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ABSTRACT

Existence of eigenvalues yielding positive solutions for a system of two second order

delay differential equations along with boundary conditons is established. The results

are obtained by the use of a Guo-Krasnoselskii fixed point theorem in cones.

RESUMEN

Es establecida la existencia de autovalores produciendo soluciones positivas para un

sistema de dos ecuaciones diferenciales de segundo orden con retardo, con condiciones

de frontera. Los resultados son obtenidos mediante el uso del Teorema de punto fijo de

Guo-Krasnoselskii en conos.



80 J. Henderson, S.K. Ntouyas and I.K. Purnaras CUBO
11, 3 (2009)

Key words and phrases: Three-point boundary value problem, system of differential equations,

eigenvalue problem, positive solutions, deviating arguments.

Math. Subj. Class.: 34B18, 34A34.

1 Introduction

Consider the three-point boundary value problem system consisting of the second order delay

differential equations,

u
′′(t) + λa(t)f (u(σ1(t)), v(σ2(t))) = 0, 0 < t < 1,

v
′′(t) + µb(t)g (u(τ1(t)), v(τ2(t))) = 0, 0 < t < 1,

(1)

along with the conditions,

u(0) = 0, u(1) = αu(η),

v(0) = 0, v(1) = αv(η),

u(t) = φ1(t), v(t) = φ2(t), −r ≤ t ≤ 0,

(2)

where 0 < η < 1, 0 < α < 1/η, −r = mint∈[0,1] σi(t) = mint∈[0,1] τi(t), i = 1, 2, and φ1, φ2 :

[−r, 0] → R
+ are continuous functions, with φ1(0) = φ2(0) = 0. Our interest in this paper is

to investigate the existence of eigenvalues λ and µ that yield positive solutions to the associated

boundary value problem, (1), (2).

We assume that

(A) f, g ∈ C(R+ × R
+
, R

+);

(B) a, b ∈ C([0, 1], R+), and each does not vanish identically on any subinterval;

(C) σi, τi : [0, 1] → [−r, 1], i = 1, 2 are continuous functions;

(D) All of

f0 := lim
u+v→0+

f(u, v)

u + v
, g0 := lim

u+v→0+

g(u, v)

u + v

f∞ := lim
u+v→∞

f(u, v)

u + v
, g∞ := lim

u+v→∞

g(u, v)

u + v

exist as positive real numbers;

(E) There exist an η
∗ ∈ [η, 1] such that σi(s), τi(s) ∈ [η, 1] for all s ∈ [η

∗
, 1], i = 1, 2.

We say that a pair (u, v) ∈ C ([−r, 1]) is a solution of the boundary value problem (BVP for

short) (1), (2) if, u and v are twice continuously differentiable on (0, 1), u(t) = φ1(t), v(t) = φ2(t),
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for −r ≤ t ≤ 0, (u, v) satisfies (1) for all t ∈ (0, 1), and u(0) = 0, u(1) = αu(η) and v(0) = 0, v(1) =

αv(η).

For several years now, there has been a great deal of activity in studying positive solutions

of boundary value problems for ordinary differential equations. Interest in such solutions is high

from both a theoretical sense [4, 7, 10, 13, 20] and as applications for which only positive solutions

are meaningful [1, 5, 14, 15]. These considerations are caste primarily for scalar problems, but

good attention has been given to boundary value problems for systems of differential equations

[11, 12, 17, 19, 21]. The existence of positive solutions for nonlocal three-point boundary value

problems has been studied extensively in recent years. For some appropriate references we refer

the reader to [17], [18].

Recently, Benchohra et al. [2] and Henderson and Ntouyas [8] studied the existence of positive

solutions for systems of nonlinear eigenvalue problems, while Henderson and Ntouyas [9] obtained

results for the case of systems with three-point nonlocal boundary conditions. The purpose of this

paper is to extend the results given in [9] to the case where delays may appear in the equations of

the system (1), (2).

The main tool in this paper is an application of the Guo-Krasnosel’skii fixed point theorem for

operators leaving a Banach space cone invariant [7]. A Green’s function plays a fundamental role

in defining an appropriate operator on a suitable cone. Since, in our problem, we cannot express

system (1), (2) as a single operator equation, the method used for example in [9] is not applicable

here. This difficulty can be overcome by employing a method proposed by Dunninger and Wang

in [3].

2 Some preliminaries

Before we state and prove our main result, we recall some useful facts that will be used in the

sequel.

Concerning the boundary value problem

u
′′
(t) + y(t) = 0, 0 < t < 1, (3)

u(0) = 0, u(1) = αu(η), (4)

we have the following two lemmas.

Lemma 2.1. [6] Let (A), (B) and (C) hold and assume that 0 < η < 1 and 0 < α < 1/η. Then,

for any y ∈ C[0, 1] the BVP (3), (4) has a unique solution,

u(t) =

∫

1

0

k(t, s)y(s)ds, t ∈ [0, 1],
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where k(t, s) : [0, 1] × [0, 1] → R
+ is the Green function defined by

k(t, s) =



















































t(1 − s)

1 − αη
− αt(η − s)

1 − αη
− (t − s), 0 ≤ s ≤ t ≤ 1 and s ≤ η,

t(1 − s)

1 − αη
− αt(η − s)

1 − αη
, 0 ≤ t ≤ s ≤ η,

t(1 − s)

1 − αη
, 0 ≤ t ≤ s ≤ 1 and η ≤ s,

t(1 − s)

1 − αη
− (t − s), η ≤ s ≤ t ≤ 1.

