of mathematical eco-

nomics. The pioneering work of [3] is the basis of this field. His classical model has been extended

by many authors, including models with product differentiation, multi-product, labor-managed

oligopolies, rent-seeking games to mention a few. A comprehensive summary of single-product

models is given in [6] and their multi-product extensions are presented and discussed in [7] in-

cluding the existence and uniqueness of static equilibria and the asymptotic behavior of dynamic

oligopolies. In both static and dynamic models the inverse demand function relates the demand

and price of the same time period, however in many cases the demand for a good in one period

will have an effect on the demand and price of the goods in later time periods. In the case of

durable goods the market becomes saturated, and even in the case of non-durable goods the de-

mand for and consumption of the goods in earlier periods will lead to taste or habit formation of

consumers that will affect future demands. Intertemporal demand interaction has been considered

by many authors in analyzing international trade (see for example, [4] and [9]). More recently

[8] have developed a two-stage oligopoly and examined the existence and uniqueness of the Nash

equilibrium.

In this paper we will examine the continuous counterpart of the model of [8]. After the

dynamic model is introduced, the asymptotic behavior of the equilibrium will be analyzed. We

will show that under realistic conditions the equilibrium is always locally asymptotically stable.

We will also show that this stability might be lost when the firms have only delayed information

about the outputs of the competitors and about the demand interaction.

2 The Mathematical Model

An n-firm single-product oligopoly is considered without product differentiation. Let xk be the

output of firm k and let Ck(xk) be the cost of this firm. It is assumed that the effect of market

saturation, taste and habit formation, etc. of earlier time periods are represented by a time-
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dependent variable Q, which is assumed to be driven by the dynamic rule

Q̇ = H

(
n
∑

k=1

xk, Q

)

, (2.1)

where H is a given bivariate function. It is also assumed that the price function depends on both

the total production level of the industry and Q. Hence the profit of firm k can be formulated as

Πk = xkf (xk + Sk, Q) − Ck(xk) (2.2)

where Sk =
∑

l 6=k xl. If Lk denotes the capacity limit of firm k, then 0 ≤ xk ≤ Lk and 0 ≤ Sk ≤
∑

l 6=k Ll.

The common domain of functions H and f is [0,
∑n

k=1 Lk] × R+, and the domain of the

cost function Ck is [0, Lk]. Assume that H is continuously differentiable, f and Ck are twice

continuously differentiable on their entire domains.

With any fixed values of Sk ∈ [0,
∑

l 6=k Ll] and Q ≥ 0, the best response of firm k is

Rk(Sk, Q) = arg max
0≤xk≤Lk

{xkf(xk + Sk, Q) − Ck(xk)} , (2.3)

which exists since Πk is continuous in xk and the feasible set for xk is a compact set.

As it is usual in oligopoly theory we make the following additional assumptions:

(A) f
′

x < 0;

(B) f
′

x + xkf
′′

xx ≤ 0;

(C) f
′

x − C
′′

k < 0

for all k and feasible xk, Sk and Q.

Under these assumptions Πk is strictly concave in xk, so the best response of each firm is

unique and can be obtained as follows:

Rk(Sk, Q) =









0 if f(Sk, Q) − C
′

k(0) ≤ 0

Lk if Lkf
′

x(Lk + Sk, Q) + f(Lk + Sk, Q) − C
′

k(Lk) ≥ 0

x
∗
k otherwise,

(2.4)

where x
∗
k is the unique solution of equation

f(xk + Sk, Q) + xkf
′

x(xk + Sk, Q) − C
′

k(xk) = 0 (2.5)

in interval (0, Lk).
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If we assume that at each time period each firm adjusts its output into the direction towards

its best response, then the resulting dynamism becomes

ẋk = Kk · (Rk(Sk, Q) − xk) (k = 1, 2, · · · , n), (2.6)

where Kk is the speed of adjustment of firm k, and if we add the dynamic equation (2.1) to these

differential equations, an (n + 1)-dimensional dynamic system is obtained. Clearly, x̄1, · · · , x̄n, Q̄

is a steady state of this system if and only if

H

(
n
∑

k=1

x̄k, Q̄

)

= 0 (2.7)

and

x̄k = Rk





∑

l 6=k

x̄l, Q̄



 (2.8)

for all k. The asymptotic behavior of the steady states will be examined in the next section.

