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ABSTRACT

We give an explicit description of the Hilbert scheme that parametrizes the closed 0-dimensional
subschemes of degree 4 in the projective plane that allows us to afford a natural embedding
in a product of Grassmann varieties. We also use this description to explain how to apply
Bott’s localization formula (introduced in 1967 in Bott’s work [2]) to give an answer for an
enumerative question as used by the first time by Ellingsrud and Strømme in [8] to compute
the number of twisted cubics on a general Calabi-Yau threefold which is a complete inter-
section in some projective space and used later by Kontsevich in [16] to count rational plane
curves of degree d passing through 3d − 1 points in general position in the plane.
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RESUMEN

En este trabajo, damos una descripción expĺıcita del esquema de Hilbert, que parametriza
los subesquemas cerrados de dimensión cero y grado 4 del plano proyectivo, esto nos permite
mapear este esquema en un producto de variedades de Grassmann. Usamos dicha construcción,
para explicar como se utiliza la fórmula de localización de Bott (introducida en 1967 por Bott
en [2]) para responder una pregunta de Geometria Enumerativa, tal como lo hicieron Ellingsrud
y Strømme en [8], para calcular cuantas cúbicas torcidas existen en una variedad de Calabi-
Yau tri-dimensional, que es una intersección completa en algún espacio proyectivo, y que fue
usada posteriormente por Kontsevich en [16], para contar curvas planas racionales de grado d

pasando por 3d − 1 puntos en posición general en el plano.

Key words and phrases: Hilbert scheme, Bott’s localization formula.

Math. Subj. Class.: 14C05, 14N05.

1 Introduction

Enumerative geometry has been an active and attractive research subject in math for a long time.

A typical problem in enumerative geometry asks for the number of geometric objects of a certain

type that satisfy a given set of conditions. For example:

1. Very easy: given two distinct points in the plane, how many lines go through all of them?

(the answer - a result from Euclidean Geometry - is clearly one.)

2. Easy: given 2N general lines in the plane, how many N–gons are there with its set of vertices

meeting all of them? (easy combinatorial answer: {2N − 1}! = factorial of odd’s numbers

between 1 and 2N − 1 (see Section 4).)

3. Medium: how many lines lie on a general cubic surface? (Famous answer: 27.) or how many

lines lie on a general quintic threefold? (answer: 2875. Hermann Schubert determined this

number explicitly at page 72 in [20], see also the computation at page 281 of Cox-Katz’s

book [4].) or in a more general way: how many lines lie on a general hypersurface of degree

2n− 3 in Pn? (answer: see [11])

4. Hard: given 3d − 1 general points in the plane, how many plane rational curves of degree

d pass through all of them? (Answer: N(d). N(d) denotes the Gromov-Witten invariants,

they have their origins in physics, in the topological sigma models introduced by Witten in

[22]. On the other hand, Kontsevich in [16] found a formula that expresses N(d) in terms of

N(e) for e < d, so a single initial datum is required for the recursion, namely, the case d = 1,

which correspond to the fact that through two distinct points in the plane pass exactly one

line. See Kock-Vainsencher [15] for an elementary introduction and chapter 9 in Cox-Katz’s

book [4].)
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In the 19th century, geometers developed a powerful ”calculus” for solving enumerative problems.

Their method had no rigorous theoretical foundation, but it worked remarkably well. Justifying

their results was the subject of Problem 15th on Hilbert’s famous list. In the 20th century,

enumerative geometry has been reconceptualized and made rigorous in terms of intersection theory

on parameter spaces (see Fulton [10], Kleiman-Laksov [14] and Kleiman [13] for a survey).

So, in order to give a correct answer to an enumerative question, the key issue in the study

of parameter spaces is to find a compactification. For example, the Kontsevich’s moduli space of

stable maps is used in [16] to calculate N(d). In theorem 1.9 of Nakajima’s book [19] is given an

explicit description of the Hilbert scheme that parametrizes the closed 0-dimensional subschemes

of degree n in A2. And second, what kind of techniques can be used on a given parameter space

to solve an enumerative problem. Usually, the answer to an enumerative problem is reduced to

compute Chern classes of some vector bundles. So, for example in [7] Ellingsrud-Göttsche study

the Chern and Segre classes of tautological vector bundles on the Hilbert scheme that parametrizes

the closed 0-dimensional subschemes of degree n over a smooth and projective surface over the

complex numbers.

