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ABSTRACT

We study Eisenstein functions and scattering operator on geometrically finite hyperbolic man-
ifolds with infinite volume and ‘rational’ non-maximal rank cusps. For both we prove the
meromorphic extension and we show that the scattering operator belongs to a certain class of
pseudo-differential operators on the conformal infinity which is a manifold with fibred bound-
aries.

RESUMEN

Estudiamos funciones de Eisenstein y el operador de dispersiéon sobre variedades hiperbolicas
geometricamente finitas con volumen infinito y puntas de rango no maximos racionales. Para
ambos probamos las extensiones meromorficas y mostramos que el operador de dispersion
pertence a cierta clase de operadores pseudo-diferenciales sobre la variedade conforme infinita
con fibrados en la frontera.
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1 Introduction and Results

The purpose of this work is to study the Eisenstein functions and scattering operator on a class of
geometrically finite hyperbolic quotients I'\H" ™! with non-maximal rank cusps.

Such problems involving spectral and scattering theory on geometrically finite hyperbolic
quotients have been studied probably since Selberg and lead to many important results. However,
most of the results known are obtained when the group has no parabolic subgroups of non-maximal
rank, in other words when the quotient X = T'\H"*! of hyperbolic space H"*! has no cusps of
non-maximal rank. As far as we know, the only results concerning meromorphic extension of the
resolvent or scattering operator for this cases were due, until recently, to Froese-Hislop-Perry [3]
in dimension 3. However, in a preprint, Bunke and Olbrich [1] deal with the meromorphic ex-
tension of the scattering operator in all generality using a very different approach; in particular
they do not study the (pseudo-differential) structure of this operator. We refer the reader to the
introduction of [8] for a more detailed review of works on meromorphic extension of the resolvent
for the Laplacian through the essential spectrum, resonances (i.e. the poles of this extension),
meromorphic continuation of Eisenstein functions and scattering operator for geometrically finite
hyperbolic manifolds, though we do not claim to be complete about references therein.

We consider an infinite volume hyperbolic quotient X := I'\H"*! where I is a discrete group
of isometries of H"*! which admits a fundamental domain with finitely many sides, X is said
geometrically finite, and such that each rank k parabolic subgroup of I' fixing a point p € S™
is generated by k independent translations in the horospheres centered at p. We shall say that
the cusps are rational cusps. For exemple, this last condition is always satisfied in dimension
n+ 1 = 3. In general, a rank k parabolic subgroup I', fixing a point p € S™ gives rise to a
model manifold I',\H"*! which is isometric to Ry x M where M is a flat bundle with basis a
flat compact manifold and with fibers R®%; then if the holonomy representation of this bundle
has finite image in O(n — k), there is a finite cover which satisfies our assumptions, in which case
the resolvent, scattering operator and Eisenstein functions are obtained as a finite sum on the
cover. Similarly, elliptic elements of I" can also be excluded by passing to a finite cover, X is then
a smooth manifold, and since the presence of maximal-rank cusps do not add difficulties, we will
avoid them for simplicity of exposition. The Laplacian on such manifolds have been studied by
Froese-Hislop-Perry [3] in dimension 3 and by Perry [23] in higher dimension. The manifold X
equipped with the hyperbolic metric is complete and the spectrum of the Laplacian Ax splits into

n

continuous spectrum [Tz, o) and a finite number of L? eigenvalues included in (0, "Tz

the point spectrum op,(Ax) (see Lax-Phillips [14]). In [8] we proved that the modified resolvent

) which form

R\ == (Ax —A(n—\)!

extends from {R(A) > %} to C meromorphically with poles of finite multiplicity (i.e. the rank of
the polar part in the Laurent expansion at each pole is finite) from L2, (X) to L2 _(X), these

comp loc
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poles are called resonances.

In the present work, we define a Poisson operator, Eisenstein functions, a scattering operator
and we show that they extend meromorphically to C. To explain the main Theorems, we recall
briefly the structure at infinity of the manifold X but in any case, we refer the reader to Section 2 of
Mazzeo-Phillips [19] for a comprehensive description of geometrically finite quotients T\H"*! (see
also [2, 23, 8]). The first approach is to see X as the interior of a smooth compact manifold with
boundary X. If p is a boundary defining function of the boundary X and if ¢ is the hyperbolic
metric on X, then p?g extends as a smooth non-negative tensor on X which is positive definite
outside some submanifolds of the boundary dX where it becomes degenerate. Each one of these
submanifolds arises from a cusp point of X, i.e. a fixed point at infinity of H"*! for a parabolic
subgroup of T, and is diffeomorphic to a k-dimensional torus 7% if the parabolic subgroup has
rank k. If we note ¢ the union of these submanifolds, B = X \ ¢ is a non-compact manifold
which can be thought as the infinity of X; actually B = T'\QQ where Q C S™ is the domain of
discontinuity of I'. After a real blow-up of these submanifolds in X, we obtain a manifold X, with
corners of codimension 2 which is the compactification of X defined by Mazzeo-Phillips [19] in the
general case. The topological boundary of X, splits into two kind of smooth hypersurfaces with
boundaries, the regular ones whose union is a compactification B of B and the cusp ones which
are diffeomorphic to S_’ﬁ*k x TF, Sf_*k being an n — k dimensional half-sphere with boundary. It
turns out that B has ends diffeomorphic to (R} ™%\ {|y| < 1}) x T*, each end arising from a
rank-k parabolic subgroup of I' fixing a point at infinity of H"*!. The compactification B of B
corresponds to the radial compactification in the y variable in each end thus B is a fibred boundary
manifold in the sense of Mazzeo-Melrose 18], the fibrations being the projections

Sn—k—l % Tk N Sn—k—I.

When equipped with the metric hg := p%g|, (B, ho) is conformal to an ‘exact ®-type metric’ near
its infinity as defined in [18], the conformal factor decreasing enough to make the volume of B fi-
nite - the vanishing rate is even stronger than the fibred cusp metrics (see Figure 1 for illustration).

We construct Poisson and scattering operators P(\), S(\) by solving a Poisson problem in a
way similar to that introduced on Euclidean manifolds by Melrose and on many other settings
by various authors (see [21] for review). However, in view of the sensitive structure of the metric
near the cusps ¢, it appears that P()\), S()\) do not act naturally on C*(9X) but on subspaces
related to this structure. We then define the subalgebra C22.(X) of C°°(X) of functions which are

asymptotically constant in the cusps, these are the f € C°°(X) such that
Z(fle) =0, Z((X1...Xnf)le)=0

for all smooth vector fields X1, ..., Xy on X (VN € N) and all smooth vector fields Z on c. In other
words, these are the functions whose restrictions at the cusp submanifolds are locally constant and
similarly for all derivatives. It is actually possible to find a boundary defining function p in this
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subalgebra. Then the volume form dvol, of g can be expressed by p~™" ' R?1 5 for a function R.

which is smooth positive in X \ ¢ with R2 € C2.(X) vanishing at order 2k at each k-dimensional
component of ¢ and where ;15 is a smooth volume density on X. The functions R, and p are not
uniquely determined but we show that the set R, 1C (X

> (X) is independent of the choice of R?, p in
C2%.(X) (but it certainly depends on the metric). Then we define C25,(9X) and R 'C2.(0X) by
restriction of C2.(X) and R;'C2.(X) at 90X and B = 0X \ ¢ (here we use the same notation for
R. and its restriction R.|s5). For any boundary defining function p € C%.(X), one can define the

Poisson operator P(\) by showing that if R(A) > 2 and A ¢ % + N, then for all f € R;7'C.(0X)

acc

there exists a unique solution P(A)f of the following Poisson problem

(Ax = A(n=X)PN\)f =0
PN =p"AFN )+ p*G(N )
FA 1), G, f)GR O (X)
F(A, f)|p 0=

The construction of the solution is a consequence of an indicial equation for Ax and the following
precise mapping property of the meromorphically extended resolvent

R(\) : C%(X) — p*R, ' C(X).
where C>(X) is the set of functions in C°°(X) vanishing at all order at §.X.

Next we analyze Eisenstein functions. The metric hg induces an L?(B) Hilbert space on B

and we prove

Theorem 1.1. If R(\;w;w’) denotes the Schwartz kernel of the extended resolvent, then the
FEisenstein function

E(\;b;w') := lim [p(w) *R\w;w')], be B,w € X

w—b

is a smooth function on B x X if A is not a resonance. There exists C > 1 such that, for all N > 0,
E(X;.,.) is the Schwartz kernel of a meromorphic operator

E\) : pNL*(X) — L*(B)

in R(A) > & — C7'N with poles of finite multiplicity, satisfying P(N) = (2X — n)'E(X) on
R71C2,(0X). Except possibly at {\;R(\) < Z,A(n — \) € opp(Ax)}, the set of poles of E(X)

coincides with the set of resonances.

Using the asymptotic expression of P(\)f, the scattering operator is then defined (with the
same notations) by
SOV R71C2.(0X) — R;'C=(0X)
f - ()\a f)|P:0

For R(\) = 2, S(\) can be extended to L?*(B) as a unitary operator and it gives, as usual in

scattering theory, a parametrization of the absolutely continuous spectrum of Ax. Then, we prove
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the following result which is expressed in more details in Theorem 6.5, Lemma 6.1, Corollary 6.3
and Proposition 7.1:

Theorem 1.2. The scattering operator S(\) extends meromorphically to C as a family of pseudo-
differential operators in the full ®-calculus on the manifold with fibred boundary B in the sense of
Mazzeo-Melrose [18]. In {R(X) < §,A(n — X) & opp(Ax)}, Ao is a pole of S(N) if and only if Xo
is a resonance and it has finite multiplicity. In {R(\) > 5}, S(A) has only first order poles whose

residue s

J'E—-1!

ST P p L, ifde =2+ €N

Resy,S(\) = o 2
IL,, ifdo¢5+N

where P; is the j-th GJMS conformal Laplacian of [6] on (B, ho) and Iy, is an operator with rank

dimkerp2 (Ax — Ao(n — Ao)).

Note that the GJIMS conformal Laplacians P; in [6] are well-defined for all j if n > 3 (resp.
for j < 1 if n = 2) if the manifold is locally conformally flat (it is actually done in the compact
setting but they can be extended for non-compact manifolds by using the same local expression in
the curvature tensor), which is the case for B.

The general case of irrational cusps is more technically involved and it is not clear if such
precise results can be obtained, at least the meromorphic extension of the resolvent is carried out
in a forthcoming paper. It is also important to add that this analysis could be used to study the
divisors of Selberg’s zeta function as Patterson-Perry [22] did for convex co-compact hyperbolic
manifolds.

The paper is organized as follows: we first introduce in section 2 the geometric setting, discuss
the compactification X of the manifold X and analyze its infinity B; then in section 3 we define the
class of pseudo-differential operators on B which contains the scattering operator and in section 4
we study the mapping properties and the structure of the resolvent for the Laplacian. In section
5, we construct the Poisson operator and Eisenstein functions using section 4 and in section 6 we
define and describe the scattering operator. To conclude we investigate the relation between the
conformal geometry of B and the scattering theory on X.

Along the paper, we will identify operators with their Schwartz kernel and we consider oper-
ators acting on functions for simplicity of exposition though the correct approach would be to use
half-densities. Consequently the kernels of pseudo-differential operators have to be understood as
tensorized by appropriate half-densities.