3 Stability Analysis

Assume that x̄1, · · · , x̄N , Q̄ is an interior steady state, that is, both

f(

∑

l 6=k

x̄l, Q̄) − C
′

k(0)

and

Lkf
′

x(Lk +

∑

l 6=k

x̄l, Q̄) + f(Lk +

∑

l 6=k

x̄l, Q) − C
′

k(Lk)

are nonzero for all k. If x̄k = 0 or x̄k = Lk, then clearly both
∂Rk

∂Sk
and

∂Rk

∂Q
are equal to zero.

Otherwise these derivatives can be obtained by implicitly differentiating equation (2.5) with respect

to Sk and Q:

rk =
∂Rk

∂Sk

= −
f

′

x + xkf
′′

xx

2f
′

x + xkf
′′

xx − C
′′

k

(3.1)

and

r̄k =
∂Rk

∂Q
= −

f
′

Q + xkf
′′

xQ

2f
′

x + xkf
′′

xx − C
′′

k

. (3.2)

Assumptions (B) and (C) imply that

−1 < rk ≤ 0, (3.3)

and if we assume that

(D) f
′

Q + xkf
′′

xQ ≤ 0
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for all k and feasible xk, Sk and Q, then

r̄k ≤ 0. (3.4)

Notice that relations (3.3) and (3.4) hold for all interior steady states.

The Jacobian of system given by the differential equations (2.1) and (2.6) has the special form

J =










−K1 K1r1 · · · K1r1 K1r̄1

K2r2 −K2 · · · K2r2 K2r̄2

.

.

.
.
.
.

.

.

.
.
.
.

Knrn Knrn · · · −Kn Knr̄n

h h · · · h h̄










where

h =
∂H

∂x
and h̄ =

∂H

∂Q
.

The main result of this section is the following.

Theorem 1 Assume that at the steady state, h̄ ≤ 0 and rkh̄ − r̄kh > 0 for all k. Then the steady

state is locally asymptotically stable.

Proof. We will prove that the eigenvalues of J have negative real parts at the steady state. The

eigenvalue equation of J can be written as

−Kkuk + Kkrk

∑

l 6=k

ul + Kkr̄kv = λuk (1 ≤ k ≤ n) (3.5)

and

h

n
∑

k=1

uk + h̄v = λv. (3.6)

Let U =
∑n

k=1 uk, then from (3.6),

hU = (λ − h̄)v.

Assume first that h = 0. Then the eigenvalues of J are h̄ and the eigenvalues of matrix








−K1 K1r1 · · · K1r1

K2r2 −K2 · · · K2r2

.

.

.
.
.
.

.

.

.

Knrn Knrn · · · −Kn








.

Notice that this matrix is the Jacobian of continuous classical Cournot dynamics and it is well-

known that its eigenvalues have negative real parts if Kk > 0 and −1 < rk ≤ 0 for all k (see for

example, [1]). In this case the assumptions of the theorem imply that h̄ < 0, so all eigenvalues of

J have negative real parts.
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Assume next that h 6= 0. Then from (3.6),

U =
λ − h̄

h
v, (3.7)

and from (3.5),

uk =
KkrkU + Kkr̄kv

λ + Kk(1 + rk)
=

Kkrk(λ − h̄) + Kkr̄kh

(λ + Kk(1 + rk))h
v. (3.8)

By adding these equations for all values of k and using (3.7) we have

n
∑

k=1

Kkrkλ + Kk(r̄kh − rkh̄)

λ + Kk(1 + rk)
= λ − h̄ , (3.9)

since v 6= 0, otherwise (3.8) would imply that uk = 0 for all k.

Assume next that λ = A + iB is a root of equation (3.9) with A ≥ 0. Let g(λ) denote the left

hand side of this equation. Then

Re g(λ) = Re
Kk(rkA + r̄kh − rkh̄) + iKkrkB

A + Kk(1 + rk) + iB

=
Kk(rkA + r̄kh − rkh̄)(A + Kk(1 + rk)) + KkrkB

2

(A + Kk(1 + rk))2 + B2
< 0

and

Re (λ − h̄) = A − h̄ ≥ 0,

which is an obvious contradiction. 2

The conditions of the theorem are satisfied in the special model of [7, section 5.4] on oligopolies

with saturated markets, where the dynamic rule of Q is assumed to be linear,

Q̇ =

n
∑

k=1

xk − C · Q

with some C > 0. In this case h = 1 and h̄ = −C, so h 6= 0 and rkh̄− r̄kh = −Crk − r̄k > 0 unless

rk = r̄k = 0.