(5)

Lemma 2.2. [16] Let (A), (B) and (C) hold and assume that 0 < α < 1/η. Then, the unique

solution of the problem (3), (4) satisfies

inf
t∈[η,1]

u(t) ≥ γ‖u‖,

where γ := min

{

αη, η,
α(1 − η)

1 − αη

}

.

From Lemma 2.1 and the analytical expression of k, it follows that u can be written as

u(t) =
1

1 − αη

∫

1

0

(1 − s)y(s)ds − αt

1 − αη

∫ η

0

(η − s)y(s)ds −
∫ t

0

(1 − s)y(s)ds

from which it follows that

u(t) ≤ 1

1 − αη

∫

1

0

(1 − s)y(s)ds, for all t ∈ [0, 1], (6)

and

u(η) ≥ η

1 − αη

∫

1

η

(1 − s)y(s)ds. (7)

We note that a pair (u(t), v(t)) is a solution of the eigenvalue problem (1), (2) if, and only if,

u(t) = φ1(t), v(t) = φ2(t) for −r ≤ t ≤ 0, and

u(t) = λ

∫

1

0

k(t, s)a(s)f(u(σ1(s)), v(σ2(s)))ds, 0 ≤ t ≤ 1,

v(t) = µ

∫

1

0

k(t, s)b(s)g(u(τ1(s)), v(τ2(s)))ds, 0 ≤ t ≤ 1.

The main tool in determining values of the parameters λ and µ, for which positive (with

respect to a cone) solutions of the BVP (1), (2) exist, is the following fixed point theorem.

Theorem 2.1. [7] Let B be a Banach space, and let P ⊂ B be a cone in B. Assume Ω1 and Ω2

are open subsets of B with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

T : P ∩ (Ω2 \ Ω1) → P

be a completely continuous operator such that, either
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(i) ||Tu|| ≤ ||u||, u ∈ P ∩ ∂Ω1, and ||Tu|| ≥ ||u||, u ∈ P ∩ ∂Ω2, or

(ii) ||Tu|| ≥ ||u||, u ∈ P ∩ ∂Ω1, and ||Tu|| ≤ ||u||, u ∈ P ∩ ∂Ω2.

Then T has a fixed point in P ∩ (Ω2 \ Ω1).

3 Positive solutions in a cone

In this section, we apply Theorem 2.1 to obtain solutions in a cone (that is, positive solutions) of

(1), (2). For our construction, we let

X = C([−r, 1], R
+
) × C([−r, 1], R

+
)

with norm

‖(u, v)‖ = ‖u‖ + ‖v‖

where ‖u‖ = supt∈[−r,1] |u(t)|. Then (X, ‖ · ‖) is a Banach space. We will make use of the cone

P ⊂ X defined by

P =

{

(u, v) : (u, v) ∈ X : u, v ≥ 0 on [−r, 1], min
t∈[η,1]

[u(t) + v(t)] ≥ γ[‖u‖ + ‖v‖]
}

,

where γ > 0 is the positive constant defined in Lemma 2.2.

For our first result, define positive numbers L1 and L2 by

L1 := max

{

1

2

[

γη

1 − αη

∫

1

η∗
(1 − r)a(r)f∞dr

]−1

,
1

2

[

γη

1 − αη

∫

1

η∗
(1 − r)b(r)g∞dr

]−1
}

,

and

L2 := min

{

1

2

[

1

1 − αη

∫

1

0

(1 − r)a(r)f0dr

]−1

,
1

2

[

1

1 − αη

∫

1

0

(1 − r)b(r)g0dr

]−1
}

.

Theorem 3.1. Assume that conditions (A), (B), (C), (D) and (E) hold. Then, for each λ, µ

satisfying

L1 < λ, µ < L2, (8)

there exists a pair (u, v) satisfying (1), (2) such that u(t) > 0 and v(t) > 0 on (0, 1).

Proof. Let A, B : X → X and F : X → X be the integral operators defined by

A(u, v)(t) =















φ1(t), −r ≤ t ≤ 0,

λ

∫

1

0

k(t, s)a(s)f (u(σ1(s)), v(σ2(s))) ds, 0 ≤ t ≤ 1,



84 J. Henderson, S.K. Ntouyas and I.K. Purnaras CUBO
11, 3 (2009)

B(u, v)(t) =















φ2(t), −r ≤ t ≤ 0,

µ

∫

1

0

k(t, s)b(s)g (u(τ1(s)), v(τ2(s))) ds, 0 ≤ t ≤ 1,

F (u, v)(t) = (A(u, v)(t), B(u, v)(t)) , t ∈ [−r, 1].

Then seeking solutions to our BVP (1), (2) is equivalent to looking for fixed points of the equation

F (u, v) = (u, v)

in the Banach space X.