Aknowledgements: We thank Rafe Mazzeo, Robin Graham and Jared Wunsch for helpful
discussions. This work was written at Purdue University in 2005 but we are also grateful to the
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2 Geometry of the Manifold

2.1 Assumptions on the group

We describe here with more details the assumptions about the cusps discussed roughly in the
introduction; we strongly use Section 2 of Mazzeo-Phillips [19]. Let I' a discrete subgroup of
orientation preserving isometries of the hyperbolic space H”T!. Recall that I' acts also on the
natural compactification H"*! = {m € R"*!;||m|| < 1} of H**! and on its boundary S™; an
element ~ is called hyperbolic if it fixes exactly two points on S™ and no point in H"+!, parabolic
if it fixes one point on S™ and no point in H™ !, then « is elliptic if it fixes at least a point of H"*1,
If T contains elliptic elements (other than the identity), there exists a subgroup I'y of finite index
of T without elliptic elements, thus X is finitely covered by I'o\H"*!, the latter being a smooth
manifold. Since we study resolvent of the Laplacian and other related objects, we can always pass
to a finite cover without difficulties: objects on X can indeed be obtained by summing on a finite
set objects on the finite cover. Thus we exclude elliptic elements in I'.  We suppose that T' is
geometrically finite, which means here that it admits a fundamental domain F' with finitely many
sides. Each fixed point p € S™ of a parabolic element of I is called a cusp point, and for each cusp
point p, let I'y, be the subgoup of I fixing p. Actually I', contains only parabolic elements and it
can be shown that there is a I',, invariant neighbourhood U, of p such that I'\(F N U,) is isometric
to a neighbourhood of p in I',\(¥ N U,). The subgroup I', has a maximal free abelian subgoup
T', with rank k, the rank of the cusp p is defined to be the integer k. We suppose that k <n — 1
for each p since this case is well known in term of scattering theory. Using now conjugation, it
suffices to look at the case where p = oo in the upper half model H**! = Rt x R™. Section 2 of
[19] (the arguments come from Bieberbach’s analysis of discrete groups of isometries of Euclidean
space) shows that there is an affine subspace R* C R™ globally preserved by I's, on which I, acts
as a group of k translations. This allows to see that every v € ' acts as

v(y,2) = (Ry, Az +b) on Ry ™" & R%

for some A € O(k), R € O(n —k) and b € R*; elements in ', have A = Id. There is a flat compact
manifold N = I'.. \R¥ such that I',, \R"™ is a flat vector bundle with basis N and T* := I',\R¥ such
that I',\R" is a flat bundle over T*. Assuming that the holonomy representation of these bundles
I' = O(n — k) has finite image implies that the elements R decompose into rotations with rational
angles pr/q for some p,q € N, then there is a finite cover of this bundle which is T* x R*=* T*
being a flat torus. Thus, as we mentionned before, it suffices somehow to study the case where
each rotation R is the identity to get a good description of the analytic objects conidered in the

paper.
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2.2 Neighbourhoods of infinity, models.

From previous discussions and assumptions on the cusps and using [2, 23, 8] we obtain a covering
of the manifold X by model charts. There exists a compact K of X such that X \ K is covered
by a finite number of charts isometric to either a regular neighbourhood (M, g,-) or a rank-k cusp
neighbourhood (My, gx) where

M, = {(z,y) € (0,00) x R™;2” +[y|* <1,},  gr = a72(dz” + dy?),

My, := {(x,y,2) € (0,00) x R"F 5 T*: 22 4 |y> > 1},  gr = 27 2(d2® + dy* + dz?)
for k=1,...,n — 1 with (T% dz?) a k-dimensional flat torus.

Note that we could allow maximal rank cusps as in [8] without difficulties but since these
cases are well-known, we restrict ourselves to the non-maximal rank cusps cases for simplicity of
exposition. To avoid too many indices in the exposition, we will assume for simplicity that the
manifold has only one neighbourhood of each type, it will be clear from the analysis which will
follow that it does not change anything in the proofs; we then note I, (I;)x the corresponding
chart isometries. One can also choose the covering such that I,;I(Mk) N I;I(MJ) =0 for k # j,
possibly by adding regular neighbourhoods.

The model M} can be considered as a subset of the quotient X; = I'y\H"*! of H"*! by a
rank-k parabolic subgroup I'y of I' which fixes a single point at infinity of H**!. Indeed, modulo
conjugation by an isometry, one can suppose that the fixed point is the point at infinity of H"t!
in the half-space model (0,00) x R™. The group I'y is generated by k independent translations
acting on R™, therefore it is the image of the lattice Z* by a map Aj, € GLi(R) and the flat torus
T* .= T';,\R* is well defined. Then X}, is isometric to R} x RZ*’“ x TF equipped with the metric

_da® +dy? + d2?

k
g 2

dz? being the flat metric on a k-dimensional torus T%. Therefore M, is the subset of X} with
22 4+ |y|? > 1. As a matter of fact it will be often useful to consider R* x R"~* as the n — k + 1-
dimensional hyperbolic space H”~**+1. Hence X, can be compactified into the compact manifold
with boundary X = H"*+1 x T* where H" %+ is the ball {|w| < 1} in R*“¥*1, Then

x

= ————— = (2 cosh(dgn- :1,0))7"
|y|2+x2+1 ( Cos ( H k+1('r7ya ) )))

Pk (Ia Y, Z) :
is a natural boundary defining function in X3 (0Xy = {pr = 0} and dpi, # 0 on 9X;). Let us
define the new coordinates

z —Y
tim T y= Y 2.1
ErpE T EE P @1)

which induce an isometry from (My, gi) to

{(t,u,2) € (0,00) x R"™F 5 T* ¢ 4+ u)? < 1}
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equipped with the metric

dt? + du® 4 (1* + |ul*)*dz?
+2

and pi(t,u) = pg(z,y). These coordinates can be thought as compactification coordinates for My,

(2.2)

since t and u extend smoothly to X;\{z = y = 0}. The infinity of X in the chart My, is then given by
{pr = 0} or equivalently {¢ = 0}. Also we will call cusp submanifold the submanifold {t = v = 0}
of X}, it will be denoted by ¢ and we remark that ¢, ~ oo x T* ~ T* in X, where oo is the point
at infinity in the half-space model of H"~**1. We also have My = {w € X;t(w)? + |u(w)|? < 1}
which is a subset of X and we will denote

My, = {w € Xp; t*(w) + |u(w)]* < 1}.
At last we define the manifold
Y :=R"F x Tk

which can be viewed as (X}, \ cx) N {z = 0}.

The model M, is simpler and can be considered as a subset of H"*!'. We define as before
M, = {(z,y) € [0,00) x R"; 2% + |y|*> < 1}.

There exist some smooth functions x, X", x', ..., X" ' on respectively X, M,, My,..., M,_1
which, through the isometric charts I,., I, ..., I, satisfy

n—1
I:XT—FZI,ij—i-X:l
k=1

with x having compact support in X. Note that it is possible to choose x* which does not depend
on the variable z € T*.

For what follows we will consider My, M,, My, M, as neighbourhoods in X instead of using
the notations I, ' (M), I, 1 (M,)...

2.3 Compactification, volume densities.

Using the previous discussion about the compactification of the cusp neighbourhoods, one obtains
an obvious compactification of X as a smooth compact manifold with boundary X. Moreover, we
can choose a boundary defining function p which is equal to the function ¢ in each neighbourhood
M. The boundary X is covered by some charts By, ..., B,_1, B, induced by My,..., M,_1, M,
by taking

By := My N 0X ~ {(u,2) € R"F x TF: Ju|*> < 1}

B, =M, N0X ~ {y e R™; |y[* < 1}.
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From the discussion above, we see that the metric on X can be expressed by

with H a smooth non-negative symmetric 2-tensor on X which degenerates at the cusps subman-
ifolds (cx)g=1,...n—1. Let us define ¢ := (Upcx) C X C X, and B := 0X \ ¢, then the restriction

ho == H|p = (p°9)|5 (2.3)

yeeey

is a smooth metric on the non-compact manifold B.

We will also need to use functions representing the distance to the cusps submanifolds as

follows: for k = 1,...,mn — 1, let 7., be a continuous non-negative function in X, smooth and

Ipu(re,) = V2 + Jul?

in Mj, and is equal to 1 in M; when j # k. Then we define the functions

n—1 n—1
Te 1= H Teny Rei= H(Tck)k (2.4)
k=1 k=1

on X and we will also denote by rc,, e and R, their restriction to 0X. It can easily be checked

positive in X \ ¢; which satisfies

that B equipped with the metric hy of (2.3) has a volume density dvolp, which is of the form
dvolp, = R*ugx (2.5)

with 5% a smooth non-vanishing density (volume density) on X. Similarly the volume density
dvoly on X can be expressed by
dvol, = p" " 'R2ug (2.6)

for a smooth volume density g on X. In what follows, we will write L?(X) and L?(B) for the
Hilbert spaces of square integrable functions on X and B with respect to the volume densities
dvoly and dvolp,,.

2.4 Class of functions.

For a compact manifold M with boundary M, we denote by C°° (M) the set of smooth functions
on M which vanish at all orders at M. Its topological dual is the set of extendible distribution
on M, denoted C~°°(M) (note that a correct definition would include density bundles).

There will be a special set of smooth functions on X, X which will play an important role
for what follows, these are the functions which are “asymptotically constant in the cusp variables”.
To give a precise definition we begin by introducing the sets C(TX), €(T9X) and C(Tc) of smooth
vector fields on X, 98X, c¢. Then we set

CE(X):={feC®(X);VXy,...,Xn € C(TX),VZ € C(Te), Z(f|c) =0,Z(X1 ... Xnf|c) =0}
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and C2 (0X),C>.(Xy), 02 (0X}y) are defined similarly by replacing X by 0X, X, 0Xy. These

acc acc acc

functions are constant on each cusp submanifold ¢; and their derivatives too. In local coordinates
(t,u,2) near the cusp ¢ = {t = u = 0}, one can check by a Taylor expansion at (0,0, z) € ¢ and
Borel Lemma that a function f € C22,(X) can be decomposed locally as a sum

Ftu,2) = fo(t,u) + O((# + [uf*)>) = fo(t,u) + O(r) (2.7)
for some fy smooth. We remark the following properties, the proofs of which are straightforward:

Lemma 2.1. The set C°

acc

(X) is a subalgebra of C>°(X) which is stable under the action of C(TX),
and stable by composition with smooth real functions on R.

Observe also that 72 and R? defined by (2.4) are in C2%,(X). Actually this implies that if

acc

p € C (X) is a boundary defining function of X and R? € C22.(X) is a non-negative function
vanihing at order 2k at each ¢; such that dvol, = =" 'R2ji% for a smooth volume form on X,
then

p=Fp, Rl=FR: jix=Fiux
for some functions Fy, [y € C2,(X) and F3 € OC°(X) satisfying F17n71F2F3 =1 and F; > 0,

acc

F3 > 0. Then necessarily F3 € C2°.(X) and F, > 0 which shows that R;'C2 (X) = R;10% (X)

acc acc acc

and this space does not depend on the choices of p, R? in C2%,(X). Actually the map f — f|dv01g|%

naturally identifies R;1C°°(X) with the space of smooth half-densities C°° (X, 1"0%) defined in the

0-calculus of Mazzeo-Melrose [17] (depending only on the C°° structure of X) and the space
_ _ 1

R;71CS.(X) could then be considered as a subspace of C*°(X,I'¢) (depending on the metric) if

we worked with densities.

We also define the set of smooth functions on X}, (resp. X) vanishing at all order at the cusps
CX(X) :={f € C®°(X);¥Xy,..., Xy € Q(TX), fle = 0,(X1... Xnf)|e = 0}

and C®(9X),C>®(8Xy), C2°(8X},) similarly. Remark that there is a natural identification between
C>°(8X) and C>(B) if B is defined as the real blow-up of X around ¢. By similar arguments,
the spaces C22 (0X), C(0X), R;1C (8X) can be defined (here we note again R, instead of

acc acc

R.|B) an they coincide with the restriction of C22 (X), C2°(X), and R;1C (X) at B = 0X \ c.

acc acc

To conclude this part, remark the following inclusions
C>®(X) C C(X) C CZ(X).

and the same for their restriction at B.

2.5 Model form for the metric.

To use the same ideas than for asymptotically hyperbolic manifolds, we need to choose boundary
defining functions of X in X which induce product decompositions of the metric near infinity.
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The different choices of boundary defining functions induce a conformal class of smooth tensors on

OX which are metrics on B, this is the conformal class [ho] of hg := p2g|y5. However, in view of
the presence of the cusps, we need to consider the following smaller class of conformal metrics on
B

[holace := {fho; f € C22.(0X), f > 0}.