4 The Effect of Delayed Information

In this section, we assume that the conditions of Theorem 1 hold, and the firms have only delayed

information on their own outputs as well as on the output of the rest of the industry. It is also

assumed that they have also delayed information on the value of parameter Q. A similar situation

occurs when the firms react to average past information rather than reacting to sudden market
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changes. As in [2] we assume continuously distributed time lags, and will use weighting functions

of the form

w(t − s, T, m) =

{
1
T

e
− t−s

T if m = 0

1
m

(
m
T

)m+1
(t − s)m

e
− (t−s)m

T if m ≥ 1
(4.1)

where T > 0 is a real and m ≥ 0 is an integer parameter. The main properties and the applications

of such weighting functions are discussed in detail in [2]. By replacing the delayed quantities by

their expectations, equations (2.6) become a set of Volterra-type integro-differential equations:

ẋk(t) = Kk ·



Rk





∫ t

0

w(t − s, Tk, mk)

∑

l 6=k

xl(s)ds,

∫ t

0

w(t − s, Uk, pk)Q(s)ds





−

∫ t

0

w(t − s, Vk, lk)xk(s)ds

)

(1 ≤ k ≤ n) (4.2)

accompanied by equation (2.1). It is well-known that equations (4.2) are equivalent to a higher

dimensional system of ordinary differential equations, so all tools known from the stability theory

of ordinary differential equations can be used here. Linearizing equation (4.2) around the steady

state we have

ẋkδ = Kk ·



rk ·

∫ t

0

w(t − s, Tk, mk)

∑

l 6=k

xlδ(s)ds

+r̄k ·

∫ t

0

w(t − s, Uk, pk)Qδ(s)ds −

∫ t

0

w(t − s, Vk, lk)xkδ(s)ds

)

(4.3)

where xkδ and Qδ are deviations of xk and Q from their steady state levels. We seek the solution

in the form xkδ(t) = uke
λt and Qδ = ve

λt, then we substitute these into equation (4.3) and let

t → ∞. The resulting equation will have the form

−

(

λ + Kk

(

1 +
λVk

ck

)−(lk+1)
)

uk + Kkrk

(

1 +
λTk

ak

)−(mk+1)∑

l 6=k

ul

+ Kkr̄k

(

1 +
λUk

bk

)−(pk+1)

v = 0 (4.4)

where

ak =

{

1 if mk = 0

mk otherwise,

bk =

{

1 if pk = 0

pk otherwise,

ck =

{

1 if lk = 0

lk otherwise,
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and we use the identity

∫ ∞

0

w(s, T, m)e
−λs

ds =

{

(1 + λT )
−1

if m = 0
(

1 +
λT
m

)−(m+1)
if m ≥ 1.

Linearizing equation (2.1) around the steady state we have

Q̇δ(t) = h ·

n
∑

k=1

xkδ(t) + h̄Qδ(t) (4.5)

and by substituting xkδ(t) = uke
λt and Qδ = ve

λt into this equation we have

h

n
∑

k=1

uk + (h̄ − λ)v = 0. (4.6)

For the sake of simplicity introduce the notation

Ak(λ) = λ + Kk

(

1 +
λVk

ck

)−(lk+1)

,

Bk(λ) = Kkrk

(

1 +
λTk

ak

)−(mk+1)

,

and

Ck(λ) = Kkr̄k

(

1 +
λUk

bk

)−(pk+1)

,

then equation (4.4) can be rewritten as

−Ak(λ)uk + Bk(λ)

∑

l 6=k

ul + Ck(λ)v = 0 (1 ≤ k ≤ n). (4.7)

Equations (4.7),(4.6) have nontrival solution if and only if

det










−A1(λ) B1(λ) · · · B1(λ) C1(λ)

B2(λ) −A2(λ) · · · B2(λ) C2(λ)

.

