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ABSTRACT

This article addresses boundedness and periodicity of solutions of certain Volterra type

equations. These equations are studied under a set of assumptions on the functions

involved in the equations. The equations will be called almost linear when these as-

sumptions hold.

RESUMEN

Este artículo es concerniente a acotomiento y periocidad de ciertas ecuaciones de tipo

Volterra. Estas ecuaciones son estudiadas bajo un conjunto de condiciones sobre las

funciones envolvidas en las ecuaciones. Las ecuaciones serán llamadas casi lineales

cuando estas condiciones sean válidas.
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1 Introduction.

Consider the following scalar equations:

x(t) = a(t) +

∫ t

0

C(t, s)g(x(s))ds, t ≥ 0, (1.1)

and

x
′
(t) = a(t)h(x(t)) +

∫ t

−∞

C(t, s)g(x(s))ds + p(t), t ∈ (−∞,∞). (1.2)

We assume that the functions h and g are continuous and that there exist positive constants

H , H∗, G, G∗ such that

|h(x) −Hx| ≤ H
∗
, (1.3)

and

|g(x) −Gx| ≤ G
∗
. (1.4)

Equations (1.1) and (1.2) will be called almost linear if (1.3) and (1.4) hold. In [2] Burton in-

troduced this concept of almost linear equations and studied certain important properties of the

resolvent kernel of a linear Volterra equation. Throughout this paper we assume a(t) in (1.1) is

continuous for t ≥ 0, and a(t), p(t) in (1.2) are continuous for −∞ < t < ∞. Also, we assume

that C(t, s) in (1.1) is continuous for 0 ≤ s ≤ t < ∞, and C(t, s) in (1.2) is continuous for

−∞ < s ≤ t <∞.

In Section 2 we obtain the boundedness of solutions of (1.1) using the respective resolvent

kernels. In Section 3 we study (1.2) and show the existence of a periodic solution by employing

Krasnoselskii’s fixed point theorem.

The literature on the resolvent is massive. However, for many interesting results on resolvents

of Volterra integral and integrodifferential equations we refer to [1], [3], [4], [6–8], [10–16], [18] and

[19]. Burton [8] contains a large number of existing studies on the resolvents of Volterra integral

equations which also includes many recent works related to the resolvent. On Krasnoselskii’s fixed

point theorem and it’s application in integral equations we refer the reader to [5], [9] and [17].

2 On Solutions of (1.1).

We rewrite (1.1),

x(t) = a(t) +

∫ t

0

C(t, s)[g(x(s)) −Gx(s)]ds +

∫ t

0

C(t, s)Gx(s)ds. (2.1)

Let

A(t) = a(t) +

∫ t

0

C(t, s)[g(x(s)) −Gx(s)]ds (2.2)
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and

B(t, s) = GC(t, s).

Then (2.1) becomes

x(t) = A(t) +

∫ t

0

B(t, s)x(s)ds. (2.3)

Let R(t, s) be the resolvent kernel associated with (2.3). Then R(t, s) exists and satisfies

R(t, s) = −B(t, s) +

∫ t

s

R(t, u)B(u, s)du. (2.4)

Then any solution x(t) of (2.3) satisfies

x(t) = A(t) −
∫ t

0

R(t, s)A(s)ds. (2.5)

Theorem 2.1 Assume a(t) is bounded for t ≥ 0. Also assume

sup
t≥0

∫ t

0

|C(t, s)|ds <∞, (2.6)

and

sup
t≥0

∫ t

0

|R(t, s)|ds <∞. (2.7)

Then any solution x(t) of (1.1) is bounded.

Proof. From (2.2),using (1.4) and (2.6) we obtain

|A(t)| ≤ |a(t)| +G
∗

∫ t

0

|C(t, s)|ds <∞.

Therefore from (2.5) and (2.7), we get

|x(t)| ≤ |A(t)| +
∫ t

0

|R(t, s)||A(s)|ds <∞.

This concludes the proof of Theorem 2.1.