Choose some (u, v) ∈ P . Then by Lemma 2.2 we have

inf
t∈[η,1]

A(u, v)(t) ≥ γ‖A(u, v)‖, inf
t∈[η,1]

B(u, v)(t) ≥ γ‖B(u, v)‖

and thus

inf
t∈[η,1]

[A(u, v)(t) + B(u, v)(t)] ≥ inf
t∈[η,1]

A(u, v)(t) + inf
t∈[η,1]

B(u, v)(t)

≥ γ [‖A(u, v)‖ + ‖B(u, v)||]
= γ‖(A(u, v), B(u, v)‖

which implies that F (P) ⊂ P for every (u, v) ∈ P .

As A and B are integral operators, it is not difficult to see that using standard arguments we

may conclude that both A and B are completely continuous; hence F is a completely continuous

operator.

Let λ and µ be as in (8), and choose an ǫ > 0 such that

max

{

1

2

[

γη

1 − αη

∫

1

η

(1 − r)a(r)(f∞ − ǫ)dr

]−1

,

1

2

[

γη

1 − αη

∫

1

η

(1 − r)b(r)(g∞ − ǫ)dr

]−1
}

≤ λ, µ

and

λ, µ ≤ min

{

1

2

[

1

1 − αη

∫

1

0

(1 − r)a(r)(f0 + ǫ)dr

]−1

,

1

2

[

1

1 − αη

∫

1

0

(1 − r)b(r)(g0 + ǫ)dr

]−1
}

.

From the definition of f0 and g0, there exists an H1 > 0 such that

f(u, v) ≤ (f0 + ǫ)(u + v) for u, v ∈ P with 0 < u, v < H1,
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and

g(u, v) ≤ (g0 + ǫ)(u + v) for u, v ∈ P with 0 < u, v < H1.

Set

Ω1 = {(u, v) ∈ X : ‖(u, v)‖ < H1} .

Now let (u, v) ∈ P ∩ ∂Ω1, i.e., let (u, v) ∈ P with ‖ (u, v) ‖ = H1.

Then, in view of the inequality (6) we have

A(u, v)(t) ≤ λ
t

1 − αη

∫

1

0

(1 − s)a(s)f (u(σ1(s), v(σ2(s))) ds

≤ λ
1

1 − αη

∫

1

0

(1 − s)a(s)(f0 + ǫ) [u(σ1(s) + v(σ2(s))] ds

≤ λ
1

1 − αη

∫

1

0

(1 − s)a(s)(f0 + ǫ)[‖u‖ + ‖v‖]ds

≤ 1

2
[‖u‖ + ‖v‖]

=
1

2
‖(u, v)‖,

and so,

‖A(u, v)‖ ≤ 1

2
‖(u, v)‖.

Similarily, we may take

‖B(u, v)‖ ≤ 1

2
‖(u, v)‖.

Thus, for (u, v) ∈ P ∩ ∂Ω1 it follows that

‖F (u, v)‖ = ‖ (A(u, v), B(u, v)) ‖ = ‖A(u, v)‖ + ‖B(u, v)‖

≤ 1

2
‖(u, v)‖ +

1

2
‖(u, v)‖ = ‖(u, v)‖,

that is,

‖F (u, v)‖ ≤ ‖(u, v)‖ for all (u, v) ∈ P ∩ ∂Ω1.

Due to the definition of f∞ and g∞, there exists an H2 > 0 such that

f(u, v) ≥ (f∞ − ǫ)(u + v) for all u, v ≥ H2,

and

g(u, v) ≥ (g∞ − ǫ)(u + v) for all u, v ≥ H2.

Set

H2 = max

{

2H1,
H2

γ

}

and define

Ω2 = {(u, v) ∈ X : ‖(u, v)‖ < H2} .
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As from our hypothesis on η
∗ it follows that

inf
t∈[η∗,1]

[u(σ1(t)) + v(σ2(t))] ≥ γ[‖u‖ + ‖v‖]. (9)

By the use of (7), we have for (u, v) ∈ P ∩ ∂Ω2,

A(u, v)(η) ≥ λ
η

1 − αη

∫

1

η

(1 − s)a(s)f (u(σ1(s)), v(σ2(s))) ds

≥ λ
η

1 − αη

∫

1

η∗
(1 − s)a(s)(f∞ − ǫ) (u(σ1(s)) + v(σ2(s))) ds

≥ λ
η

1 − αη

∫

1

η∗
(1 − s)a(s)(f∞ − ǫ)γ[‖u‖ + ‖v‖]ds

≥ 1

2
‖(u, v)‖,

that is,

A(u, v)(t) ≥ 1

2
‖(u, v)‖ for all t ≥ η

and so,

A(u, v)(t) ≥ 1

2
‖(u, v)‖.

Similarily, we may take

B(u, v)(t) ≥ 1

2
‖(u, v)‖.

Thus, for (u, v) ∈ P ∩ ∂Ω2 it follows that

‖F (u, v)‖ = ‖ (A(u, v), B(u, v)) ‖ = ‖A(u, v)‖ + ‖B(u, v)‖

≥ 1

2
‖(u, v)‖ +

1

2
‖(u, v)‖ = ‖(u, v)‖,

that is

‖F (u, v)‖ ≥ ‖(u, v)‖ for all (u, v) ∈ P ∩ ∂Ω2.