.

.
.
.
.

.

.

.
.
.
.

Bn(λ) Bn(λ) · · · −An(λ) Cn(λ)

h h h h̄ − λ










= 0. (4.8)

Assume first that h = 0. Then the conditions of Theorem 1 imply that h̄ < 0. The eigenvalues

are therefore λ = h̄, which is negative, and the roots of equation

det








−A1(λ) B1(λ) · · · B1(λ)

B2(λ) −A2(λ) · · · B2(λ)

.

.

.
.
.
.

.

.

.

Bn(λ) Bn(λ) · · · −An(λ)








= 0. (4.9)
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By introducing

D = diag
(

− A1(λ) − B1(λ), · · · ,−An(λ) − Bn(λ)
)

,1⊤
= (1, · · · , 1)

and

b =
(

B1(λ), . . . , Bn(λ)
)⊤

,

this equation can be rewritten as

det(D + b · 1⊤
) = det(D) det(I + D−1b · 1⊤

)

=

n
∏

k=1

(

− Ak(λ) − Bk(λ)

)

·

[

1 −

n
∑

k=1

Bk(λ)

Ak(λ) + Bk(λ)

]

= 0 . (4.10)

Therefore in this case we have to examine the locations of the roots of equations

Ak(λ) + Bk(λ) = 0 (1 ≦ k ≦ n) (4.11)

and

n
∑

k=1

Bk(λ)

Ak(λ) + Bk(λ)
= 1 . (4.12)

Assume next that h 6= 0 and Ak(λ) + Bk(λ) 6= 0. By introducing the new variable U =
∑n

k=1 uk, equation (4.7) can be rewritten as

Bk(λ)U =

(

Ak(λ) + Bk(λ)

)

uk − Ck(λ)v .

By combining this equation with (4.6) we have

uk =
hCk(λ) + Bk(λ)(λ − h̄)

h
(

Ak(λ) + Bk(λ)
) v , (4.13)

where we assume that the denominator is nonzero. Adding this equation for all values of k and

using (4.6) again we see that

n
∑

k=1

hCk(λ) + Bk(λ)(λ − h̄)

Ak(λ) + Bk(λ)
= λ − h̄ . (4.14)

Here we also used the fact that v 6= 0, since otherwise uk would be zero for all k from equation

(4.13), and eigenvectors must be nonzero.

Notice first that in the absence of information lags Tk = Uk = Vk = 0 for all k, and in this

special case equation (4.14) reduces to (3.9) as it should. The analysis of the roots of equations

(4.11), (4.12) and (4.14) in the general case requires the use of computer methods, however in

the case of symmetric firms and special lag structures analytic results can be obtained. Assume
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symmetric firms with identical cost functions, same initial outputs, identical time lags and speeds

of adjustment. Then the firms also have identical trajectories, Ak(λ) ≡ A(λ), Bk(λ) ≡ B(λ),

Ck(λ) ≡ C(λ) and therefore uk ≡ u. Because of this symmetry equations (4.7) and (4.6) become

(

− A(λ) + (n − 1)B(λ)
)

u + C(λ)v = 0 (4.15)

and

nhu + (h̄ − λ)v = 0 . (4.16)

If h = 0, then from the conditions of Theorem 1 we know that h̄ < 0. Equation (4.16) implies

that in this case either λ = h̄ or v = 0. In the first case this eigenvalue is negative, which cannot

destroy stability. In the second case u 6= 0 and equation (4.15) implies that

−A(λ) + (n − 1)B(λ) = 0 . (4.17)

If h 6= 0, then

u = −
h̄ − λ

nh
v (4.18)

and by substituting this relation into equation (4.15) we get a single equation for v:

(
(

− A(λ) + (n − 1)B(λ)

)(

−
h̄ − λ

nh

)

+ C(λ)

)

v = 0 . (4.19)

Notice that v 6= 0, otherwise from (4.18) u = 0 would follow and eigenvectors must be nonzero.

Therefore we have the following equation:

nhC(λ) + (n − 1)B(λ)(λ − h̄) − A(λ)(λ − h̄) = 0 .