Assume a′(t) and Ct(t, s) both exist and are continuous. Now differentiating (1.1), one gets

x
′
(t) = a

′
(t) + C(t, t)g(x(t)) +

∫ t

0

Ct(t, s)g(x(s))ds (2.8)

= a
′
(t) + C(t, t)[g(x(t)) −Gx(t)] +

∫ t

0

Ct(t, s)[g(x(s)) −Gx(s)]ds

+C(t, t)Gx(t) +

∫ t

0

Ct(t, s)Gx(s)ds.



118 Muhammad N. Islam And Youssef N. Raffoul CUBO
11, 3 (2009)

Let

F (t) = a
′
(t) + C(t, t)[g(x(t)) −Gx(t)] +

∫ t

0

Ct(t, s)[g(x(s)) −Gx(s)]ds. (2.9)

Then (2.8) becomes

x
′
(t) = GC(t, t)x(t) +

∫ t

0

GCt(t, s)x(s)ds + F (t). (2.10)

Let

B(t, s) = GCt(t, s), A(t) = GC(t, t).

Then (2.10) becomes

x
′
(t) = A(t)x(t) +

∫ t

0

B(t, s)x(s)ds + F (t), x(0) = a(0). (2.11)

Let Z(t, s) be the resolvent kernel associated with (2.11). Then Z(t, s) exists and satisfies

Zs(t, s) = −Z(t, s)A(s) −
∫ t

s

Z(t, u)B(u, s)du, Z(t, t) = 1. (2.12)

Then from the variation of parameters formula, any solution x(t) of (2.11) has the form

x(t) = Z(t, 0)a(0) +

∫ t

0

Z(t, s)F (s)ds. (2.13)

Theorem 2.2 Assume a′(t) is bounded. Also assume

sup
t≥0

∫ t

0

|Ct(t, s)|ds <∞, (2.14)

and

sup
t≥0

∫ t

0

|Z(t, s)|ds <∞. (2.15)

In addition, we assume that |C(t, t)| and |Z(t, 0)| are bounded. Then any solution x(t) of (2.11) is

bounded.

Proof. Applying (1.4) and (2.14) in (2.9), we get

|F (t)| ≤ |a′(t)| + |C(t, t)|G∗
+

∫ t

0

|Ct(t, s)|G∗
ds <∞.

Therefore from (2.13) one obtains

|x(t)| ≤ |Z(t, 0)||a(0)| +
∫ t

0

|Z(t, s)||F (s)|ds <∞.
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This concludes the proof of Theorem 2.2.

Properties in (2.7) and (2.15) are known as integrability properties of resolvent. Conditions to

ensure (2.7) can be found in [11], [14] and [18], and conditions to ensure (2.15) can be found in

[10], [12], [13] and [19].

3 Periodic Solutions of (1.2)

In this section we investigate the existence of a periodic solution of (1.2) using Krasnoselskii’s fixed

point theorem.

We start with a statement of Krasnoselskii’s fixed point theorem.

Theorem Krasnoselskii [17]. Let K be a closed convex non-empty subset of a Banach space M .

Suppose that A and B map K into M such that

(i) x, y ∈ K, implies Ax +By ∈ K,

(ii) A is continuous and AK is contained in a compact subset of M ,

(iii) B is a contraction mapping.

Then there exists z ∈ K with z = Az + Bz.

In this section we assume that

sup
−∞<t<∞

∫ t

−∞

|C(t, s)| ds <∞. (3.1)

For convenience we rewrite (1.2),

x
′
(t) = a(t)h(x(t)) +

∫ t

−∞

C(t, s)g(x(s))ds + p(t), t ∈ (−∞,∞), (3.2)

from which we get

x
′
(t) −Ha(t)x(t) = −Ha(t)x(t) + a(t)h(x(t)) + p(t)

+

∫ t

−∞

C(t, s)
[

g(x(s)) −Gx(s)
]

ds+

∫ t

−∞

C(t, s)Gx(s)ds. (3.3)

Suppose there exists a constant T > 0 such that

a(t+ T ) = a(t), p(t+ T ) = p(t), C(t+ T, s+ T ) = C(t, s). (3.4)
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We assume that
∫ T

0

a(t)dt 6= 0. (3.5)

Let M be the complete metric space of continuous T -periodic functions φ : (−∞,∞) → (−∞,∞)

with the supremum metric. Then, for any positive constant m the set

PT = {f ∈M : ||f || ≤ m}, (3.6)

is a closed convex subset of M. Let

k(t) = p(t) +

∫ t

−∞

C(t, s)
[

g(x(s)) −Gx(s)
]

ds+

∫ t

−∞

C(t, s)Gx(s)ds.