Applying Theorem 2.1, we obtain that F has a fixed point (u, v) ∈ P ∩ (Ω2 \ Ω1) such that

H1 ≤ ‖(u, v)‖ ≤ H2, and so (1), (2) has a positive solution. The proof is complete. �

For our next result we define the positive numbers

L3 = max

{

1

2

[

γη

1 − αη

∫

1

η∗
(1 − s)a(s)f0ds

]−1

,
1

2

[

γη

1 − αη

∫

1

η∗
(1 − s)b(s)g0ds

]−1
}

and

L4 = min

{

1

2

[

1

1 − αη

∫

1

0

(1 − s)a(s)f∞dr

]−1

,
1

2

[

1

1 − αη

∫

1

0

(1 − s)b(s)g∞dr

]−1
}

.

We are now ready to state and prove our main result.
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Theorem 3.2. Assume that conditions (A), (B), (C), (D) and (E) hold. Then for each λ, µ

satisfying

L3 < λ, µ < L4, (10)

there exists a pair (u, v) satisfying (1), (2) such that u(t) > 0 and v(t) > 0 on (0, 1).

Proof. Let λ and µ be as in (10) and choose a sufficiently small ǫ > 0 so that

λ, µ ≤ min

{

1

2

[

1

1 − αη

∫

1

0

(1 − s)a(s)(f∞ + ǫ)ds

]−1

,

1

2

[

1

1 − αη

∫

1

0

(1 − s)b(s)(g∞ + ǫ)ds

]−1
}

and

max

{

1

2

[

γη

1 − αη

∫

1

η∗
(1 − s)a(s)(f0 − ǫ)dr

]−1

,

1

2

[

γη

1 − αη

∫

1

η∗
(1 − s)b(s)(g0 − ǫ)dr

]−1
}

≤ λ, µ.

By the definition of f0 and g0, there exists an H1 > 0 such that

f(u, v) ≥ (f0 − ǫ)(u + v) for all u, v with 0 < u, v ≤ H3,

and

g(u, v) ≥ (g0 − ǫ)(u + v) for all u, v with 0 < u, v ≤ H3.

Set

Ω1 = {(x, y) ∈ X : ‖(x, y)‖ < H3}

and let (u, v) ∈ P ∩ ∂Ω3.

In view of (9) and by the use of (7), we find

A(u, v)(η) ≥ λ
η

1 − αη

∫

1

η

(1 − s)a(s)f (u(σ1(s)), v(σ2(s))) ds

≥ λ
η

1 − αη

∫

1

η∗
(1 − s)a(s)f (u(σ1(s)), v(σ2(s))) ds

≥ λ
η

1 − αη

∫

1

η∗
(1 − s)a(s)(f0 − ǫ) (u(σ1(s)) + v(σ2(s))) ds

≥ λ
η

1 − αη

∫

1

η∗
(1 − s)a(s)(f0 − ǫ)γ[‖u‖+ ‖v‖]ds

≥ 1

2
‖(u, v)‖,
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that is,

‖A(u, v)‖ ≥ 1

2
‖(u, v)‖.

In a similar manner

‖B(u, v)‖ ≥ 1

2
‖(u, v)‖.

Thus, for an arbitrary (u, v) ∈ P ∩ ∂Ω3 it follows that

‖F (u, v) ‖ = ‖ (A (u, v) , B (u, v)) ‖ = ‖A (u, v) ‖ + ‖B (u, v) ‖

≥ 1

2
‖ (u, v) ‖ +

1

2
‖ (u, v) ‖ = ‖(u, v)‖,

and so

‖F (u, v) ‖ ≥ ‖(u, v)‖ for all (u, v) ∈ P ∩ ∂Ω3.

Now let us define two functions f
∗
, g

∗ : [0,∞) → [0,∞) by

f
∗
(t) = max

0≤u+v≤t
f(u, v) and g

∗
(t) = max

0≤u+v≤t
g(u, v).

It follows that

f(u, v) ≤ f
∗
(t) and g(u, v) ≤ g

∗
(t) for all (u, v) with 0 ≤ u + v ≤ t.

It is clear that the functions f
∗ and g

∗ are nondecreasing. Also, there is no difficulty to see that

lim
t→∞

f
∗(t)

t
= f∞ and lim

t→∞

g
∗(t)

t
= g∞.

In view of the definitions of f∞ and g∞, there exists an H4 such that

f
∗
(t) < (f∞ + ε) t for all t ≥ H4,

and

g
∗
(t) < (g∞ + ε) t for all t ≥ H4.

Set

H4 = max

{

2H3,
H4

γ

}

,

and

Ω4 = {(u, v) : (u, v) ∈ P and ‖(u, v)‖ < H4} .

Let (u, v) ∈ P ∩∂H4 and observe that, by the definition of f
∗, it follows that for any s ∈ [0, 1],

we have

f (u(σ1(s)), v(σ2(s))) ≤ f
∗
(‖u‖ + ‖v‖) = f

∗
(‖(u, v)‖) .
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In view of the above observation and by the use of inequality (6) we obtain for t ∈ [0, 1]

A (u, v) (t) ≤ λ
t

1 − αη

∫

1

0

(1 − s)a(s)f (u(σ1(s)), v(σ2(s))) ds

≤ λ
t

1 − αη

∫

1

0

(1 − s)a(s)f
∗
(‖u‖ + ‖v‖) ds

≤ λ
t

1 − αη

∫

1

0

(1 − s)a(s)(f∞ + ε) (‖u‖ + ‖v‖) dr

≤ λ
1

1 − αη

∫

1

0

(1 − s)a(s)(f∞ + ε)dr ‖(u, v)‖

≤ 1

2
‖(u, v)‖ ,

which implies

‖A (u, v)‖ ≤ 1

2
‖(u, v)‖ .