Lemma 2.2. For all hy € [ho)ace, there exists a boundary defining function p € C2,(X) of X in

X such that |dp|s2y — 1 € C>(X) in a collar neighbourhood of X and p*g|p = ho. Moreover, p
is uniquely determined modulo C>(X) by ho.

Proof: for hy € [ho], the construction of a boundary defining function p = pe* which satisfies
|dp| ;24 = 1 and p?g|p = ho is equivalent to solving the PDE

- |dp|izg

; (2.8)

2

2V o) (@) + pldeofe, =
with initial condition w|y5 = wo where hg = €2“°hq (see |5, Lem. 2.1]). The construction of
a solution is possible in regular neighbourhoods M, and is unique since the equation is non-
characteristic there. In M}, we write the equation in coordinates and this gives

20w + t ((Ow)? + |0uw]® + (£ + [u]?) 2|0.w]?) =0

in view of the form of the metric (2.2) there (recall that p = t in M},). Taking this equation at t = 0,
we see that diw|i—o = 0 and by differentiating it N times with respect to ¢ and setting t = 0 we see
by induction that all the values 8/w|;—o in {u # 0} are determined by wl|,—o for j < N +1. In par-
ticular when j is odd this is 0 (see again [5] for a similar study). Since wg € C2.(0X), we can write
it locally under the form (2.7) which shows by induction that 8}w|,—o € C.(9X); the essential
arguments to use are that the singular term in the equation is killed by |0,w| = O((t? +|u|?)>°) and
the properties of C2°,(0X) discussed previously. By using Borel lemma, we can construct a smooth
function w in a neighbourhood of X in X with those derivatives, thus w satisfies (2.8) modulo
O(p*°) and this proves that there exists a function p which satisfies the Lemma, the uniqueness of

its Taylor expansion with respect to p at 0X is clear from the construction. O

We will now use this function to obtain a certain model form of the metric near 9X. Using
again the same arguments than [5, 9], it suffices to consider the collar neighbourhood [0, ¢)s x 0X
of X induced by the flow ¢ (m) of the gradient V2,4 with initial condition yg(m) = m for
m € 0X, that is the diffeomorphism

¢ (s,m) — ps(m)

from [0,¢) x OX to its image. We consider the function w constructed in the proof of previous
Lemma (thus p = pe*) and since dsp(ps(m)) =1+ O(p>) =1+ O(s*), we deduce

p=se ¥4+ 0(s).
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Now, we remark that the identity |V 24p]524 = 1 4 O(s>) implies that s?g can be expressed by

s20*g = ds® + h(s) + O(s™)

n [0,€) x X where h(s) is a smooth family of tensors on dX which are positive for s > 0, with
fL(O) = hy positive on B. We have seen in the proof of last Lemma that, in M}, w is an even function
of p =t, thus s is an odd function of ¢ and ¢ is an odd function of s. Let (v, () € R"* x T* some
coordinates on X near c;. We have ¢g(v, () = (v, () and using the form (2.2) of g

te™%
5 0,w.0,

65905(’1}, C) = Vﬁzgﬁ = e—w(l + t@tw)&g +te YO w.0y + W

then the function ¢(s,v,¢) = ps(v, () can be locally written near ¢ (in coordinates (¢, u, z))
w(s,v,Q) = (tzsefw—l—tl,uzv—i—sul,z:g—i—szl) (2.9)

tleCOO(X), uy € C2°

rec(X), 21 € CZ(X).
Using that w is even in s and ¢ odd in s, it is straightforward to verify that u, z are even in s. We
deduce that locally

dt =1i(s,v,ds,dv) + O(r®), du=ly(s,v,ds,dv) +O0(r), dz=d¢+ O(r). (2.10)

for some smooth tensors l1, (s, even in s. We want now to write the metric g in these coordinates
(s,v,¢). By looking at the expression (2.2) and using (2.9), (2.10) with the properties of C2,(X)
discussed in previous section, we obtain that

h(s) = hi(s,v,dv) + ha(s, v, z,dv,d¢) + e2“rid¢? + O(s™) (2.11)

where hy, he are smooth tensors, even in s, such that he = O(r®). Since p — s = O(p>), we
can replace s by p in (2.11) and we have the same expression for the metric. Now in a regular
neighbourhood M,., there exists coordinates (z,y) € (0,€) x R™ such that g = 272 (dz? + dy?), thus
by writing p = ze? for some 6 smooth, we have by mimicking last Lemma that (from (2.8))

20,0 + 2((0:0)% + |9,0/%) = O(z™)

with 6],—¢ = 6, satisfying hg = e2%0dy?. Exactly as before for My, this gives that  is odd in z,
thus z is odd in s and y even in s, which easily implies that fz(s) has an even Taylor expansion in
sat s=0.

This discussion proves that there exists a collar neighbourhood (0,¢€); x X of X in X such
that R
dp® + h(p) -
9= 7 +O0(p™) (2.12)
for a smooth family of symmetric tensors ﬁ(ﬁ) on 0X with an even Taylor expansion in p at p = 0,
positive for 5 > 0, h(0) = ho being positive on B and with the local expression (2.11) near the
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cusps ci. Actually, the evenness of the metric in p is a consequence of the constant curvature of
X and is studied in details in [9] more generally for asymptotically hyperbolic manifolds.

Is is quite direct and similar to a result of Graham [5] to check that for two functions pi, 2
satisfying Lemma 2.2, then for all j € N

2j . 2 -
95! p2lox =0, 03 p1lox =0

which will be useful to define renormalized volume in an invariant way.

There is however a very special case of boundary defining function p which can be chosen
to put the metric into a simpler form. It is obtained by taking p = ¢ in the neighbourhood M;,
of the cusp ¢, and extending it to a neighbourhood of dX so that it satisfies |dp|s2, = 1 in this
neighbourhood and p2g|sx = ho. To prove the existence of such an extension, it suffices to go
back to the proof of Lemma 2.2 and we see that this amounts to solve the PDE (2.8) without the
error term O(p>°) and with initial condition w|yx = 0. Since the equation is non-characteristic out
of the cusp ¢, there exists a unique solution w in some neighbourhood {p < €, < 7.} (for some
§,€ > 0) of the boundary dX avoiding the cusp ¢, and it is clear that w = 0 satisfies the equation
in Mk.

For what follows, we will often work with this boundary defining functions p and by convention
we will note it p, forgetting the previous choice of function p. Then we have in some collar
neighbourhood (0, ¢€), x X of X

_ dp* + h(p)
2

for some smooth family of symmetric tensors h(p) on dX, depending smoothly on p, positive for

(2.13)

p > 0, with h(0) = hg positive on B and satisfying
h(p) = du? + (5% + |ul?)?d2?

in each M.

2.6 Geometry of B

To study the scattering operator and to define the class of pseudo-differential operators which
contains it, we can consider the manifold B as the union of a compact manifold &, (covered by the
charts B,.) and n — 1 ends &4, ..., &, with & diffeomorphic to

{(y,2) ER"F x T* |y >1} C Vi = R"* x T*.

For simplicity, we will consider £;, as this last subset of Y;. By using the radial compactification
in the y variable in each end £ we see that the manifold B compactifies in a smooth compact
manifold with boundary B, the boundary 0B being a disjoint union on k = 1,...,n— 1 of products
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0y := S"~F~1 x Tk A boundary defining function of 9€, is given by v = r., = r. = |y|~! and
7. is a boundary defining function of 9B. Note that B # X but B is actually the blow-up of 90X
around the cusps submanifolds ci,...,c,—1. The structure of the compactified manifold B near
08y 18 [0,1), x O& and &y fibers by the projection

bp : SVTRL Ty, — SnReL (2.14)
The metric hyp on B is not exactly a fibred cusp metric since too much decreasing at infinity
ho = dv? + v2dw? + v*dz2.

For following purposes, it is also quite natural to consider B with the metric EO :=r_ %hg conformal
to ho since this is the flat metric dy? 4+ dz2 on each end €. Note that hg in (0,1), x SP=*=1 x Tk

1S
. d2 d2
hO:L‘i‘LQ-FdZQ
v v

which is an “exact ®-metric” in the sense of Mazzeo-Melrose [18]. The volume induced by the
metric hg on B is finite whereas the volume of B with the metric hg is not finite.

3 Pseudo-Differential Operators at Infinity

There is a natural way to define pseudo-differential operators on B using the euclidean structure
of each end €. Recall first from Schwartz theorem that for any continuous linear operator A :
C*>(B) — C~(B) there exists a unique extendible distribution a € C*(B x B) (we dropped the
density factor for simplicty), called Schwartz kernel, such that

(A, ) = (a, 7 @ @), Vo, v € CP(B).

Thus we will identify Schwartz kernel with its associated operator. We can define the space ¥™!(B)
of pseudo-differential operators of order (m, ) € R? as the set of linear operators

A:C>®(B) — C~>®(B) (3.1)

such that in each compact coordinate patch on B (those are the B, of previous section), A has a
distributional Schwartz kernel of the type

Alw;w') = / & =) g (w, €)de (3.2)
with a(w, ) a symbol in the coordinate patch, i.e. a(w, &) is smooth and
10207 a(w, €)] < Ca,p(1 + €)™ 17,

whereas on the end &, with coordinates w = (y, 2) € R"¥ x T* the distributional kernel of A is
of the form (3.2) but with a(w;¢) smooth and satisfying

105020 aly, 2,6)| < Ca,p (1 [y)) =1L+ g™ 11,
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The manifold X

the cusp ¢ = St

The manifold B

B with the metric hg

Figure 1: The infinity B of the quotient X = I'"\H? where T is a Schottky group gluing D3 «— Dy
and Dy «— Ds; B is a manifold with fibred boundary.

It is not hard to check the mapping property (3.1). One can also define classical (or polyhomo-
geneous) pseudo-differential operators of order m,l € C as operators in W*(")-R()(B) with the
symbol in (3.2) satisfying (for all k)

a(y, z,€) = lyl~'lel™allyl " y/lyl, 2, €1, €/1€l)  for | > 1

for some @ € C™([0,1) x S**=1 x T* x [0,1) x §77*~1), we will use the notation ¥”"/(B). In
each end &g, this corresponds in a sense to the class of pseudo-differential treated by Hormander
in the y € R"* variable (or the Scattering Calculus of Melrose [21]) but with the additional
compact variable z € T*. In particular, an operator A € ™ !(B) can be defined in term of its
distributional kernel lifted from B x B to a blown-up version of this product. This is a standard
way due to Melrose to describe in details the various singularities of the kernel: we always have
the usual conormal singularity at the diagonal of X x X (like in the compact setting) but for



144 Colin Guillarmou CUBO
11, 5 (2009)

non-compact manifolds, it is important to include informations in the symbol about the behaviour

at infinity, these can be interpreted as conormal singularities for the kernel on the boundaries of
the compactification X x X (boundary of the compactification = infinity of the manifold). Since
singularities with different nature intesects at the diagonal of the corner 9X x 90X, it is convenient
to define a bigger manifold, the blow-up, where the kernel is more readable.

The blow-up here is slightly different from that of Scattering Calculus, it is in a sense the
scattering blow-up defined in [21] but only in y variable. This blow-up corresponding to manifolds
with fibred boundaries is explained in generality by Mazzeo-Melrose in [18], it is achieved in two
essential steps. The principle is to start with the manifold with corners X x X and to construct a
larger manifold with corners where the phase of (3.2) defines a smooth submanifold (“the diagonal”)
intersecting transversally the boundary of this larger manifold at only one hypersurface.

For what follows, we will use part of the notations of [18]. The manifold B x B has 2n — 2
boundary hypersurfaces Ly, := 9€j, x B, R, = Bx 0& for k=1,...,n—1 and we have L;;NL; = ()
if j # k, the same with Ry, and finally L NR; = 0 x 0E; is a corner of codimension 2. We need
to define the first blow-up of B x B by taking the “b”blow-up

B XbB = [B X 3;681 X 681;...;88n_1 X 88n_1]

which means that we blow-up successively each corner 9&j, x 0&; of &, x &, C B x B. This is
done by replacing in B x B the submanifold &, x 0 by its spherical normal interior pointing
bundle in B x B. The blow-down map is denoted

ﬁb:BXbB—MBXB.

