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ABSTRACT

The security of telecommunication largely depends on effective and safe coding. National security

as well as the safety of the entire society also depends on how information is exchanged between

government agencies. The security of information can also be guaranteed by a safe and effective

coding system.

A Hamming code is a linear error-correcting code which can detect and correct single-bit errors.

It can also detect, but not correct up to two simultaneous bit errors. For each integer m > 1

there is a code with the parameters {2m − 1, 2m −m− 1, 3}. The factorization of Abelian groups

and the complete factor problem of 2-groups are closely related to the error-correcting Hamming

codes. In this paper we will deal with the Rédei property of 2-groups.

RESUMEN

La seruridad en telecomunicaciones depende ampliamente de efectivos e seguros códigos. La

seguridad nacional bien como la seguridad de la sociedad entera también depende de como la

información es intercambiada entre agencias de govierno. La seguridad de información también

puede ser garantizada por efectivos y seguros códigos.

Un código Hamming es un código linear error-corrección el cual puede detectar y corregir errores

single-bit. Este puede también detectar, pero no corrigir dos errores bit simultaneos. Para todo

entero m > 1 hay un código con los parametros {2m − 1, 2m − m − 1, 3}. La factorización de

grupos abelianos y el problema de factor completo de 2-grupos son relativamente proximos de los

códigos Hamming error-corrector. Este artículo trabaja con la propiedad de Rédei de 2-grupos.
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1 Introduction

Let G be a finite Abelian group, with identity element e. Let A1, . . . , An be given subsets of G. Then

A1 · · ·An = {a1 · · ·an | ai ∈ Ai}

is a factorization of G, if G = A1 · · ·An and each g ∈ G can be uniquely represented in the form a1 · · · an.

A subset A of G is normalized if e ∈ A. The factorization is called normalized if each factor is normalized,.

Let 〈A〉 denote the smallest subgroup of G that contains A. It is called the span of A in G.

If G is a direct product of cyclic groups of order t1, . . . , tn, then the type of G is (t1, . . . , tn). A group of

type (p, . . . , p), where p is prime, is called an elementary-p-group, and the group of type (t1, . . . , tn), where

each ti is a power of p is called a p-group.

In this short paper we will restrict our attention to p-groups.

Definition 1. G has the Rédei property if from each normalized factorization G = AB it follows that either

〈A〉 6= G or 〈B〉 6= G.

In the special case, when G = {e}, G has the Rédei property by definition. The reason is the following.

{e} has only one factorization, namely {e}{e}. In this case 〈A〉 = 〈B〉 = G. In 1970 L. Rédei conjectured if

G = AB is a normalized factorization of G and G is of type (p, p, p), then either 〈A〉 6= G or 〈B〉 6= G. This

was published as problem 5 in [3].

The following facts are known about the Rédei property. Let p be a prime and let Fp be a family of

p-groups whose types are depicted in Table 1 or a subgroup of such a group. Szabó proved in [4], that if G

is a p-group with the Rédei property, then G is a member of the Fp family.

p = 2 (2α
, 2β

, 2, 2) α ≥ 3, β ≥ 2

(2α
, 2, 2, 2, 2, 2) α ≥ 3

(22
, 22

, 2, 2, 2, 2, 2, 2, 2)

p = 3 (3α
, 3β

, 3) α ≥ 2, β ≥ 2

(3α
, 3, 3, 3) α ≥ 2

(3, 3, 3, 3, 3)

p ≥ 5 (pα
, p

β
, p) α ≥ 1, β ≥ 1

Table 1: The Fp family

We will show, that a group of type (4, 4, 2, 2) does not have the Rédei property. As a consequence of

this fact is that the earlier list will change. This is the main result of this paper.
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2 Mathematical Results

Lemma 1. Let G be a group of type (4, 4, 2, 2). Then G has a full-rank factorization.

Proof. Let x1, x2, y1, y2 be a basis of G, where |x1| = |x2| = 4, |y1| = |y2| = 2. Set

A = {e, x1, x2, x1x2y1, x1x2y1, x1x
2
2y1y2, x

2
1x2y1y2, x2y1y2, x

2
1x

2
2y1y2}

and let

B = {e, y2, x1x
2
2y2, x1x

3
2y1, x

2
1x2, x

2
1x

3
2y2, x

3
1x2y1y2, x

3
1x

2
2}.

It can be easily verified, that the product AB is direct. For convenience we exhibited the elements A

and B in Table 2 using only their exponents.

A B

0000 0000

1000 0001

0100 1201

1110 1310

1101 2100

1211 2301

2111 3111

2211 3200

Table 2: Factors A and B

Table 3 summaries the elements of product AB.

Clearly 〈A〉 = 〈B〉 = G. Furthermore

e, x1 ∈ A + x1 ∈ 〈A〉.

e, x2 ∈ A + x2 ∈ 〈A〉.

x1, x2 ∈ 〈A〉 + x1x2y1 ∈ A + y1 ∈ 〈A〉.

x1x2y2 ∈ A, x1, x2 ∈ 〈A〉 + y2 ∈ 〈A〉.