In a similar manner, we take

‖B (u, v) ‖ ≤ 1

2
‖ (u, v) ‖.

Thus, for (u, v) ∈ P ∩ ∂Ω4 it follows that

‖F (u, v)‖ = ‖ (A (u, v) , B (u, v)) ‖ = ‖A (u, v) ‖ + ‖B (u, v) ‖

≤ 1

2
‖ (u, v) ‖ +

1

2
‖ (u, v) ‖ = ‖(u, v)‖,

and so

‖F (u, v)‖ ≤ ‖(u, v)‖ for all (u, v) ∈ P ∩ ∂Ω4

Applying Theorem 2.1, we obtain that F has a fixed point (u, v) ∈ P ∩ (Ω4 \ Ω3) such that

H3 ≤ ‖(u, v)‖ ≤ H4, and so (1), (2) has a positive solution. The proof is complete. �

4 A General Application

In this section we apply Theorems 3.1 and 3.2 to the case where each one of the functions f and

g is the sum of two (nonlinear) functions of a single argument, i.e., we consider the three-point

boundary value system

u
′′
(t) + λa(t)[ ˜f1 (u(σ1(t))) + ˜f2 (v(σ2(t)))] = 0, 0 < t < 1,

v
′′(t) + µb(t) [g̃1 (u(τ1(t))) + g̃2 (v(τ2(t)))] = 0, 0 < t < 1,

(11)

u(0) = 0, u(1) = αu(η),

v(0) = 0, v(1) = αv(η),

u(t) = φ1(t), v(t) = φ2(t), −r ≤ t ≤ 0,

(12)
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where 0 < η < 1, 0 < α < 1/η, r is a positive number, φ1, φ2 : [−r, 0] → R
+, with φ1(0) = φ2(0) =

0 and σi, τi : [0, 1] → [−r, 1], i = 1, 2 are continuous functions.

We assume that

(A1) ˜fi, g̃i ∈ C([0,∞), [0,∞)), i = 1, 2;

(B1) a, b ∈ C([0, 1], [0,∞)) and each function does not vanish on any subinterval of [0, 1];

(C1) All of

˜f0 := lim
t→0+

˜fi(t)

t
, ˜f∞ := lim

t→∞

˜f(t)

t
, i = 1, 2,

g̃0 := lim
t→0+

g̃i(t)

t
, g̃∞ := lim

t→∞

g̃i(t)

t
, i = 1, 2

exist as positive real numbers.

We say that a pair (u, v) ∈ C ([−r, 1]) is a solution of the BVP (11), (12) if

(i) u(t) = φ1(t), v(t) = φ2(t), for −r ≤ t ≤ 0,

(ii) (u, v) satisfies (11) for all t ∈ (0, 1), and

(iii) u(0) = v(0) = 0, u(1) = αu(η) and v(1) = αv(η).

Before we state our existence results for the BVP (11), (12), we prove an elementary lemma.

Lemma 4.1. Let hi : [0,∞) → [0,∞), i = 1, 2 be continuous functions for which

lim
t→0+

hi(t)

t
= k ∈ (0,∞) and lim

t→∞

hi(t)

t
= m ∈ (0,∞) , i = 1, 2.

Then for the function ̂h : [0,∞) × [0,∞) → [0,∞) with ̂h (u, v) = h1(u) + h2(v), it holds that

lim
u+v→0+

̂h(u, v)

u + v
= k and lim

u+v→∞

̂h(u, v)

u + v
= m.

Proof. By lim
t→0+

hi(t)

t
= k, i = 1, 2 for an arbitrary ε > 0, there exists a δ > 0 such that

(k − ε)u ≤ h1(u) ≤ (k + ε)u for all u ∈ (0, δ) ,

(k − ε) v ≤ h2(v) ≤ (k + ε) v for all v ∈ (0, δ) ,

and so, for any (u, v) with u, v ∈
(

0,
δ
2

)

, we have

k − ε =
(k − ε)u + (k − ε) v

u + v
≤

̂h(u, v)

u + v
=

h1(u) + h2(v)

u + v

≤ (k + ε)u + (k + ε) v

u + v
= k + ε,
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i.e., it holds that
∣

∣

∣

∣

∣

̂h(u, v)

u + v
− k

∣

∣

∣

∣

∣

≤ ε for any u, v > 0 with u + v < δ

which implies that

lim
u+v→0+

̂h(u, v)

u + v
= k.

Now let us assume that lim
t→∞

hi(t)

t
= m ∈ (0,∞) , i = 1, 2. It follows that, for an arbitrarily

small ε > 0, there exists an M0 > 0 such that

(m − ε)u ≤ h1(u) ≤ (m + ε)u, for all u > M0,

(m − ε) v ≤ h2(v) ≤ (m + ε) v, for all v > Mo.

Let u, v ≥ 0 with u + v > 2M0. Then either u > M0 and v > M0 or one of u, v is greater than M0

while the other is less than M0.