Notice first that in the case of h = 0 this equation reduces to (4.17) and λ = h̄. Note next that

this equation can be rewritten as the polynomial equation

λ(λ − h̄)

(

1 +
λT

a

)m+1(

1 +
λU

b

)p+1(

1 +
λV

c

)l+1

+ (λ − h̄)K

(

1 +
λT

a

)m+1(

1 +
λU

b

)p+1

− nhKr̄

(

1 +
λT

a

)m+1(

1 +
λV

c

)l+1

− (n − 1)(λ − h̄)Kr

(

1 +
λU

b

)p+1(

1 +
λV

c

)l+1

= 0 . (4.20)



CUBO
11, 2 (2009)

Dynamic Oligopolies and Intertemporal Demand Interaction 95

4.1 No information lag

Assume first that there is no information lag. Then T = U = V = 0, and equation (4.20) specializes

as

λ(λ − h̄) + (λ − h̄)K − nhKr̄ − (n − 1)(λ − h̄)Kr = 0

which is quadratic,

λ
2

+ λ
(

− h̄ + K − (n − 1)Kr
)

+
(

− h̄K − nhKr̄ + (n − 1)h̄Kr
)

= 0 . (4.21)

Under the conditions of Theorem 1, all coefficients are positive. Therefore the roots have negative

real parts. We have already proved this fact in Theorem 1 in the more general case.

4.2 Time lag in Q

Assume next that there is no time lag in the outputs but there is time lag in assessing the value

of Q. Then T = V = 0, and if p = 0, then equation (4.20) becomes

λ(λ − h̄)(1 + λU) + (λ − h̄)K(1 + λU) − nhKr̄ − (n − 1)(λ − h̄)Kr(1 + λU) = 0

or

λ
3
U + λ

2
(

1 + U(K − h̄ − nKr + Kr)

)

+ λ

(

− h̄ + K − nKr + Kr + U(−Kh̄ + nKrh̄ − Krh̄)

)

+

(

− h̄K(r + 1) + Kn(rh̄ − r̄h)

)

= 0 . (4.22)

Under the conditions of Theorem 1, all coefficients are positive. By applying the Routh–Hurwitz

criterion all roots have negative real parts if and only if

[

− h̄ + K(1 − Uh̄)
(

1 − (n − 1)r
)
][

1 − Uh̄ + UK
(

1 − (n − 1)r
)
]

> U

(

− h̄K
(

1 − (n − 1)r
)

− Knhr̄

)

, (4.23)

which is a quadratic inequality in U . By introducing the notation z = 1 − (n − 1)r > 0 it can be

written as

U
2
Kh̄z(h̄− Kz) + U

(

(h̄ − Kz)
2
+ Knhr̄

)

+ (−h̄ + Kz) > 0 , (4.24)

where the leading coefficient is nonnegative and the constant term is positive.

We have to consider next the following cases:

Case 1. If h ≦ 0, then (4.24) holds for all U > 0, since all coefficients are positive.
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Case 2. Assume next that h > 0. If

r̄ ≧ −
(h̄ − Kz)2

Knh
,

then the linear coefficient is also nonnegative, so (4.24) holds for all U > 0. If

r̄ < −
(h̄ − Kz)2

Knh
,

then the linear coefficient of (4.24) is negative. We have now the following subcases.

(A) Assume first that h̄ = 0. Then the conditions of Theorem 1 imply that r̄ < 0 and h > 0.

In this special case (4.24) becomes linear, so it holds if and only if

U <
−Kz

(Kz)2 + Knhr̄
. (4.25)

The stability region in the (r̄, U) space is illustrated in Figure 1.

Figure 1: Stability region in the (r̄, U) space for h̄ = 0

(B) Assume next that h̄ 6= 0, then h̄ < 0. The discriminant of (4.24) is zero, if

r̄ = r̄
∗

=
−(Kz − h̄)2 − 2(Kz − h̄)

√

−Kh̄z

Knh
. (4.26)

In this case (4.24) has a real positive root U
∗, and the equilibrium is locally asymptotically

stable if U 6= U
∗.

If r̄ > r̄
∗, then the discriminant is negative, (4.24) has no real roots, so it is satisfied for all

U , that is, the equilibrium is locally asymptotically stable.