The manifold B x;, B has 3n — 3 boundary hypersurfaces, the first 2n — 2 are the top and bottom
faces
=By (B x0€y), Tp =00 xB), k=1,...,n—1.

The new ones are called front faces (F),)x=1,... n—1 for the b blow-up and ¥}, is the spherical normal
interior pointing bundle of 9€; x € in B x B and is mapped by (3, on 9, x 0. Note that F,

is diffeomorphic to [—1,1]; x 0&k x Oy using the function 7 = Z;Z; (see Melrose [20]), thus we

will identify them.

The closure Dy, := ﬁb_l (Dp) of the diagonal Dp of B x B meets the boundary of B %y, B only
at the (interior of the) hypersurfaces ¥} and it does transversally at a submanifold denoted 9Ds.
The blow-up of B x; B along Dj, would give the blow-up associated to the Scattering Calculus but
it turns out that the second kind of blow-up we need for our purpose are the successive blow-ups
of B x3 B along the submanifolds

(I)k = {(Oamam/) S 9:;6 = [_17 1]7’ X 88k X 88k7 ¢k(m) = (bk(m/)}v
with ¢ the fibration of (2.14), this gives the manifold with corners

B xg B :=[BxyB;®y;...;®P, 1]
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The blow-down maps are

BX@B@BXbB&?BXB, ﬁ@Z:ﬁboﬁq,_b.

The boundaries of B x¢ B are the top and bottom faces
B, = B3 (B x 0B},), Tp=p; (0B} x B)
the front faces of the b blow-up
F = ﬁgib(fﬂg \ (I)k)
and the front face of the ® blow-up is the normal spherical interior pointing bundle of ®;, in B x;, B
I = SN.,.((I);C; B Xp B)

We will denote by pg,, p8,, pF,, p7, some functions which define the respective hypersurfaces:

{p‘Tk :O}ZTIC’ {ka :O}:Bk’ {p?k :0}:§k7 {pjk :O}ZJIC

The closure Dg := ;' (Dg) meets the topological boundary of B x¢ B only at (the interior of)
the hypersurfaces J; and it does transversally. One can thus define (using extension through the
boundary hypersurface) the set I™(B xg B; Dg) of distributions classically conormal of order m
to the submanifold Dg.

Dg
Tk

N

P

Br

Figure 2: The blow-up of @, in B x, B

The important point is that 53 is a one-to-one map between C'OO(B x B) and c> (B xa B),
this induces a one-to-one map between their respective duals, which allows to indentify continuous
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operators (3.1) with their Schwartz kernel lifted to B x ¢ B. With this identification, we define the
space

UpY(B) := {K € py I"™(B x¢ B; Dg);Vk, K = 0 at Ty, Ty, By}

for m,l € C, where = means equality of Taylor series. This forms the (classical) “small ®-calculus”
and it is not difficult to check that \I!Zl“l(B) = \Ifg’l(B) with the notations introduced before for the
standard pseudo-differential operators on B. We sketch the proof of the sense \Ifg’l(B) C v™(B).
Recall that
v=ly|w= Y= ly|,w' = —I,z,z
ll ']

!/

give some local coordinates near the corner 9€ x 0€y on B x B and
v
s= —/,v',w,w’,z,z' with |w| = || =1
v
give some coordinates on B x;, B near the front face ¥, (valid out of B}), in particular &) = {v/ =

O;s=Lw=uw} IfAc \I/ZZ’Z(B), the expression (3.2) with w = (y, z),w’ = (¢/,2’) can be put in
these coordinates

Alw;w') = /ei(ﬁ(%—w/)~f1+(z—zl)~£2)a(#, Z;gl,&)d&d&' (3.3)
v's
It can be checked that “t — wj,wi,v’, z,2" fori = 1,...,n — k give some coordinates near Jj N &y,

and ®; = {¢ —w’ = 0}. The functions (w; —swj)/(sv’) lift under B¢ to some functions W; which
are smooth near J; \ (Jp N Fx) and we have near Dg NIy

Do={Wi=- =W, p=0;2=2"}, I ={=0}

in coordinates W := (Wy,..., Wy_),w', v, 2, 2" with ), wl’? = 1. This gives in (3.3)

. _ (.U/
Alw;w') = /el(W'flJr(z )'52)a(W+ ?72;51752)d§1d§2

with {/W = 0} = Dg. This last expression shows that A(w;w’) has a classical conormal singularity
at Dg of order m. Near the front face Jj, that is when v — 0, then v’fla(WvL,‘"l,z;g) is a
smooth function near Dg N Ji. Using other systems of coordinates covering J; N Fj one easily
see that (5(A) vanishes at all order at Fj, (using integration by parts in oscillating integrals and
the “polynomial growth” of a(w,§) in |w|) and that pj_klﬁjg(A) € I"™(B xg B; Dg). The vanishing
of (3.3) at {v/ = 0;]w — sw'| > €1 > s} comes by integration by parts and shows the vanishing
of 85 (A) at all order at the boundaries near F N T and the behaviour near Fj, N By, is similar.
Finally the vanishing at T, and By far from Fj is again a consequence of non-stationary phase

(3.2).

The converse ¥ (B) € ¥7"!(B) is essentially similar.
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Now one can define the “full ®-calculus” by considering the set of operators (identifying lifted

kernels and operators)

vyt B) = By + [ (er)TICT(B xa B) (3.4)

F=3,J,7,B
k=1,....n—1

E={E(T),E(B1),E(F1),E[1),..., E(Tn-1), E(Bn-1), E(Fn_1),E(In_1)}, E(Fr)eC

i.e. we allow some classically conormal singularities at all faces. For operators we deal with,
the conormal singularity at the front faces J; will be of the same order for both terms, that is
l=E() == E(J._1), hence we will write U7 (B) instead of ¥7""¥(B). Finally, a subclass
with much more regularity will appear as error terms in the expression of the scattering operator,
those are operators with kernels of the form

[1(re)™ ()P C>(0X x 0X).

k
where ag, b, € C and re, (w,w') := re, (w), ., (w,w') := re, (w'). Recall again that X can be

viewed as the smooth compact manifold without boundary obtained from B by collapsing each
0Ep ~ S"E=L x T to ¢ (0Ek) = cp ~ T*.

Actually, since we forgot the density factors for the kernels, the orders of such pseudo-
differential operators depend on the density we use to pair two fonctions in C"‘X’(B ), thus it will be
necessary to precise it.

4 Resolvent

In this section we analyze the meromorphic extension of the modified resolvent
R\ == (Ax —AX(n—\)"!

and more precisely the necessary informations we shall need to define Eisenstein functions, Poisson
operator and scattering operator. The meromorphic extension of the resolvent is proved in [8] by
parametrix construction. Using also spectral theorem, this can be summarized as follows:

Theorem 4.1. There exists C > 1 such that for all N > 0, the modified resolvent R(\) on X
extends meromorphically with poles of finite multiplicity from {R(X\) > 5} to {R(\) > § — CN}
with values in the bounded operators from pNL?*(X) to p~NL2?(X). The only poles of R()\) in
{R(N) > 5} are first order poles at each \o such that M\o(n — Xo) € 0,p(Ax) and with residue

Resx,R(\) = (200 —n) 7' > 6@ 65, &5 € P RIC(X) € L*(X)

Jj=1

where (¢;)j=1,..r is an orthonormal basis of kerp2(Ax — Xo(n — Ao)).
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Actually the form of ¢; is a consequence of (4.20) which will be proved in this section.

To construct the Poisson operator, we need more precise information about the mapping
properties of R(A) and about its Schwartz kernel structure near infinity. One of the main points
is to analyze the Schwartz kernel of the meromorphic extension of the resolvent

RXk (/\) = (AXk - /\(n - /\))71

for the Laplacian Ay, on the model spaces Xy = 'y \H"*!, and its mapping properties.

Recall that X is a compact manifold with boundary X, hence X x X is a manifold with
corners on which we define the functions

p(w,w') = p(w), p(w,w"):=pw), R w,w):=R.(w), R.L(w,w):=R.(w). (4.1)
Since p, R, are well defined on M}, via I, the functions (4.1) can also be defined on My x Mj.

Lemma 4.2. Let 0,0 € C>®(X}) be functions with support in My, and constant near cy,, then the
extended resolvent Rx, (\) satisfies

ORx, (N0 : C°(X}) — p*RI1C2 (X}) (4.2)

for X ¢ (— — No) if n—k-+1 is odd and for A € C otherwise. If moreover 6,60" are chosen satisfying
supp(f) Ne, =0 and 60’ = 0 then

0 Rx, (N0 € p*p R;1C®(X), x Xi), O0Rx, (N0 € p*p " R.7'C™(Xp x X)) (4.3)

Proof: clearly, it is enough to show the lemma with 6, 6’ which are independent of the variable
z € T*. We recall from [8] that the explicit formula for the resolvent on X} can be obtained by
Fourier analysis on the z € T* variable, Rx, (\) admits a meromorphic continuation to C and its
Schwartz kernel can be written

Rx,(\) = Y e“mCE=2IRr, (\) (4.4)
mezZk

for A E_Np)ifn—k+1isodd and for A\ € C otherwise, with
2
Rp(\my; 2’y y) o= Ck/ e Ry (N, y, 252, 4/, 0)dz (4.5)
Rk

where Cj is a constant, Ryn+1(\) is the kernel of the resolvent of the Laplacian on H"*! and
wm = 27 A, )m. Note that R,,()\) can be considered as an operator -a resolvent- on H"~#+1,
We have seen in [8] that if

zx’

2
:7’2—|—|Z|27 :|y_yl|2+$2+$la d:=—
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then for all N € NU oo there exists a function Fy(A,7) smooth in 7 € [0,1) with a conormal

singularity at 7 = % such that

N—
Rynsr (N 2,9, 22y, 0) = 7 Z ;N T 4 AN By (0 7)

—

<

for some «;(A) meromorphic in A (with only poles at —Ng if n + 1 is even) and if N = oo,

Fs(A,7) = 0 and the sum converges locally uniformly if 7 # % (see also [12] and [23, Appendix

A]). Thus by a change of variable w = z/r in (4.5), one has as in [8, Sect. 3.1]

N-1

, » Fy(\d(1+|2]?)71)
Ak 2 . A+2N Kk IrWyn . 2 N )
R,,(\) =d'r E d¥ Fj \(rlwm]|) +d r /Rke (15 222N

dz (4.6)
j=0

with
Fja(w) = Cy Wl 2K\ o(lul),  Fia(0) = Dy j(N)

K(z) = [y~ cosh(st)e <t dt being the modified Bessel function, Cj,;(A) some holomorphic
functions and Dy, ;(A) some meromorphic functions in C with only first order poles at & — Ny if
n—k+1is even (in fact we have Ro(\) = (22”)% Rygn—rt1(\ — %)). The sum (4.6) with N = oo is
locally uniformly convergent in {d < %, 0<r}.

We first show (4.3) using these explicit formulae. We will better use the compactification
coordinates (¢,u) on My, the functions r and d become

! 2 t'2 a2

d= , T .
lu— |2+ 2+ 12 (82 + [ul?)(#% + |/ ]2)

On the support of ORx, (\)¢' we have t2 +t'* + |u — u/|> > e and d < 3 — ¢ for some € > 0 since
00" = 0, thus (4.6) with N = oo is absolutely convergent there and 7 — +o0o when % + |u|? — 0,
that is when we approach the cusp submanifold ¢, with respect to variables (¢,u). Since Bessel’s
function K (x) = K_s(z) and all its derivatives with respect to 2 vanish exponentially when
r — 00, the kernel

> 0R, (Nem g

m#£0

is in p>‘p'ARC_1COO({)_(;C \ cr} x X}) and can be extended to X}, x X} with

Z OR, (N0 e m =) € P ™ (X x X))
m##0

vanishing at all order at (cg x )_(;C) U ()_(k X ¢k ). Note that we have used that p =t in Mj. For the
term Ro(A), it is clear, using (4.6) and (4.7) that

GRO()\)H’ S pApIAR/CilOOO(Xk X Xk)
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which concludes the proof of (4.3) using the symmetry of the resolvent kernel.