If u > M0 and v > M0, then by the last two inequalities we have

m − ε =
(m − ε)u + (m − ε) v

u + v
≤

̂h(u, v)

u + v
=

h1(u) + h2(v)

u + v

≤ (m + ε)u + (m + ε) v

u + v
= m + ε,

which implies that
∣

∣

∣

∣

∣

̂h(u, v)

u + v
− m

∣

∣

∣

∣

∣

≤ ε for any u, v ≥ 0 with u > M0 and v > M0. (13)

Now let us deal with the case that one of the arguments u and v is less than M0 and the

other one is (necessarily) greater that M0. We consider only the case u ≤ M0 and v > M0, as the

conclusion for the dual case u > M0 and v ≤ M0 follows by similar arguments.

Set M
∗ = supu∈[0,M ]

h1(u). Then, as lim
v→∞

M
∗

v
= 0 and lim

v→∞

mv

M0 + v
= m, and limv→∞

h2(v)

v =

m we may consider an M > 2M0 such that

M
∗

v
<

ε

2
and m − ε <

mv

M0 + v
and

h2(v)

v
<

ε

2
+ m.

Then for any u, v ≥ 0 with u ≤ M0 and v > M , we find

m − ε ≤ mv

M0 + v
≤

̂h(u, v)

u + v
=

h1(u) + h2(v)

u + v
≤ M

∗ + h2(v)

v
≤ ε + m,

which implies that
∣

∣

∣

∣

∣

̂h(u, v)

u + v
− m

∣

∣

∣

∣

∣

≤ ε for any u, v ≥ 0 with u ≤ M0, v > M. (14)
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In view of (13) and (14) we see that for any arbitrarily small positive real number ε, we can always

find an M > 0 such that
∣

∣

∣

∣

∣

̂h(u, v)

u + v
− m

∣

∣

∣

∣

∣

≤ ε for any u, v > 0 with u + v > 2M.

Consequently, it holds

lim
u+v→∞

̂h(u, v)

u + v
= m,

which completes the proof of the lemma. �

Applying our main results to the case of the BVP (11), (12), we obtain the following two

theorems.

Theorem 4.1. Assume that conditions (A1), (B1), (C1), (C) and (E) hold. Then, for any λ, µ

satisfiyng

L1 < λ, µ < L2, (15)

the BVP (11), (12) has at least one solution (u, v) such that u(t) > 0 and v(t) > 0 on (0, 1), where

we have set

L1 = max

{

1

2

[

γη

1 − αη

∫

1

η∗
(1 − r) a(r) ˜f∞dr

]−1

,
1

2

[

γη

1 − αη

∫

1

η∗
(1 − r) b(r)g̃∞dr

]−1
}

and

L2 = min

{

1

2

[

1

1 − αη

∫

1

0

(1 − r) a(r) ˜f0dr

]−1

,
1

2

[

1

1 − αη

∫

1

0

(1 − r) b(r)g̃0dr

]−1
}

.

Theorem 4.2. Assume that conditions (A1), (B1), (C1), (C) and (E) hold. Then, for any λ, µ

satisfiyng

L3 < λ, µ < L4, (16)

there exists a pair (u, v) satisfying the BVP (11), (12) such that u(t) > 0 and v(t) > 0 on (0, 1),

where

L3 = max

{

1

2

[

γη

1 − αη

∫

1

η∗
(1 − s)a(s) ˜f0ds

]−1

,

1

2

[

γη

1 − αη

∫

1

η∗
(1 − s)b(s)g̃0ds

]−1
}

and

L4 = min

{

1

2

[

1

1 − αη

∫

1

0

(1 − s)a(s) ˜f∞dr

]−1

,

1

2

[

1

1 − αη

∫

1

0

(1 − s)b(s)g̃∞dr

]−1
}

.
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5 Examples

In this section, we present some examples that illustrate the breadth of our results. In particular,

we give two examples, from which the first one concerns our general application while the second

one concerns Theorems 3.1 and 3.2.

Example 5.1. For the sake of simplicity, we assume that a = b, f1 = f2 and g1 = g2, σ1 = σ2,

τ1 = τ2, i.e., we consider the BVP

u
′′(t) + λa(t)[ ˜f (u(σ(t))) + ˜f (v(σ(t)))] = 0, 0 < t < 1,

v
′′
(t) + µa(t) [g̃ (u(τ(t))) + g̃ (v(τ(t)))] = 0, 0 < t < 1,

(17)

u(0) = 0, u(1) = 2u
(

1

3

)

,

v(0) = 0, v(1) = 2v
(

1

3

)

,

u(t) = φ1(t), v(t) = φ2(t), −r ≤ t ≤ 0,

(18)

where

˜f(t) = p1(t) + q1 sin (t), t ∈ R,

g̃(t) = p2(t) + q2 sin (t), t ∈ R,

with pi, pi + qi > 0, i = 1, 2, φ1, φ2 : [−r, 0] → R
+, and σ, τ : [0, 1] → [− 1

4
, 1] are given by

σ(t) =























√
t, t ∈ [0, 1/4] ,

1

2
, t ∈ [1/4, 1/2] ,

t, t ∈ [1/2, 3/4] ,

1

2

(

t +
3

4

)

, t ∈ [3/4, 1] ,

and

τ(t) = t − 1

4
, t ∈ [0, 1].

It is not difficult to see that the argument σ is advanced on the interval [0, 1/4] (nonconstant

on [0, 1/4] and constant on [1/4, 1/2]), retarded on the interval [3/4, 1] while neither retarded nor

advanced on the interval [1/4, 1/2].