Thus x1, x2, y1, y2 ∈ 〈A〉 and so 〈A〉 = G.

e, y2 ∈ B + y2 ∈ 〈B〉.

x1x
2
2y2, y2 ∈ B + x1x

2
2 ∈ 〈B〉.

x
2
1x2 ∈ B, x1x

2
2 ∈ 〈B〉 + x

3
1x

3
2 ∈ 〈B〉.

x
3
1x

2
2 ∈ B, x2 ∈ 〈B〉 + x2 ∈ 〈B〉.

x1x
2
2, x2 ∈ 〈B〉 + x1 ∈ 〈B〉.

x1x
3
2y1 ∈ B, x1, x2, y2 ∈ 〈B〉 + y1 ∈ 〈B〉.
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0000 0001 1201 1310 2100 2301 3111 3200

0000 0000 0001 1201 1310 2100 2301 3111 3200

1000 1000 1001 2201 2310 3100 3301 0111 0200

0100 0100 0101 1301 1010 2200 2001 3211 3300

1110 1110 1111 2311 20000 3210 3011 0201 0310

1101 1101 1100 2300 2011 3201 3000 0210 0301

1211 1211 1210 2010 2101 3311 3110 0300 0011

2111 2111 2110 3310 3001 0211 0010 1200 1311

2211 2211 2210 3010 3101 0311 0110 1300 1011

Table 3: The product A and B

Similarly, x1, x2, y1, y2 ∈ 〈B〉 and therefore 〈B〉 = G. 2

Notice that the construction in Lemma 1 was accomplised by an exhaustive computer search using D.E.

Knuth [1] dancing links algorithm.

Theorem 1 Let F
′

2 be a family of 2-groups whose types are given in Table 4 or a subgroup of such a group.

If a 2-group G has the Rédei property, then G is a member of the F
′

2 family.

Proof. Let G be a group of type

(2
α(1)

, . . . , 2
α(r)

, 2
β(1)

, . . . , 2
β(s)

, 2
γ(1)

, . . . , 2
γ(t)

),

where

α(1) ≥ · · · ≥ α(r) ≥ 3,

β(1) = · · · = β(s) = 2,

γ(1) = · · · = γ(t) = 1.

(2α
, 2β

, 2) α, β ≥ 2

(2α
, 2, 2, 2, 2, 2) α ≥ 3

(2
2
, 2, 2, 2, 2, 2, 2, 2, 2)

Table 4: The F
′

2 family

Suppose that G has the Rédei property. It is sufficient to shown that G is a member of F
′

2 family. If

r + s ≥ 3, then G has a subgroup H of type (4, 4, 4). Now by [5], H has a full-rank factorization and so by

Theorem 1 in [4] G also has a full-rank factorization. For the remaining part of the the proof we may assume

that 0 ≤ r + s ≤ 2.
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We distinguish between the following cases listed in Table 5.

Case r s t

1 0 0 ≤ 9

2 0 1 ≤ 8

3 0 2 ≤ 1

4 1 0 ≤ 4

5 1 1 ≤ 1

6 2 0 ≤ 1

Table 5: Cases

Case 1 If r = 0, s = 0 and t ≥ 10, then G has a subgroup H of the type (2, ..., 2). By [2], H admits a

full-rank factorization and so does G as well. Thus t ≤ 9 as required

Case 2 If r = 0, s = 1 and t ≥ 9, then G has a subgroup of the type (4,

9
︷ ︸︸ ︷

2, . . . , 2), then G has a subgroup H

of type (

10
︷ ︸︸ ︷

2, . . . , 2). By [2], H has a full-rank factorization so does G as well. Thus t ≤ 8 as required.

Case 3 If r = 0, s = 2 and t ≥ 2, then G has a subgroup of the type (4, 4, 2, 2) which has full-rank

factorization by Lemma 1. So G has a full-rank factorization also. Thus t ≤ 1 as required.

Case 4 If r = 1, s = 0, t ≥ 5, then G has a subgroup of the type (8, 2, 2, 2, 2, 2) and this subgroup has

full-rank factorization by [4]. So G also has a full-rank factorization. Thus t ≤ 4 as required.

Case 5 If r = 1, s = 1, t ≥ 2, then G has a subgroup of the type (4, 4, 2, 2) which has full-rank factorization

by Lemma 1. So G has a full-rank factorization also. Thus t ≤ 1 as required.

Case 6 If r = 2, s = 0, t ≥ 2, then G has a subgroup of the type (8, 8, 2, 2) which has a subgroup of type

(4, 4, 2, 2). Thus G has a full-rank factorization by Lemma 1. Therefore t ≤ 1 is required.

Thus the proof is completed. 2
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