The property (4.2) is more technical since it involves the singularity of Rx, (\) near the
diagonal. Let f € C°°(X},), with support in Mj,. We first study for m # 0 the function 8R,,(A\)6’ fo,
in M) where f,, = (f,e™m)p is the m-th Fourier mode on T* of f. We clearly have f,, €
Coo (FP 1) with

Wl € N,[0% fon| < Contlewm| ™!

with Cy; uniform in m. For simplicity, we consider (4.6) with N = 0 and decompose
Fo(A,7) = x(T)Fo(A 7) + (L= x(7)) Fo (A, 7) =: Fo .1 (A7) + Fo2(A, 7)

with x a C§°([0,1/4)) which is equal to 1 near 7 = 0. The integral

o(t, u)@'(t',u')rkd’\/ e em (14 22) "M Fy 1 (N, d(1 + |2)*) 7Y )dz
Rn—k

is well defined for R(A) > % and is equal by integration by parts to

FO.,l(Av d(l + |Z|2)71)
(Lt [ )dz

Ky = G(t,u)e’(t’,u’)(r|wm|)72Nrde/ e irwm-z AN ( (4.8)
Rr—k

for all N > 0. In view of the smoothness of Fy 1 (A, 7) for 7 € R, it is straightforward to see that
the integrand in (4.8) satisfies

Fy. A,dl—i—zQil 9 _
‘A?( 0'1((1i|2|2|)1> )>‘ < On(1+ |2} RN

and is a smooth function of d for A € C\—Ny, now integrable with respect to z € R¥ if R(\)+N > g
Now since f(t', 1) = O(t'™), we have in H?~*+1 x Hn—k+1

|3§fu(d/t)aﬁfm| < Ca,ﬁ,llwmlila |agud6ﬁfm| < Coz,ﬁ,l|wm|7l

107,70° fin] < Capa(t + ul®) " UHED 2w |70 182, (ri/2 + [u)0° fin| < Captlwm| ™!

by looking at the expression of d,r in (4.7). For A ¢ —Nj fixed, we take N > 2|R())], this proves
that
tf)\(tQ + |u|2)7M d)‘lilfm(t/, u/)t/*nJrk*l(t/Q + |u/|2)§dt’du’
Hn—k+1
is CN in (t,u) € H"*+! for 2M < N and all its derivatives of order a with |a| < N are bounded
by Ci n|wm| ™! for all I, Nym. Thus for M fixed, by taking N — co we see that this function is
smooth in H"~**! and its derivatives are rapidly decreasing in |wy,|.

We now have to deal with the integral kernel

Ko 1= H(t,u)t?/(t/,u')rkd)‘/ e_m”m'z(l + |z|2)_>‘F072(/\, d(l+ |z|2)_1)dz
]Rnfk
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and we will show that

f;n(t,U) — / Kgfm(t/,u/)tl_n+k_l(t/2 + |u’|2)§dt/du'
Hr—Fk+1

satisfies
fro € AR 102, 1] < Calwm| ™ (4.9)

First remark that, since d < %, we have 1 — x(d(1 + |2|?)™!) = 0 if |z| > C for some C' > 0
depending on . We use the change of variables s = t/t',v = (u — «/)/¢’ in this last integral. By

elementary computations, it turns out that
d = (2 cosh(dgn—r+1 (t,u;t',u’))) ™" = (2 cosh(dgn—r+1 (1, 0gn-r;s,v))) !

but Fp2(\,d(1 + |z[*)7!) is supported in {d > €} for some ¢ > 0 depending on y thus it is
supported in {(s,v) € K} where K is a euclidean ball included in H?~**! (thus a compact of
H"~*+1). Moreover in the variables (t,u, s, v),

t

t ,
Ko = 0(t, u)e'(—, u — —v)rkd’\/ e Tem2 (1 4 22) "M Fy o (N, d(1 + |2)%) 7Y dzge
s |z|<C

s
and all its derivatives with respect to (t,u) are in L*(K, s~ 'dsdz), this fact is proved by Perry
[23, Appendix] and is a direct consequence of the conormal singularity of Fo(A, 7) at 7 = % And

from the expression of r, we see that the derivatives of r or order a are bounded by C,t~1~1l for
(t,u,s,v) € H" %1 x K. We deduce that

k
n—k+1 2 2\ 2
t t t t
/ K2 fm <—,u— —v> <—> <<—> + ) s Ldsdv
K s s s s
is in C° (H"**1) since f,,(t,u) = O(t>°) and K is compact. In addition, its derivatives of order

a are clearly bounded by Cy j|wnm |~ for all o, 1. We have thus proved (4.9) and that

u— —-v
S

3" RN =) f € PO ().
m#0

It remains now to study 8Ry(\)6’ fo where fo := (f, 1)7x is the zeroth Fourier term of f. But
recall from [8] that Ry()\) acting on H*~**! is nothing more than the hyperbolic resolvent

(SE

k
Ryn—k+1 <)\ — —;t,u;t’,u/) .

. e — tt/
RO(/\vtauvt u ) = <(t2 + |u|2)(t/2 + |u/|2) 2

for A ¢ (£ —No) if n — k+1is odd and for A € C otherwise. Using the analysis of [17], we directly
obtain that
ORo(N)0' fo € p*R;IC(H 1) c p*RITC,(Xy)

where the inclusion means: consider the function on X} as constant with respect to z € T*. As
a conclusion (4.2) is proved and the proof of the lemma is achieved too, at least for A ¢ —No.
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The points at —Nj can in fact be treated by taking N > 0 large in (4.6) and essentially the same

arguments than for N = 0. O

Now we briefly review the construction of a parametrix for R(\) in [8, Prop 3.1 and 3.5] which
can be continued to infinite order (at least formally, the problem of convergence will be discussed
later). This is obtained by localizing in the neighbourhoods M}, and M, near infinity. One can
construct some operators £X_(A\) on Mj, (k=1,...,n—1) and €7 ()\) on M, such that

(Anr, = An = A)EE (A) = x* + KE (N,

(An, = Aln = A)EL(A) = X"+ KL (N)
with K*_()), K- ()\) having smooth Schwartz kernels K*_(\; w, w’) and K_(\; w,w")) which vanish

at all order when p(w) — 0.

The first step of the parametrix construction of €¥_ () is to take a smooth function x% with
support in M}, which is equal to 1 in {22 + |y|?> > 4} such that x%x* = x* and 1 — x* can be
chosen as a product (see the construction in [8])

independent of the variable on T%; then set
Eg(/\) = XIZ/RXIC (/\)ka K(]Jc()‘) = [AXk7X]Z]RXk ()‘)Xk

and we obtain (A, —A(n—\))E¥ () = x¥+ KEF()) as a first parametrix in the neighbourhood My,
of 9X in X. The next steps of the construction in [8, Prop.3.1] involve only some operators with
Schwartz kernels of the same type than K%()\) but with additional decay at 9X x X in X x X. The
part of the parametrix on M, is done as in the work of Guillopé-Zworski [12] (and more generally
[17]) by using at first step

E5(N) = x5 Rt X", K5 (V) = [Agnes, X3 Remis (VX

with a function x} which is equal to 1 on the support of x" and which can be expressed as a
product x7 (z,y) = ¢} (x)¢} (y) in M,. The other steps of the construction in M, do not make
more singular kernels than K[ () appear.

The previous lemma allows to deduce the following

Proposition 4.3. Let 6,0’ € C°(X) be constant near c and such that supp(6’)Nc = 0 and 06’ = 0.
Then for \ not a resonance, we have

IR\ € R o C®(X x X), O'R(N0 € R, 'ppC>(X x X)
and R(\) has the mapping property

R(\) : C®(X) — R7'\pr 02 (X). (4.11)
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Proof: if we carefully look at the expression of Ko (A) following [8, Prop. 3.1 and 3.5] and we

use previous lemma, it is not difficult to check that
(1) KE (N (Ti)+ € p™p RO (X x X), (4.12)

(L) KT (N (I )s € p®p O (X x X). (4.13)

The second statement is essentially well-known (see [8, 12] for instance) and is a direct consequence
of the explicit formula of Rgn+1(A). To prove the first one, we essentially use Lemma 4.2. It is not
difficult to check (see again [8]) that [Ax,,x%] is a first order operator with smooth coefficients
supported in {1 < 22 + |y|?> < 4,0 < 2} and vanishing at second order at = 0. Using the
compactification coordinates (¢, u) of (2.1), it is also a first order operator with smooth coefficients
supported in {e < * + |y|> < 1,0 < t} for some ¢ > 0 and vanishing at second order at ¢t = 0,
moreover its support does not intersect the support of x*. Therefore, using (4.3) in Lemma 4.2 we
easily deduce that

(1) [Ax XE] B, WXF (In). € pM 29 RUTHC(X x X). (4.14)

Now the iterative construction of [8, Prop. 3.1] corresponds to capture the Taylor expansion of
this term at p = 0 and the remaining error terms at each step are like (4.14) but with more decay
in p; this finally implies (4.12). The terms appearing in the expression of €*_ ()) in [8, Prop. 3.1],
are thus X’ERXk x* plus some operators whose Schwartz kernels are in p)‘+2p’>‘Rf:_lC°°()_(k x Xp,).
Therefore % ()\) satisfies exactly the same properties than Ry, (\) described in Lemma 4.2.

By standard pseudo-differential calculus on compact manifolds, we can obtain the compact
part of the parametrix £_()\) so that

(Ax = An = N))EL(N) = x + KL ()

with K¢_(\) having a smooth kernel with compact support in X x X and &’_()\) being a pseudo-
differential operator of order —2 supported in a compact set of X x X.

Thus we obtain
(Ax = A(n = A))Ex(X) =1+ Ku(N)

with
EoeN) =N+ D (L)€L N Ta)s,

Koo\ =Ko+ D (La) KL (W) T

Using Lemma 4.2, (4.12), (4.13) and the explicit formulae of the regular terms in €7_(\) in [8, 12]
it is straightforward to see that

Koo(N) € p®p R,T'C™ (X x X) (4.15)

080 (N0 € R, NC (X x X), 0E(MN0 € pp " R.TC®(X x X). (4.16)
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Moreover using Lemma 4.2 for the mapping properties of the cusps terms and [7, Prop. 3.1] for

the mapping properties of the regular terms, we have

Eao(N) : C®(X) — p*RILCZ (X). (4.17)
We can then write
R(A\) = Ex(A) = Eco (W) Koo (A) + Eoo(AN) Koo (M) (1 + fKOO(/\))*lfKOO(/\) (4.18)

and (14X (V)™ =1+ F()\) with
This proves that F()) is Hilbert-Schmidt on p"V L?(X) for R(A) > 271 and N large, since Koo (A)
is. Using that p/"R.™" is bounded, the composition Ko (A)F(A\)Koo(A) has a Schwartz kernel in
the same class than Koo (M) (and Koo (N)? too). In view of its construction, we see that the range
of Koo()) is composed of functions with support in X \ ¢, thus we can find a smooth function
0" € 0> (X) with supp(#’) Nc = 0 such that 8’Ko. (\) = Koo (A). Thus if € is a function in C*=(X)
such that # = 1 near ¢ and 60’ = 0 we have from (4.16), (4.15) that

080 (MK (V) € P RIIRLTIC™(X x X). (4.19)
Now we can for example use Mazzeo’s composition results in [15] to deal with the regular terms

(EL ) + (1) € N (I Ko (N) € 0 C(X x X).