If r̄ < r̄
∗, then the discriminant is positive, there are two real positive roots U

∗
1 < U

∗
2 , and

the equilibrium is locally asymptotically stable if U < U
∗
1 or U > U

∗
2 . The stability region in the

(r̄, U) space is shown in Figure 2.
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Figure 2: Stability region in the (r̄, U) space for h̄ < 0

Returning to Case (A), assume that r̄ < − (Kz)2

Knh
. Starting from a very small value of U ,

increase its value gradually. Until reaching the critical value

U =
−Kz

(Kz)2 + Knhr̄
, (4.27)

the equilibrium is locally asymptotically stable. This stability is lost after crossing the critical

value. We will next prove that at the critical value a Hopf bifurcation occurs giving the possibility

of the birth of limit cycles. Notice first that since h̄ = 0, equation (4.22) has the special form

λ
3
U + λ

2
(1 + UKz) + λKz + (−Knhr̄) = 0 , (4.28)

and (4.23) specializes as

Kz(1 + UKz) > −UKnhr̄ . (4.29)

At the critical value this inequality becomes equality, so at the critical value (4.28) can be rewritten

as

0 = λ
3
U + λ

2
(1 + UKz) + λ

−UKnhr̄

(1 + UKz)
− Knhr̄

=

(

λ
2 −

Knhr̄

1 + UKz

)
(

Uλ + (1 + UKz)

)
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so the roots are

λ1 = −
1 + UKz

U
and λ23 = ±iα

with

α
2

=
−Knhr̄

1 + UKz

(

=
Kz

U

)

.

So we have a negative real root and a pair of pure complex roots. Select now U as the bifurcation

parameter and consider the eigenvalues as functions of U . By implicitly differentiating equation

(4.28) with respect to U , with the notation λ̇ =
dλ
dU

we have

3λ
2
λ̇U + λ

3
+ 2λλ̇(1 + UKz) + λ

2
Kz + λ̇Kz = 0

implying that

λ̇ =
−λ

3 − λ
2
Kz

3λ2U + 2λ(1 + UKz) + Kz
.

At the critical values λ = ±iα, so

λ̇ =
±iα

3 + α
2
Kz

−2α2U ± 2αi(1 + UKz)

with real part

Reλ̇ =
2α

4

(4α4U2) + 4α2(1 + UKz)2
> 0 (4.30)

so all conditions of Hopf bifurcation are satisfied.

The other case of h̄ 6= 0 can be examined in a similar way. The details are omitted. We will

however illustrate this case later in a numerical study.

4.3 Time lag in Sk

Assume next that the firms have instantaneous information about their own outputs and parameter

Q, but have only delayed information about the output of the rest of the industry. In this case

U = V = 0, and T > 0. By assuming m = 0, equation (4.20) becomes

λ(λ − h̄)(1 + λT ) + (λ − h̄)K(1 + λT ) − nhKr̄(1 + λT )

− (n − 1)(λ − h̄)Kr = 0 , (4.31)

which is again a cubic equation:

λ
3
T + λ

2
(1 − h̄T + TK) + λ

(

− h̄ + K − Kh̄T − nhKT r̄ − (n − 1)Kr
)

+
(

− Kh̄− nhKr̄ + (n − 1)Krh̄
)

= 0 .
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However, in contrast to the previous case there is no guarantee that the coefficients are all positive.

Under the conditions of Theorem 1, the cubic and quadratic coefficients are positive, the linear

coefficient is positive if

nhKT r̄ < −h̄ + Kz − Kh̄T (4.32)

and the constant term is positive if

nhKr̄ < −Kh̄z . (4.33)

If these relations hold, then the Routh-Hurwitz stability criterion implies that the eigenvalues have

negative real parts if and only if

(1 − h̄T + TK)(−h̄ + Kz − Kh̄T − nhKT r̄) > T (−Kh̄z − nhKr̄) (4.34)

which can be written as a quadratic inequality of T :

T
2
K(h̄ − K)(h̄ + nhr̄) + T

(

(h̄ − K)
2 − (n − 1)K

2
r

)

+ (Kz − h̄) > 0 . (4.35)

We have to consider now two cases:

Case 1. If h̄ = 0, then r̄ < 0 and h > 0, so all coefficients of (4.35) are positive, so it holds for

all T > 0. Notice that in this case (4.32) and (4.33) are also satisfied, so the equilibrium is

locally asymptotically stable.