By the definition of ˜f and g̃ we may verify that

˜f∞ = p1, g̃∞ = p2,
˜f0 = p1 + q1 g̃0 = p2 + q2.

As α = 2 and η =
1

3
we find

γ := min

{

αη, η,
α(1 − η)

1 − αη

}

= min

{

2

3
,
1

3
,
2

(

1 − 1

3

)

1 − 2

3

}

=
1

3
.
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Note that σ(t) ≥ η =
1

3
, for all t ∈

[

1

9
, 1

]

, while τ(t) = t − 1

4
≥ η =

1

3
, for all t ∈

[

7

12
, 1

]

, and so

η
∗

=
7

12
.

Thus

γη

1 − αη

∫

1

η∗
(1 − r) a(r) ˜f∞dr =

1

3
· 1

3

1 − 2

3

∫

1

7

12

(1 − r) a(r)p1dr =
1

3
p1

∫

1

7

12

(1 − r) a(r)dr

and
γη

1 − αη

∫

1

η∗
(1 − r) b(r)g̃∞dr =

1

3
p2

∫

1

7

12

(1 − r) a(r)dr.

Hence

L1 = max







1

2

[

1

3
p1

∫

1

7

12

(1 − r) a(r)dr

]

−1

,
1

2

[

1

3
p2

∫

1

7

12

(1 − r) a(r)dr

]

−1






=
3

2 min {p1, p2}
∫

1

7

12

(1 − r) a(r)dr

and

L2 = min

{

1

2

[

1

1 − αη

∫

1

0

(1 − r) a(r) ˜f0dr

]−1

,
1

2

[

1

1 − αη

∫

1

0

(1 − r) a(r)g̃0dr

]−1
}

=
1

6
min

{

[
∫

1

0

(1 − r) a(r) (p1 + q1) dr

]−1

,

[
∫

1

0

(1 − r) a(r) (p2 + q2) dr

]−1
}

=
1

6 max{p1 + q1, p2 + q2}
∫

1

0

(1 − r) a(r)dr

.

Therefore, assuming that p1, q1, p2, q2 have been chosen so that

3

2
< min {p1, p2}

∫

1

7

12

(1 − r) a(r)dr

and

9 max {p1 + q1, p2 + q2}
∫

1

0

(1 − r) a(r)dr < min {p1, p2}
∫

1

7

12

(1 − r) a(r)dr,

it follows that L1 < L2, and from Theorem 4.1, we derive that, for any λ, µ satisfiyng

L1 < λ, µ < L2,

the BVP (17), (18) has at least one solution (u, v) such that u(t) > 0 and v(t) > 0 on (0, 1).
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Example 5.2. Consider the BVP

u
′′(t) + λa(t)f (u(σ(t)), v(σ(t))) = 0, 0 < t < 1,

v
′′(t) + µb(t)g (u(τ(t)), v(τ(t))) = 0, 0 < t < 1,

(19)

u(0) = 0, u(1) = 2u

(

1

3

)

,

v(0) = 0, v(1) = 2v

(

1

3

)

,

u(t) = φ1(t), v(t) = φ2(t), −1 ≤ t ≤ 0,

(20)

where φ1, φ2 : [−1, 0] → R
+ with φ1(0) = 0 = φ2(0), and σ, τ : [0, 1] → [−1, 1] are given by

σ(t) =







− sin (3πt) , t ∈ [0, 1/3] ,

9

4

(

−t
2
+ 2t − 5

9

)

, t ∈ [1/3, 1],

and

τ(t) =
√

t, t ∈ [0, 1].

As α = 2 and η =
1

3
, we find

γ := min

{

αη, η,
α(1 − η)

1 − αη

}

= min

{

2

3
,
1

3
,
2

(

1 − 1

3

)

1 − 2

3

}

=
1

3
.

Since σ(t) ≥ η =
1

3
is equivalent to

9

4

(

−t
2

+ 2t− 5

9

)

≥ 1

3
,

from which

σ(t) ≥ 1

3
for all t ∈

[

1 − 2

3

√

2

3
, 1

]

,

while τ(t) =
√

t ≥ η =
1

3
, for all t ∈

[

1

9
, 1

]

, we conclude that

η
∗

= 1 − 2

3

√

2

3
.

We mention that the argument τ is advanced while the argument σ is retarded on

[

0,
5

9

]

and

delayed on

[

5

9
, 1

]

.
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Now we calculate the positive numbers L3 and L4. As in Example 5.1, we have α = 2, η =
1

3

and γ =
1

3
as well as

γη

1 − αη
=

1

3
and

1

1 − αη
= 3. We find

L3 =
3

2 min

{

∫

1

1−
2

3

√
2

3

(1 − s)a(s) ˜f0ds,

∫

1

1−
2

3

√
2

3

(1 − s)b(s)g̃0ds

}

and

L4 = min



















1,
1

6 max

{
∫

1

0

(1 − s)a(s) ˜f∞dr,

∫

1

0

(1 − s)b(s)g̃∞dr

}



















.