Then (1 — 0)(Ix)*EX (A\)(Ix)+Koo()) can be studied exactly with the same method than for the
proof of (4.2) in Lemma 4.2 and we see that

(1= 0) (1) E5 (V) (I) Koo (V) € oA BLT1C™(X % X)
and we conclude, using (4.19), that
€a(NKoo(N) € P RIRLIC™(X x X)
and the same holds for €.,(A)Ko(A)(1 + F(A))Koo(A). We have completed the proof in view of
(4.18) and the symmetry of the resolvent kernel.
Moreover we have also proved that
R(\) — € (\) € (pp')(R.RL)T1C>=(X x X). (4.20)

The mapping property of R()) is then easily deduced from (4.18) and (4.17) since K(\) maps
pNL2(X) to C=(X) if N > |R(\)| in view of the form (4.15) of its kernel. O

Remark: we did not study the convergence problem of the infinite order parametrix €., () but
to avoid this problem, it suffices to take the parametrix &y (A) of [8] for large N and the same proof
actually would show the same results for R(\) but with CM regularity for some M > N — C|R()\)]
(with C' > 0) instead of C'* regularity. Since it is true for all N, we get the same results.
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5 Poisson Operator, Eisenstein Function

5.1 Poisson operator

Using the product decomposition of the metric in Lemma 2.2, an indicial equation for the Lapla-
cian and the mapping property of the resolvent, we can construct a Poisson operator following the
method of Graham-Zworski [7].

Actually, we now work with the special boundary defining function p but every other choice

of boundary defining function p € C22,(X) defined in Lemma 2.2 would induce an equivalent

construction for the Poisson operator. We will simply add the necessary arguments when the gen-
eralization is not transparent.

With the metric under the form (2.13), the Laplacian is
1 _
Ax = =(p0,)* +npdp = STe(h™" (p)-0,1(p))P* 0y + p* (). (5.1)
In the neighbourhood Mj, of the cusp ¢ this gives
Ax = —(pd,)? +npdy — 2k(p* + [ul?) 1 p*8, + p* Ay

with h(p) = du®+(p?+|u|?)2dz? a metric on {0 < |u| < 1} x T, and by an elementary computation
we obtain

RAXR; = (00, + npd, + p*(Au + (07 + [u*) 2A.) (5.2)

where A,, A, are the flat Laplacians on R? =% T*. Similarly with a function p of Lemma 2.2 we
have 1
Ax = —(p9p)* +npds — §Tr(h_1(ﬁ)-aﬁh(ﬁ))ﬁ28ﬁ + 7 Ay + O(5).

and in coordinates (p, v, () near ¢, we see from (2.11) that
RAXR;' = —(p0;)? +npds + PL+ Py + pe 2r *Ac + 0(p™)
for some differential operators
Py = Pi(p,v,p?0p, p0), Po = Pa(p,v,(, pOy, pOc) = O(r®)

of order 2, with P, (resp. P;) having smooth coefficents on X (resp. smooth outside cz). By
making the same change of coordinates (2.9) in (5.2), it would give some differential operators
with smooth coefficients at ¢, except the term with A thus P; has to be smooth at cy.

We now use Graham-Zworski’s construction [7] and we refer the reader to their paper for
additional details. If f € C2°.(0X) we deduce from (5.1) and (5.2) the indicial equation in {p < €}

acc

(Ax = A = N)p" MR —j@A—n—j)p" MRS f € Pt MIHRIICE(X). (5.3)
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Here, the key fact is that the singular term 7, %A, applied to f € C>,(0X) gives a functions in
C>°(X) by (2.7). Therefore for all f € R7'CS

C acc

lemma (see again [7]) a function ®(\)f € p"*R;71C

acc

(0X) one can construct by induction and Borel
(X) for A € C\ 4(n + N) such that

(Ax = A =A)eN)f € C=(X), P "N flpm0 = /.

By construction, we have the formal Taylor expansion

QN ~p" > pYeiaPinf, Vf € Cin(0X) (5.4)
j=0

where P;  is a differential operator on B which is polynomial in A and

TR -5 )

Sy o— (—1)
o = =gy

Now we can set for A ¢ (n + N) and A not a resonance
P = 2N f = RA)(Ax = Aln = )@\ f (5.5)

which satisfies
(Ax = A(n = A)PA)f =0
PN =p"EN f) + G, f)
F(X f),G(\ f) € R71C(X)
E, Plo=o=f

using Proposition 4.3. We have defined a family of operators

PN : RO (0X) — p" RO

acc dCC(X) —"_ p)\Rc_lchCOC(X)

and we will now prove the uniqueness of an operator satisfying (5.6) in {*(\) > Z}. The principle
is the same than in [7]: if ®(\) > &, X not a resonance and P1(A)f, P2(\)f are two solutions of
(5.6), then the previous indicial equation shows that Py(\)f — Po(N\)f € p* R71C=(X) but this
function is in L?(X) using (2.6) so this must be 0; to treat the case R(\) = %, we use a boundary

pairing Lemma like Proposition 3.2 of [7]:
Lemma 5.1. Fori=1,2, let u; = p" *F; + p*G; some functions satisfying
(AX — /\(n — /\))UZ =7r; € COO(X)

with F;,G; € R;1C*(X), then we have for R(\) = 5 and A # 5

/ (wiTz — muz2) dvoly = (2A — n)/ (Fi|pFs|s — G1|BG2|B) dvoly,
X B
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Proof: we apply Green Lemma in X, = {p > ¢}

/ (ulfg - UQTE) dVOlg = ¢ "t /_ (ulapdg — Ujg(r“)p’u,l) dVOlh(e) (57)

€ pP=€

and we will take the limit as ¢ — 0. Using the asymptotics of w1, us we get
ulap’lfg — Egapul =(2X — n)pn_l(F1E — GlG_Q) + pn(G1apG_2 — GgapG_l + FlapE — EapFl).

Recall from (2.5) that dvoly() = Re(€)?p1px with Re(e) = (ju|? + €)% in the neighbourhood By, of
the cusp submanifold ¢, so the only terms in the right hand side of (5.7) for which the limit are
not apparent are

6/ (GlapG_g — GgapG_l) dVOlh(e), 6/ (Fl (9PE — Fgapﬁl) dVOlh(E).
p=¢ p

=€

The study of both terms when ¢ — 0 is the same and can be clearly reduced to the limit of
/ / G1(e,u, 2)edGale, u, 2)(|u* + €2)* dugn—r dzpr (5.8)
Tk Ju|<1

when € — 0, G;(p,u, z) being the function G; in the coordinates of the neighbourhood By, of c.
Using that on G; € R;1C%°(X), it suffices to show that the limit of

/ D [([ul? + ) 2] (Jul® + €)% dugn+
|ul<1

is 0 when € — 0 to prove that the limit of (5.8) is 0. Now this last integral is equal to
1 [eS)
C’/ Er? &)kl < Ce/ (1+r*)"tdr
0 0

for a constant C', this finally proves the lemma. O

Now using this lemma with ug = R(n — A for o € C°(X) and u; = Py(A\)f — Po(N)f this
proves that (u;, ) = 0 for all ¢ € C*(X), thus u; = 0. As a conclusion, we have

Proposition 5.2. For R(\) > 2, A ¢ 1(n+Np), A(n—A) ¢ 0p,(Ax) there exists a unique linear
operator

PN : RTICZ(0X) — p"RINC%(X) + p*RITCEL(X)
analytic in A and solution of the Poisson problem (5.6). It is given by (5.5) and called Poisson
operator.

By (5.5) it admits a meromorphic continuation with poles of finite multiplicity to C\ 3 (n+Np).



158 Colin Guillarmou CUBO
11, 5 (2009)

5.2 Eisenstein functions

In this part, we define Eisenstein functions as a weighted restriction of the Schwartz kernel of the
resolvent at B x X and we prove that they are the Schwartz kernel of the transpose of the Poisson

operator.

As a consequence of Proposition 4.3 and (4.20) we first obtain the

Corollary 5.3. The Eisenstein function E(\) := (p"*R()\))|pxx is well defined, meromorphic in
A € C and satisfies
E(\) € R.'C™®(0X x X). (5.9)

Moreover, if Emoa(X) is the ‘model Fisenstein function’ defined by
Emod(A) = (p_)\g’oo(/\)”BXX

then
E(N) = Emoa(\) € pN(ReR)1C™(0X x X). (5.10)

Let Ex, () be the Eisenstein function for the model space X obtained from (4.4) and (4.6)
(recall that p =t = 773y With our choice in Lemma 2.2)

A 1 _
Bx,(\y, 212,y 7)) = [y[Pa e 2R N e GoH R | (rlw))
mezZk

for y # 0, where by convention r = (|y — y/'|> + x’2)% denotes here the restriction of r to z = 0. In
the compactification coordinates (¢, u) of (2.1) this gives

Ex, (\ju, z;t' 0, 2') = t'Ar_”"HC|u|_2)‘(t/2 + [u/[2)™* Z ei“’m'(z_z/)Fo_,A(ﬂme (5.11)
meZF

and r is expressed in these coordinates by

12 a2
oo Lz wP (5.12)
[ul2( + [u/]?)

Similarly let Egn+1(\) be the Eisenstein function on H"*1

T 5D (N "

A=) TA—2) (jy — g2 + a2 (5.13)

Egnn (N y;2',y) =

Using the construction of the parametrix for the resolvent, we can deduce an expression for
the model Eisenstein function

Ermoa(A) = Z (ta)" Epod(N) (a)s (5.14)
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with 1 1= Io|p=0 and in My, M,
ErnoaNs s z30') = 0F (1) Ex, (s, 250 )x* (w),

EroaNs g3 w') := 0L ()7 ()~ B (N 5w (w). (5.15)
with p(x,y) = zv-(y) + O(z) in M, for some positive smooth function ~, in B, and ¥¢ defined in
(4.10).

We show that the Eisenstein functions can be viewed as a Schwartz distributional kernel of
an operator, that we also denote E()\), mapping C*(X) to C~°°(B), actually with weighted L2

continuity results.

Lemma 5.4. There exists C > 1 such that for |R(\) — 2| < C~!N,
E\) : pNL*(X) — L*(B)

is a meromorphic family of Hilbert-Schmidt operators with poles of finite multiplicity, included in
the set of resonances. Moreover for R(\) < 0 and A not a resonance, (b, w) — p(w) " E(\; b;w) is

a continuous function on B x (X \ ¢).

Proof: the terms E(X\) — Epoa(A) and (¢)*E" (A (L)« in E(X) clearly satisfy those two

properties, we thus only have to deal with EX (\) in Xj;. From (5.11) and (5.12) we have

t/%(A)+N(|u U2+ t/2)§—§R(>\)

|t'NEXk()\;u,z;t',u',z')| <

Y 1Foa(rlwm])l.

/|k
mezZk

Juf*u

When 7|w,,| > 1, the classical estimate |K (z)| < Ce™“®() for R(z) > 1 (with C > 0 depending
on s) on Mac Donald’s function shows that |Fy \(r|wm|)| < e=C"loml thus

> Bl <Ot <ot
|wm|>1/7
where C' depends on A. Therefore we get for N > 4|R()\)]
t’SR()‘)JrNﬂu — /|2 + t’2)§*m(k)

Jul*fu']*

1N IS =k —k
[t Ex, (M| < C Jul 7’7" + Y |Foa(rlwm))l (5.16)

|wm|<1/7r

Now for r|wm,| < 1 we use the definition (6.4) of Mac Donald function K(z) to decompose
FoA(r|wp|) under the form

Fo(rlwml) = e (@i (% |wml?) + 127 w2 o5 _x (7w )

with ¢4 (x) smooth on z € [0, 00) and ¢()) constant depending on A. The term coming from P_ark
is treated exactly as before (the part with r|w,,| > 1) and for the term coming from ¢, _ § we have

S (DO oy (2w l?)] <

|wm |<1/7

C(r=F 4 r2RO=2k) if R(N)
Cr=Fk if R(N)

INESENI

<0
>0



160 Colin Guillarmou CUBO
11, 5 (2009)

for some C > 0 depending on |A|. In view of (5.16), we conclude that for N > 4|R()\)| + 2k

N RU—— -1
(k)" Ex, () (In)«| < Cp"F RT'R;
and this function is in L?(B x X) if N is large enough using (2.6) (here R. denotes the restriction
of R. to B x X). The meromorphic property and the finiteness of the poles multiplicity comes
from the discussion before the Lemma, using the formulae for the model Eisenstein functions and
the fact that the poles of the resolvent have finite multiplicity.