Case 2. If h̄ 6= 0, then h̄ < 0. The linear coefficient and the constant term of (4.35) are both

positive, however the sign of the quadratic coefficient is indeterminate. Therefore we have to

consider two subcases:

(A) Assume first that h̄ + nhr̄ ≦ 0. Then the quadratic coefficient is nonnegative, so (4.35)

holds for all T > 0. In this case nhKT r̄ ≦ −h̄KT , so (4.32) also holds. Assume first that

h ≧ 0, then (4.33) is also satisfied, consequently the equilibrium is locally asymptotically

stable. Assume next that h < 0, then the conditions of Theorem 1 imply that both r and h̄

are negative. Therefore

nhKr̄ ≦ −Kh̄ < −Kh̄ + Kh̄(n − 1)r = −Kh̄z ,

so (4.33) also holds, and the equilibrium is locally asymptotically stable again.

(B) Assume next that h̄ + nhr̄ > 0. In this case both h and r̄ must be negative. In this case

r̄ <
−h̄

nh
, (4.36)

the quadratic coefficient of (4.35) is negative, therefore (4.35) has two real roots, one is

positive, T
∗, and the other is negative. Clearly, (4.35) holds if T < T

∗.
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Relation (4.33) holds if

r̄ >
−h̄z

nh
, (4.37)

and under conditions (4.36) and (4.37), relation (4.32) holds if

T <
Kz − h̄

nhKr̄ + Kh̄
= T

∗∗
.

We will next prove that T
∗

< T
∗∗, so this last condition is irrelevant for the local asymptotic

stability of the equilibrium. Let p(T ) denote the left hand side of (4.35), then T
∗

< T
∗∗ if

p(T ∗∗) < 0. This inequality is the following:

(Kz − h̄)
2
(h̄ − K)

K(nhr̄ + h̄)
+

(Kz − h̄)
[

(h̄ − K)2 − (n − 1)K2
r
]

K(nhr̄ + h̄)
+ (Kz − h̄) < 0

which can be simplified as

(Kz − h̄)(h̄ − K) + (h̄ − K)
2 − (n − 1)K

2
r + K(nhr̄ + h̄) < 0 .

This relation is equivalent to the following:

0 > zh̄ + nhr̄ = h̄ − nh̄r + h̄r + nhr̄

= h̄(1 + r) − n(h̄r − hr̄)

where both terms are negative, which completes the proof.

Figure 3 shows the stability region in the (r̄, T ) space. The occurrence of Hopf bifurcation at

the critical value T
∗ can be examined in the same way as shown before, the details are omitted,

however a numerical study of his case will be presented in the next section.

5 Numerical Examples

We will examine next a special case of the oligopoly model of [7] with saturated markets. It is

assumed that

Q̇ =

n
∑

k=1

xk − αQ

with some 0 < α < 1, and the market price and the cost functions are linear:

f

( n
∑

k=1

xk, Q

)

= A −

( n
∑

k=1

xk + βQ

)

and

Ck(xk) = ckxk (k = 1, 2, . . . , n) .
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Figure 3: Stability region in the (r̄, T ) space for h < 0

In this case the best response of firm k is

Rk(Sk, Q) =
−Sk − βQ + A − ck

2
.

We also assume that Kk ≡ K and ck ≡ c. It is easy to see that

h = 1, h̄ = −α, r = −
1

2
, r̄ = −

β

2

and

z = 1 − (n − 1)(−
1

2
) =

n + 1

2
.

Assume U > 0, T = V = 0 as in subsection 4.2. From case 2(B) we know that the equilibrium is

locally asymptotically stable if

r̄ > r̄
∗

= −

(
K(n+1)

2 + α

)2

+ 2

(
K(n+1)

2 + α

)√

Kα(n+1)
2

Kn
.

If r̄ = r̄
∗, then it is locally asymptotically stable if

U 6= U
∗

=

√

Kα(n+1)
2

Kαz
=

√

2

Kα(n + 1)
,

and if r̄ < r̄
∗
, then the equilibrium is locally asymptotically stable if U < U

∗
1 or U > U

∗
2 , where

U
∗
1 and U

∗
2 are the positive roots of the left hand side of (4.24).