Then we may write (3.3) as

x
′
(t) −Ha(t)x(t) = −Ha(t)x(t) + a(t)h(x(t)) + k(t). (3.7)

Assume (3.4) and (3.5) hold. Multiply both sides of (3.7) with e−H
∫

t

0
a(s)ds and then integrate

both sides from t− T to t, to obtain

x(t)[e
−H

∫

t

t−T
a(s)ds − 1]e

−H
∫

t−T

0
a(s)ds

=

∫ t

t−T

[

−Ha(u)x(u) + a(u)h(x(u)) + k(u)
]

e
−H

∫

u

0
a(s)ds

du.

Now, multiplying both sides by eH
∫

t−T

0
a(s)ds

, we get

x(t)[e
−H

∫

t

t−T
a(s)ds − 1]

=

∫ t

t−T

[

−Ha(u)x(u) + a(u)h(x(u)) + k(u)
]

e
−H

∫

u

t−T
a(s)ds

du.

Due to the periodicity of a(t) we note that e−H
∫

t

t−T
a(s)ds

= e
−H

∫

T

0
a(s)ds

. Substituting k by the

expression given earlier and then dividing by e−H
∫

t

t−T
a(s)ds − 1, we arrive at

x(t) =
1

e
−H

∫

T

0
a(s)ds − 1

{

∫ t

t−T

a(u)[h(x(u)) −Hx(u)]e
−H

∫

u

t−T
a(s)ds

du

+

∫ t

t−T

∫ u

−∞

C(u, s)[g(x(s)) −Gx(s)] ds e
−H

∫

u

t−T
a(s)ds

du

+

∫ t

t−T

∫ u

−∞

C(u, s)Gx(s) ds e
−H

∫

u

t−T
a(s)ds

du

+

∫ t

t−T

p(u)e
−H

∫

u

t−T
a(s)ds

du

}

. (3.8)

Define mappings A and B from PT into M as follows.
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For φ ∈ PT ,

(Aφ)(t) =
1

e
−H

∫

T

0
a(s)ds − 1

{

∫ t

t−T

a(u)[h(φ(u)) −Hφ(u)]e
−H

∫

u

t−T
a(s)ds

du

+

∫ t

t−T

∫ u

−∞

C(u, s)[g(φ(s)) −Gφ(s)] ds e
−H

∫

u

t−T
a(s)ds

du

}

and for ψ ∈ PT ,

(Bψ)(t) =
1

e
−H

∫

T

0
a(s)ds − 1

{

∫ t

t−T

∫ u

−∞

C(u, s)Gψ(s) ds e
−H

∫

u

t−T
a(s)ds

du

+

∫ t

t−T

p(u)e
−H

∫

u

t−T
a(s)ds

du

}

.

It can easily be verified that both (Aφ)(t) and (Bψ)(t) are T -periodic and continuous in t. Assume

sup
−∞<t<∞

∣

∣

1

e
−H

∫

T

0
a(s)ds − 1

∣

∣

∫ t

t−T

∫ u

−∞

|C(u, s)|G ds e
−H

∫

u

t−T
a(s)ds

du ≤ α < 1, (3.9)

and

sup
−∞<t<∞

∣

∣

1

e
−H

∫

T

0
a(s)ds − 1

∣

∣

{

∫ t

t−T

|a(u)|H∗
e
−H

∫

u

t−T
a(s)ds

du

+

∫ t

t−T

∫ u

−∞

G
∗|C(u, s)| ds e−H

∫

u

t−T
a(s)ds

du

}

≤ β <∞. (3.10)

Choose the constant m of (3.6) satisfying

sup
−∞<t<∞

∣

∣

1

e
−H

∫

T

0
a(s)ds − 1

∣

∣

∫ t

t−T

|p(u)|e−H
∫

u

t−T
a(s)ds

du+ αm+ β ≤ m. (3.11)

Lemma 3.1 Assume (3.4), (3.5), (3.9) and (3.11). Then map B is a contraction from PT into PT .