The second statement of the Lemma is essentially treated in the same way. Using that for

R(A) <0
PR A (rlwml) = €)1 (2w ?) + P o, (72 |wm]?))

is continuous in (u,#,u') € {u # 0,u’ # 0,t'* + |/|> < 1,|u| < 1} (the power in r~2* heing
negative) and that the sum >, r=2***Fy \ (r|w,,|) is locally uniformly convergent in the same set
by previous estimates, we deduce that t'_’\EXk(/\;u,z;t’,u',z’) is also continous there and this
achieves the proof. O

The transpose ‘E()) is then well-defined from from L?(B) to p~~ L?(X) for some N depending
on \ and its kernel is E(\;w,b). Let ¢ € C*°(X) and f € C2(9X) ~ C*°(B), then for R(\) = 2
we use Lemma 5.1, identity R(\) = 'R(\) = R(n — \)* and Lemma 5.4 to deduce

/ e(PA)f) dvol, = (2A— n)/ f(p*"R(n — N)p)|g dvoly,
p's B

(2) — n) /B (o ROV |5 dvoly,

(2X — n)/ F(E(N)@) dvolp,
B
which proves

Lemma 5.5. The Schwartz kernel of P(X\) is (2A — n)E(A;w;b) € C*(X x B).

This also implies that P()\) admits a meromorphic continuation to C with poles of finite
multiplicity, and in particular it is analytic in {J(\) > %} except a finite number of poles at points
Ao such that Ao(n — o) € 0pp(Ax). By mimicking the proof of Graham-Zworski [7, Prop. 3.5] it
is straightforward to see that, for f € R71C5.(0X), P(% + k) f has log(p) terms in the asymptotic
expansion and it is the unique solution of the problem

(Ax — 2 +K)P(2 +k)f =0

P(2 + k) f = pb FE(f) + p% F log(p)Gi(f)
Fi(f),Gu(f) € R71C32(X)

Fi(f)lp=0 = f

(5.17)
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The Eisenstein functions are linked to the spectral projectors (via Stone’s formula) of Ax in

the following sense

Proposition 5.6. If R(\) = 5 and A # 5 then

R\ w;w') — R(n — X wyw') = (n — 2)) /B E\;b;w')E(n — A b;w) dvoly, (b) (5.18)

where h = (p?g)|p. Moreover there exists C > 1 such that for N large, we have
R(A\) —R(n—\) = (22X —n)'E(n — N E())

in the strip [R(\)| < C~IN as operators from pN L*(X) to p~NL?*(X).

Proof: the proof of (5.18) contains nothing more than the proof of Theorem 1.3 of [3] or
Proposition 2.1 of [11] in a simpler case. Note that the convergence of the integral in (5.18) is
insured by (5.9) and (2.5). The second part of the Proposition is a consequence of the mapping
properties of R(A), E()\) proved before. O

Combined with Lemma 5.4, this relation implies that E()\) and R(\) have same poles, except
possibly at the points A such that A(n — \) € op,(Ax).

6 Scattering Operator

Using notations of (5.6), we can define the scattering operator as the linear operator

oy { RCE(0X) — R;C(0X) 61)

f - G(/\vf)|B

for R(A) > 2, A ¢ 2(n+ N) and X not a resonance. With (5.5), one obtains a meromorphic
continuation of S(\) to C. Like P()), the scattering operator certainly depends on the choice of
boundary defining function (here p), but any other choice p = e*p € C,(X) of Lemma 2.2 induces
an equivalent construction and two corresponding scattering operators S(\) and S()) are related
by the covariant rule

SA\) = e 08NV o = wlax,
this is a trivial consequence of uniqueness of solution of Poisson problem. Therefore it suffices in
this section to deal with the special boundary defining function p.

From Lemma 5.5, (5.5) and (6.1), we deduce that for f € C>®°(8X) ~ C°°(B) and R(\) < 0

SIS = lim[p (2 — ) B — BN f)] = (2X — n) lim o~ (EN) /) (6.2)

p—0 p—0
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which is well defined in view of the continuity of E(\; b; w’) proved in Lemma 5.4. As a consequence
the distributional kernel of S(\) on B is

SOubib) = (20— n) Jim (o) *E(; b))
which can be rewritten using the symmetry of the resolvent kernel as the restriction
SO = 2\ = n) (70" T R(OV)|p=pr =0 (6.3)
for R(A\) < 0 and A not resonance. Moreover we deduce from (4.20) that
SO = (70 €ae(AN))]pmp=0 € RTTR,T'C(0X x 0X)

which is easily seen to be compact on L?(B) in view of (2.5), and this term extends meromorphi-
cally to C with poles of finite multiplicity.

We want to study the structure of the extendible distribution (6.3) on B x B, which continues
meromorphically to C; it suffices actually to describe the singular part (p=*p'~ ’\800(/\))| p=p'=0 Of
S(N). To analyze this singular part of S(A) in the neighbourhood of the cusp submanifolds, it
turns out to be more convenient to work in the neighbourhood M} with the coordinates (z,y, 2)
than in their compactified version (¢, u,z). Indeed we will see that, up to conformal factors, the
scattering operator for the model X = 'y \H"*! is A;\,k_% where again Y, = R*™* x T* with the
flat metric. This is what Froese-Hislop-Perry used in [3] in dimension 3.

Using Fourier transform in the (y,z) variable on X} we see that the Laplacian on Xj is

transformed into the one dimensional operator

P, = —2202 + (n — 1)x0, + 2|6 2

m

with &, = (§,wnm). We easily deduce that the resolvent can be expressed by
ROy = (a3 [ e Ge, (e
mez
Ge, (N,2") == Koy (|&mla) Ir— g ([6mo') H (2 = 2) + Kooy (16m2) g (16m|2) H (2! — )

with H the Heaviside function, (w;w’) = (x,y,z;2',y’,2’) the coordinates on Xj; x Xj and
I,(2), K, (2) the modified Bessel functions. Therefore using that p = 7z and

2—11 1%
vI'(v)

+OERY K (2) = —=DW)D(—v) (L (2) — [_,(2)) (6.4)

I(2) = g

as z — 0, we obtain for #(\) < 0 (using {p =0} = {x# =0} on B)

B vl ) = > T (BT
AL = R TE
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and

Sx, Ny, 2y, 2) = (A — n)[
(

) Ex, (\y 2wy, 2)]la=o
PP Y [ et pnge

meZ

(x

b

= 2"

Y
- )
(A —3%)

3
> wl:

where this last sum-integral is understood (by splitting the term with w,, = 0 and the terms with
wim # 0) as the function on RI™F x TF x RZ/_k x Tk

22— no—5
2 F(/\ - _) |y y | —2)\+k + Z / iﬁm.(y—y/,z—z')|§m|2)\—nd§
m#0

which is continuous on {y # 0,3y’ # 0}. This last function continues meromorphically to A € C in
the distribution sense thus

Y
Shod(Niy, 25y, 2) o= [p(a y) B a(N s 28y, 2 )] la=0 = UF (1) Sx, (A, 2395 2)0F (y)
(6.6)
continues meromorphically to C as a distribution. Note that the measure dvoly, on Y} is

dvoly, = |y|™*"dydz.

To work on Yy = RZ"“ x TF with the natural measure dydz corresponding to the flat metric %0,
we have to multiply the kernel of Sx, (A) by |y|~"|y/|~™, thus (6.6) can be rewritten, acting on
L?(Yy, dydz)

Iz - )

r(A-3)

D . n . n—
Smoa(N) = WL [y[PA AT, 7 [y 98 with ¢(A) =277 (6.7)

Note that it has poles at A = & + j (with j € N) with residue the differential operator on Y3

( 1)]+12 27

.71/; 2N, |y|Py* on LA(Yy, dydz
TG =1 Llyl? ALyl (Y, dydz).

Resz; (Soa(N) =

For the singularity of the kernel of S(\) in the regular neighbourhood B, on L?(B,,dvoly,)
(to see it acting on L?(B,, dvol;, ) it suffices to multiply the kernel by (rcr¢)™) we define the model
scattering operator using (5.13)

773 T(\)

Semt1 (N y39) = 2\ — n)[w'_)‘EHn+1()\; Ui 2y )] |w—0 = =—t |y — Y|~
r(A—3)
and we get from (5.15)
St oa sy = [pl A Ay o /=0 7¢L( S )Snlz\; iy, 6.8
mod( Yy y) [p( y) mod( 'Y y)” Y (y) 'Y'r(y) H»+ ( Yy y) ( )

which continues meromorphically to C with poles at % + j (with j integers) and residue

( 1)J+12 2j

ReSngj(Szwd(/\)) = GG —1)!

wmr 2 JAﬂkﬂVT i JQ/JT
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With notations of (6.8), (6.6) we can now define the model scattering operator

Smoa(N) = D (ta) Sinea(N)(ia)s (6.9)

a=1,...n—1,r

and we have

S(A) — Sk _,(\) € RIIRLTTC®(0X x 9X)

which is a compact operator on L?(B). From this study, it is straightforward to check that S(\)
is a bounded operators on L*(B) in {R(\) < %} (and X not resonance).

We summarize this discussion in the following

%0 (0X), with Schwartz
kernel the meromorphic continuation from {R(\) < 0} to C of the distribution

Lemma 6.1. S()\) is meromorphic in C as an operator acting on R;71CSS

2\ —n)(p~ 0 T R(N)|sxp € C7(X x X).

Its poles in {R(N)
the poles in {R(N)

< are included in the set of resonances and have finite multiplicity, whereas
> are first order poles with residue

7}
7}

_EpTe gy fho=2+4jjeN
RGS)\OS()\) = J'G—1)! J Ao ' 0= 35 757
I iflod 2 +N

where Pj is the differential operator on (B, ho) with principal symbol oo(P;) = |§|}211, defined by

. _1)i-2
[Resz 1 jp A0 (N)]p=0 = (Jl(])i_l)l

and I, is a finite-rank operator with Schwartz kernel 2j ((pp')_)‘o ResAOR()\)) |BxB satisfying
rank Iy, = dimkerz2(Ax — Ao(n — Ag)).

P;

Proof: the meromorphic property of S(\) and its Schwartz kernel have been discussed, the
statement about the poles outside {R(A) < %} is also clear by (5.5) . For the case of a pole g
with R®(Xo) > 5, the proof is the same than [7, Prop 3.6]. The fact about the rank of IIy, is quite
straightforward by mimicking the proof of [10, Th. 1.1]: we only need the indicial equation (5.3)
and that there is no solution of (Ax — Xo(n — Ao))u = 0 with u € C°°(X), this last fact being
already proved by Mazzeo [16]. O

Note that this Lemma also holds for any boundary defining function p € C2,(X). The oper-

acc

ators P; will be discussed in next section.

We now give functional relations for Eisenstein functions and scattering operator:
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Proposition 6.2. If R(\) < 0, we have for w e X, V' € B,

E\V;w) = —/ S\ 0 50)E(n — X;by;w) dvolp, (b)
B
and there exists C' > 1 such that for N large the meromorphic identity
E(A\) =-=S(\)E(n—X\) (6.10)

holds true in the strip —C~*N < R(X) < 2 as operators from p" L*(X) to L*(B).
Proof: if for w € X fixed and R(\) < 0 we multiply (5.18) by p(w’)™* and take the limit
w’ — b’ € B, then we obtain the first result using the symmetry of the resolvent kernel (which also
induces the symmetry of the kernel of S()\)). The next part is just a meromorphic continuation
using mapping properties of E(A) and S(\). O
We deduce easily from this Proposition and Proposition 5.6 the

Corollary 6.3. If Ao is such that R(Ao) < 5, Ao(n— Xo) ¢ 0pp(Ax) and S(A) holomorphic at o,

then Ao is mot a resonance.

Here is another inmportant property of S(\):

Proposition 6.4. For R(\) = 2, S(\) is invertible on L*(B) and we have

SA) =8 -\ =80\)*

Proof: the unitarity of S()\) on the critical line comes directly from the density of C*(B) C
C2.(0X) in L*(B) and Lemma 5.1 whereas the equation S(A\)~! = S(n — )) is a consequence of

acc

the definition of S()\) and again the density of C22,(0X) in L?(B). a

acc

We give a description of the scattering operator as a pseudo differential in the class defined

in Section 3 and characterized by the type of singularity of its Schwartz kernel on the blown-up
manifold B x¢ B.