We have selected the numerical values A = 25, c = 5, α = K =
1

100 and n = 3. In this case

z = 2 and

r̄
∗

= −
3 + 2

√
2

100
≈ −0.0583 ,
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so if we select

β >
3 + 2

√
2

50
≈ 0.1166

then we have two real roots of the left hand side of (4.24). So if β = 0.5, then it has the form

U
2 6

1003
− U

66

1002
+

3

100
= 0

with the roots

U
∗
1,2 = 50(11 ±

√
119) ,

so the critical values are

U
∗
1 ≈ 4.564 and U

∗
2 ≈ 1095.436 .

In Figure 4, Figure 5 and Figure 6 we have illustrated this phenomenon. Figure 4 shows a shrinking

cycle with U = 3. Figure 5 shows the complete limit cycle with U = U
∗
1 , and Figure 6 illustrates

an expanding cycle with U = 6.

Figure 4: Shrinking cycle

We will next illustrate a model with delay in the output of the rest of the industry as in

subsection 4.3. Assume now the dynamic equation

Q̇ = −γ

n
∑

k=1

xk − αQ
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Figure 5: Complete cycle

with positive γ and α. Assume also that Kk ≡ K, the price function and the cost functions are

the same as in the previous case, so we have

h = −γ, h̄ = −α, r = −
1

2
and r̄ = −

β

2
,

and so z =
n+1

2 as before.

We now assume T > 0, U = V = 0. Conditions (4.36) and (4.37) are satisfied if

−
β

2
<

α

−nγ
and −

β

2
>

α · n+1
2

−nγ
,

that is,

2α

nγ
< β <

α(n + 1)

nγ
.

In this case T
∗

is the positive solution of equation

−T
2
K(α + K)(nβγ − 2α) + T (2α

2
+ 4αK + K

2
(n + 1)) +

(

2α + K(n + 1)
)

= 0 .

We have selected the numerical values A = 25, ck = 5,α = K = γ =
1
10 and n = 3. The value

of β has to be between
2
3 and

4
3 , so for the sake of simplicity we have chosen β = 1. Then the

quadratic equation (4.35) for T
∗ has the form

−T
2 2

1000
+ T ·

10

100
+

6

10
= 0
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Figure 6: Expanding cycle

with positive root

T
∗

= 5(5 +
√

37) ≈ 55.4138 .

With this critical value a complete limit cycle is obtained, if T < T
∗ then the limit cycle changes

to a shrinking one and if T > T
∗ it becomes an expanding cycle. The resulting figures are very

similar to those presented in the previous case, so they are not shown here.

6 Conclusions

In this paper dynamic oligopolies were examined with continuous time scales and intertemporal de-

mand interaction. The effect of earlier demands and consumptions were modelled by introducing an

additional state variable, and in an n-firm oligopoly this concept resulted in an (n+1)-dimensional

continuous system.

The local asymptotical stability of the equilibrium has been proved under general conditions.

This stability however might be lost if the firms have only delayed information on the demand

interaction, on their own outputs and also on the outputs of the competitors. By assuming con-

tinuously distributed time lags stability conditions were derived for important special cases and

in cases when instability occurs the occurrence of Hopf bifurcation was investigated giving the

possibility of the birth of limit cycles. The theoretical results have been illustrated by computer

studies.

Received: April 21, 2008. Revised: May 09, 2008.



CUBO
11, 2 (2009)

Dynamic Oligopolies and Intertemporal Demand Interaction 105

References

[1] Bischi, G., Chiarella, C., Kopel, M. and Szidarovszky, F., Dynamic oligopolies: Sta-

bility and bifurcations., Springer-Verlag, Berlin/Heidelberg/New York (in press), 2009.

[2] Chiarella, C. and Szidarovszky, F., The birth of limit cycles in nonlinear oligopolies with

continuously distributed information lags, In M. Dror, P. L’Ecyer, and F. Szidarovszky, editors,

Modelling Uncertainty, Kluwer Academic Publishers, Dordrecht, (2001), pp. 249–268.

[3] Cournot, A., Recherches sur les principles mathématiques de la théorie de richessess, Ha-
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