Applying Theorem 4.1, we find that if

3

2
< min

{

∫

1

1−
2

3

√
2

3

(1 − s)a(s) ˜f0ds,

∫

1

1−
2

3

√
2

3

(1 − s)b(s)g̃0ds

}

and

9 max

{
∫

1

0

(1 − s)a(s) ˜f∞dr,

∫

1

0

(1 − s)b(s)g̃∞dr

}

< min

{

∫

1

1−
2

3

√
2

3

(1 − s)a(s) ˜f0ds,

∫

1

1−
2

3

√
2

3

(1 − s)b(s)g̃0ds

}

,

then for any λ, µ satisfiyng

L3 < λ, µ < L4,

there exists a pair (u, v) satisfying the BVP (19), (20) such that u(t) > 0 and v(t) > 0 on (0, 1).

6 Remarks

(1) Similar results to those of Theorems 3.1 and 3.2 can be proved for the following system of

two point boundary value problems with deviating arguments

u
′′(t) + λa(t)f (u(σ1(t)), v(σ2(t))) = 0, 0 < t < 1,

v
′′(t) + µb(t)g (u(τ1(t)), v(τ2(t))) = 0, 0 < t < 1,

(21)

αu(0) − βu
′
(0) = 0, γu(1) + δu

′
(1) = 0,

αv(0) − βv
′(0) = 0, γv(1) + δv

′(1) = 0,

u(t) = φ1(t), v(t) = φ2(t), −r ≤ t ≤ 0,

(22)

where α, β, γ, δ ≥ 0 with α + β + γ + δ > 0, ρ = γβ + αγ + αδ > 0.
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(2) Nondecreasingness may be used to give a sufficient condition that yields the existence of a

positive number η
∗ such as the one described in Theorem 3.1. It is not difficult to see that, if

σi(t) ≤ t, τi(t) ≤ t, for all t ∈ [0, 1], σi and τi are nondecreasing and τi(1) > η, σi(1) > η, then

there always exists an η
∗ ∈ [η, 1] such that mins∈[η∗,1] {σi(s)} ∈ [η, 1], mins∈[η∗,1] {τi(s)} ∈

[η, 1], i = 1, 2.

(3) A requirement equivalent to the one in Theorems 3.1 and 3.2 is the following: there exists

an η
∗ ∈ [η, 1] such that mins∈[η∗,1] {σi(s)} ∈ [η, 1], mins∈[η∗,1] {τi(s)} ∈ [η, 1], i = 1, 2.

(4) In the case of advanced arguments σi(t) > t, τi(t) > t for all t ∈ [0, 1], i = 1, 2, inequality (9)

also holds, since

inf
t∈[η,1]

u(σ(t)) ≥ inf
t∈[η,1]

u(t) ≥ γ‖u‖.

Consequently we can deduce similar results to those of Theorems 3.1 and 3.2 for the case of

advanced arguments.

(5) We can easily find necessary conditions in order to have L1 < L2 and L3 < L4. For example,

L1 < L2 gives

max

{

[
∫

1

η∗
(1 − r) a(r)f∞dr

]−1

,

[
∫

1

η∗
(1 − r) b(r)g∞dr

]−1
}

< γη min

{

[
∫

1

0

(1 − r) a(r)f0dr

]−1

,

[
∫

1

0

(1 − r) b(r)g0dr

]−1
}

and

1

min

{
∫

1

η∗
(1 − r) a(r)f∞dr,

∫

1

η∗
(1 − r) b(r)g∞dr

}

<
γη

max

{
∫

1

0

(1 − r) a(r)f0dr,

∫

1

0

(1 − r) b(r)g0dr

}

or

(i) max

{
∫

1

0

(1 − r) a(r)f0dr,

∫

1

0

(1 − r) b(r)g0dr

}

< γη min

{
∫

1

η∗
(1 − r) a(r)f∞dr,

∫

1

η∗
(1 − r) b(r)g∞dr

}

.

In a similar manner from L3 < L4 it follows that

(ii) max

{
∫

1

0

(1 − s)a(s)f∞dr,

∫

1

0

(1 − s)b(s)g∞dr

}

< γη min

{
∫

1

η∗
(1 − s)a(s)f0ds,

∫

1

η∗
(1 − s)b(s)g0ds

}

.
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In order that (i) holds, it is necessary that

∫

1

0

(1 − r) b(r)g0dr < γη

∫

1

η∗
(1 − r) b(r)g∞dr

1 <

∫

1

0
(1 − r) b(r)dr

∫

1

η∗
(1 − r) b(r)dr

< γη
g∞

g0

,

and similarly, we take

1 <

∫

1

0
(1 − r) a(r)dr

∫

1

η∗
(1 − r) a(r)dr

< γη
f∞

f0

.

From these relations it follows that

1

η2
≤ 1

γη
<

g∞

g0

,
f∞

f0

which gives a (first) estimation of the bound for η, i.e.,

√

g0

g∞
,

√

f0

f∞
< η ≤ 1.

Clearly, from the above necessary inequalities it follows that:

I) At most one of Theorems 3.1 and 3.2 may be applicable.

II) It is possible that both Theorems 3.1 and 3.2 may fail as both L1 < L2 and L3 < L4

may not be satisfied: if f∞ = g∞ = f0 = f0, then by the last inequality above, neither

(i) nor (ii) holds.

Sufficient conditions so that (i) or (ii) hold may be easily obtained in terms of g∞, g0 f∞,

f0, a, b, η.

Received: November 8, 2007. Revised: April 29, 2008.
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