Proof. For φ ∈ PT ,

|(Bφ)(t)| ≤ m
∣

∣

1

e
−H

∫

T

0
a(s)ds − 1

∣

∣

∫ t

t−T

∫ u

−∞

|C(u, s)|G ds e
−H

∫

u

t−T
a(s)ds

du

+
∣

∣

1

e
−H

∫

T

0
a(s)ds − 1

∣

∣

∫ t

t−T

|p(u)|e−H
∫

u

t−T
a(s)ds

du

≤ sup
−∞<t<∞

∣

∣

1

e
−H

∫

T

0
a(s)ds − 1

∣

∣

∫ t

t−T

|p(u)|e−H
∫

u

t−T
a(s)ds

du+ αm

< m.

For φ, ψ ∈ PT , we obtain, using (3.9),

|(Bφ)(t) − (Bψ)(t)| ≤ α||φ − ψ||.
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This proves that B is a contraction mapping from PT into PT .

Lemma 3.2 Assume (1.2), (1.3), (3.1), (3.4), (3.5), (3.10) and (3.11). Then map A from PT into

PT is continuous, and APT is contained in a compact subset of M .

Proof. For any φ ∈ PT , it follows from (3.10) and (3.11) that

|(Aφ)(t)| ≤ β ≤ m. (3.12)

So, A maps from PT into PT , and the set {Aφ} for φ ∈ PT is uniformly bounded. To show that A

is a continuous map, let {φn} be any sequence of functions in PT with ||φn − φ|| → 0 as n → ∞.

Then one can easily verify that

||Aφn −Aφ|| → 0 as n→ ∞.

This proves that A is a continuous mapping.

Now, we will show that the set {Aφ} for φ ∈ PT is equicontinuous by showing that |(Aφ)′(t)|
is bounded. Taking the derivative of (Aφ)(t) and then using (1.3), (1.4) and (3.12) we get

|(Aφ)
′
(t)| ≤ |a(t)||h(φ(t)) −Hφ(t)| + |Ha(t)(Aφ)(t)|

+
∣

∣

e
−H

∫

T

0
a(s)ds

e
−H

∫

T

0
a(s)ds − 1

∫ t

−∞

C(t, s)(g(φ(s)) −Gφ(s))ds

− 1

e
−H

∫

T

0
a(s)ds − 1

∫ t−T

−∞

C(t, s)(g(φ(s)) −Gφ(s))ds
∣

∣

≤ ||a||(H∗
+mH)

+
G

∗

∣

∣e
−H

∫

T

0
a(s)ds − 1

∣

∣

(

1 + e
−H

∫

T

0
a(s)ds

)

∫ t

−∞

|C(t, s)| ds

≤ ||a||(H∗
+mH) + l.

Here we assumed

G
∗

∣

∣e
−H

∫

T

0
a(s)ds − 1

∣

∣

(

1 + e
−H

∫

T

0
a(s)ds

)

∫ t

−∞

|C(t, s)| ds < l <∞

for all t ∈ (−∞,∞). Since a(t) is a bounded function, this shows that the set {Aφ} for φ ∈ PT is

equicontinuous. Therefore, by the Arzela-Ascoli Theorem, APT is contained in a compact subset

of M .

We are now ready to use the fixed point theorem of Krasnoselskii to show the existence of a

continuous T -periodic solution of (3.2).
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Theorem 3.1 Suppose assumptions of Lemmas 3.1 and 3.2 hold. Then (3.2) has a continuous

T -periodic solution.

Proof. For φ, ψ ∈ PT , we get

|(Aφ)(t) + (Bψ)(t)| ≤ sup
t≥0

∣

∣

1

e
−H

∫

T

0
a(s)ds − 1

∣

∣

∫ t

t−T

|p(u)|e−H
∫

u

t−T
a(s)ds

du

+ αm+ β

≤ m.

which proves that Aφ +Bψ ∈ PT .

Therefore, by Krasnoselskii’s theorem there exists a function x(t) in PT such that

x(t) = Ax(t) +Bx(t).

This proves that (3.2) has a continuous T -periodic solution x(t).

Received: August 18, 2008. Revised: October 30, 2008.
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