Theorem 6.5. Let A\ € 5 + N and X not a resonance, then with definition (3.4), the scattering
operator S()\) is a ®-pseudo-differential operator on B of order

S(\) € U EX(B) 4+ (R.R.)1C=(8X x 8X)
with respect to volume density dvoly,, where fork=1,...,n—1

Ex(Fk) = =2\ =k, Ex(J%) = —4)\, Ex(Tx) = Ex(Bx) = —k.
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Proof: for technical reasons, we begin by working with the density dvolﬁo and it will suffice

to multiply by the correct factors at the end. If n € C§°([0,00)) is a function which is equal to 1

in a small neighbourhood of 0, we can decompose (6.7) as
SE ) = eE P (n(ANVAYTZ 1 (1 — n(Av DAY ) F [y 22—
mod(A) = c(MVULy| N(Ay)Ay * + (1 =n(Ay;)Ay, * ) 07yl

on L?(Y},dydz). The first term has a kernel

wf(y)w’“(y’)lylw‘"ly’lw‘"/ keif'(‘”‘y')|§|”‘"n(|§|)d§

n—

which is smooth for y,4’ in R"~* and since it is the Fourier transform of a distribution classically

conormal to 0, it is straightforward to check that it can be expressed by

VEYE )P Y PRV + y — Y ) (6.11)

with F)(z) smooth on [0,00) and having an expansion

F(z) ~ 2= " a;(\)2 ) (6.12)
i=0
when 2 — oo0. To describe the singularity of this kernel on the manifold B, we use near infinity
the polar coordinates v = |y|™',w = y/|y[,v" = |y/| ', w’ = ¢//|y/|. Since |y —¢/| = |% — %| we
deduce that the kernel (6.11)
ko9 kW Zon 22+ w W]
z Z T2/ TEATR 14+ |= =
¢L(v)¢(v,)v v A + > >
First, it is clearly smooth in B x B. By lifting |% — “’T/|, v,v" on B x¢ B we have that
w & _ _
ﬂqp* 1+ U - — PTLPBLLPTF, € COO(B X B) (613)
does not vanish on Fy, By, T and
Bo™ (v )p3. P! p5ley” € CF(B xa B) (6.14)

does not vanish on Ty, By, Fi, Ix. From this and (6.12) it is straightforward to check that

-n A-g —-n n— n—2A—k — n oo ( D D,
P (A AL 2Ry € (o s, ) e TP T s PO (B <o B). (6.15)

k

To deal with the term ¥ |y[?*~"(1 — n(Ayk))A;:%z/JﬂyF)‘_", we first analyze the operator

A = Ly Ay )N Ry
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For that we can begin to use a partition of unity (6;); associated to a covering by some euclidian
ball on T* and some functions ¢/ € C§°(T*) such that §; = 1 on the support of 6;, then it is
standard to see that for s € C\ [0, c0)

(Aye +1=8)7" =Y 0/(Apn +1—5)7"0; + r(s) (6.16)

K(s) == (Ayr + 1= 5) 7Y (AL 0)(Agn + 1 —5)710;.
The kernel &(s;y, z;y', 2’) of k(s) can be written as the composition
K(s;y, 29", 2") = (Ay, +1 - S)p/ ri(siy —y' 2 — 2 )ka(siy =y, 2 2")dy'dz" (6.17)
Y
with
(s V,2)i= 3 [ O DL € )
meZ Rn—k
kao(s;y' —y', 2, 2") = Z[AZ/,HQ(Z')](AW +1 =8Ny, 25y, 20 (2.
Since for some € > 0 we have [A,/,0/(2")]0;(z") = 0 for |z — 2’| < ¢, it suffices to use the explicit
formula of the resolvent kernel of Ag» with Bessel functions to see that k2 (s) is smooth and satisfies
the estimate

|0 s 2nia(s;Y, 2, 2")| < Coexp(=Cav/R(s)(1 +[Y]?))
for R(s) > 1 and some constant Co, > 0. The kernel r1(s) is continuous and uniformly bounded if
p is large enough, moreover it satisfies for all N > 0 the estimate

0% k2(s:Y, Z)] < Can(L+ Y)Y

for some constant Cy, ny > 0. Therefore, using all these estimates and change of variables y' = u+y
in (6.17), it is straightforward to check that k(s; w;w’) is smooth and satisfies the estimate for all
N>0

|05 ot w;w")| < Co e “RO (14 |y —y/) 7. (6.18)

for some constant C, n,C? > 0 and using the notation w = (y, z),w’ = (v, 2').
Let T be the oriented contour in C defined by
1 iT 1 iz
F:{§+T8 4;oo>r>O}U{§re 1,0 < r < oo}
As a consequence of (6.16) and using Cauchy formula, the kernel of A()) is (with the notation
w=(y,2),w = (y,2)

AN w;w') = Ay (s w,w') + As (N wyw'),

Arws ) = O )y )l 1Y 92(2)91-(2’)/ &= (1 4 e E g,

n
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A ) = o () [y () |y A / P (s wi ) ds.
T

To analyze A;(\), we use the polar coordinates v = |y|™t,w = y/|y|,v" = |¢/|7L, o’ = ¥'/]y/| in
the 5, variables and we have w —w’ = (% — <z — 2’) which vanishes only (and at first order)
on the lifted interior diagonal Dg of B xg B. From the Fourier representation of A;(s;w;w’),
we deduce that A;(s;w;w’) is a distribution which is polyhomogeneous conormal to Dg of order
2\ —n, vanishes at all order on the boundaries T, By, 1 of B x¢ B and has a conormal singularity
of order —4\ + 2n at Jj, (this last one coming from the term |y|?*~"|y/|?*~" as before):

By A1(N) € p; PP (B X B; Do).

The behaviour of A2(A) comes directly from (6.18) using the polar coordinates and (6.13) and
(6.14) as before: we see that

Gada(N) € P35 955, 5, 3,2 O% (B x5 B)
thus

BaAN) € py 222 "(B x ¢ B; Dg). (6.19)

k

For N > R(\) — &, we have

Smoa(A) = (MU |y " (n(Ay)Af% F(1+ Ay )2+ (L+ Av) V(1 + Ayk))¢k|y|2kf%
with
ox) =2~V ((1 —nlz—1))(z -1 % —(1— W(I))ZCAf%)

which is a symbol in (0,00) of order A — & — N — 1 in the sense that it has a support in [¢, co) for
some € > 0, it is smooth and satisfies

|0h0(2)] < Ci(1 + )RV EINL

Hence following the method of Helffer-Robert [13], we have

1+ Ay) =5 [ Mgl(s)(1+ Ay,)~ds

T J—ico

where M(y](s) is the Mellin transform of ¢ defined by
Migl(s) = [ ol
0

and which is rapidly decreasing on iR. From the previous study of (1+Ay, )*~% and using Mellin’s
transform, we deduce that if B(A) is the operator

B(A) = YLy (1 + Ay ) Veo(1 + Ay, )ty
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then its kernel satisfies

BX\wiw') = By(Aw; w') + Ba( A wiw')

Baww') = v @Rl P S ) [ V(1 + €
(14+ AN e

By wiw') = v () [yl 0 )y T

M[(p](s)/FTS_%I{(T;U),U)I)deS.

—100
In view of the estimate (6.18) on k(7;w;w’) and its smoothness, we easily obtain that the kernel
By(\;w;w'), when lifted on B x¢ B, has exactly the same properties than Ay (A\;w,w’). For the
term Bj(\;w;w’) we can proceed as for A;(\;w,w’) and it finally shows that

6<I>*B(/\) c p;k4A+2nI2>\—n—l(B X o B;D<I>).

Combined with (6.15), (6.19), this proves the Theorem after multiplying by the lift of (r.r.)~™ to
return with the correct density. O

Remark: As a consequence, we can obtain quite general mapping properties for S(\) (i.e. the
actions of S()\) on extendible distributions on B conormal to dB) using general theory for those
operators, see for exemple Vaillant [26, Section 2.2].

7 Conformal Operators on the Boundary

As explained by Graham-Zworski [7], there is a strong connection between scattering theory on
Einstein conformally compact manifolds (in particular convex co-compact hyperbolic quotients)
and conformal theory of its boundary. Here similar results hold in this degenerate case.

First recall from Lemma 2.2 that for any fLo = e2oh, € [ho]ace, there exists a boundary
defining function p = e¥p € C2,(X), unique up to C>°(X), such that w|yx = wo and which put
the metric under the almost product form (2.12). This gives a way to identify special boundary
defining functions of Lemma 2.2 with representatives of the subconformal class [hg]acc. Moreover
we saw that the scattering operators S()), S (M) obtained by solving Poisson problem respectively

with p and p (i.e. for conformal representatives hg and hg) are related by

S\ f =e 05 (N)erNwo f. (7.1)

In this sense, S(A) is a conformally covariant operator and by looking at the residues we have the
rule

Pj = e(_%_j)“’opje(%_j)wo

which also makes this differential operator being conformally covariant.
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Let us now give a few words about conformal GJMS Laplacians. In [6], Graham-Jenne-
Manson-sparling defined, on any n-th dimensional Riemannian compact manifold (M, hg), a family
of “natural” conformally covariant differential operators (P;); with principal symbol A‘;m. We call
P; the j-th GJMS Laplacian. They are defined for j € N if n is odd and for j < n/2 integer if
n is even and natural in the sense that they can be written in terms of covariant derivatives and
curvature of hy and conformally covariant in the sense that the operator Pj obtained with the same
expression than P; but with a conformal metric ho = e2*0hy is related to P; by the identity

P] = 6_(%+j)“’0pje(% —J)wo .

Moreover P; is Yamabe’s Laplacian and P is Paneitz operator. If hg is locally conformally flat
and n > 2 is even, it is also proved in [6] that the P; can be constructed without obstruction for
any j € N, this is the case in particular of the conformal infinity of a convex co-compact hyperbolic
quotients. Note that, since the expression of P; is local with respect to the metric, these operators
can also be defined on non-compact Riemannian manifolds. Graham and Zworski [7] show that on
asymptotically Einstein manifolds (X, g) of dimension n + 1 (with X the conformal compactifica-
tion), the residue Resz ;S (A) of the scattering operator obtained by solving the Poisson problem
with boundary defining function z is P; on the conformal infinity (0X,2%g|,y5) for any j integer
if n is odd (resp. for j < % if n is even). Actually, we learnt from Robin Graham that this also
holds for any j if n > 2 is even and if (X, g) has negative constant curvature outside a compact
set, where in this case the conformal infinity is locally conformally flat. The reason, given in [4],
which makes this special case working is that there is no obstruction to construct a hyperbolic
conformally compact metric g on (0,¢€], x M with conformal infinity (M ~ {x = 0}, hg) for any
(M, ho) locally conformally flat compact manifold, and actually g is necessarily given by

1
g=a2"2(dx* + ho — 2*P + x4(1Ph51P)) (7.2)

where P = (n — 2)"1(Ric — (2n — 2) "' Khyg) is the Schouten tensor of hg, with K, Ric the scalar
and Ricci curvatures of hy. This is a consequence of the constant curvature equation.

Since in our case the metric on X = I'\H"*! is also hyperbolic, the curvature equation (which
is local) implies again that the tensor h(p) in (2.12) has all its Taylor expansion with respect to p
at p = 0 determined by ho = h(0) if n > 2: the expression of i (p) is explicit and, like (7.2),

~ 1 A
h(p) = ho = §*P + p*(; Phg ' P)

with P is the Schouten tensor of ho.

If n > 2, we saw that the expression of Resn ;;S()\) is obtained from the construction of ®())
exactly like in the convex co-compact case (the construction is local in term of fL(ﬁ) thus in term
of ﬁo). By equivalence of the construction of ®(X) in [7] and in our case, it is clear that
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Proposition 7.1. The operator P; of Lemma 6.1 is the j-th conformal GJMS Laplacian defined in

[6] on locally conformally flat compact manifolds in the sense that it has the same local expression

in term of the metric hg.

Received: March, 2009. Revised: May, 2009.
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