The purpose of this article is to explain how to apply Bott’s localization formula to give

an answer to question 2 above when N = 4 using an explicit and elementary description of a

parameter space for squares in the plane, that is, the Hilbert scheme that parametrizes the closed

0-dimensional subschemes of degree 4 in P2

2 Notation and Convention

For any homogeneous ideal I in the ring C[x0, x1, x2], let Id denote the homogeneous part of degree

d , that is, I = ⊕∞
d=0Id. And when we refer to the Hilbert polynomial associated to the closed

subscheme determined by the homogeneous ideal I we refer precisely to the Hilbert polynomial

associated to the C[x0, x1, x2]-module C[x0, x1, x2]/I (see pg. 51 in Hartshorne’s book [12]).

Let I = {f ∈ C[x0, x1, x2] | for each i = 0, 1, 2, there is an Ni such that f · xNi

i ∈ I} be the

saturation of the homogeneous ideal I in C[x0, x1, x2]. We say that I is saturated if I = I.

Let F denote the vector space of linear forms in the variables x0, x1, x2 and Fd the vector

space of homogeneous forms of degree d. Let f1, ..., fs ∈ Fd (f1, ..., fs ∈ C[x0, x1, x2]), we denote

by [f1, ..., fs] (〈f1, ..., fs〉) the C-vector space generated by f1, ..., fs in Fd (the ideal generated by

f1, ..., fs in C[x0, x1, x2]).

For each point p ∈ P2, let Fp
d denote the linear system of forms of degree d vanishing at the

point p.

Let Gn(Fd) denote the Grassmann variety parametrizing the n-dimensional vector subspaces

of Fd. Set X = G2(F2) be the Grassmannian of pencils of conics in P2, with tautological sequence

0 −→ A −→ F2 −→ F2 −→ 0 (2.1)
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where A ⊂ F2 denote a subbundle of rank 2 with fiber over π ∈ G2(F2) given by the vector

subspace π ⊂ F2.

3 An explicit description of Hilb
4P2

3.1 Hilbert scheme of points in P2

Let HilbdP2 be the Hilbert scheme that parametrizes the closed 0-dimensional subschemes of degree

d in P2. As we have a 1-1 correspondence between saturated homogeneous ideals of C[x0, x1, x2]

and closed subschemes of P2 (see Ex. 5.10 of Chapter II in Hartshorne’s book [12]) then we set.

HilbdP2 =





I ⊂ C[x0, x1, x2] | I is saturated homogeneous ideal in C[x0, x1, x2]

such that the Hilbert polynomial of the

C[x0, x1, x2]-module C[x0, x1, x2]/I is equal to d.





. (3.1)

It is known that HilbdP2 is nonsingular of dimension 2d (see [9]) and that for each positive integer

d it embeds in the Grassmann variety of codimension d subspaces of Fd (see pg. 34 in [1], Lecture

15 in [18]).

Having in mind (3.1) we are going to give an explicit description of all saturated homogeneous

ideals in Hilb4P2. For those who are interested in the scheme structure in more detail, we recom-

mend the reading of [1] and [21]. Naturally as suggested by Bézout’s Theorem we begin with a

pair of conics in the plane.

3.2 Quadruplets determined by conics

For each π = [q1, q2] ∈ X we can associate the ideal Iπ = 〈q1, q2〉 ⊂ C[x0, x1, x2] (Iπ is a saturated

ideal). The variety determined by Iπ correspond to the intersection of two conics. Thus, we have

the following two possibilities:





If gcd(q1, q2) = 1 then according to Bézout’s Theorem the number of intersection points

between q1 and q2 should be 2x2=4 points counted with multiplicities.

If gcd(q1, q2) 6= 1 then we have that q1 = ℓℓ1, q2 = ℓℓ2 with ℓ, ℓ1 ∈ P
(
F
)

and ℓ2 ∈ P
(
F
/
[ℓ1]
)
.
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So in the general case we have the following pictures:
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Thus it is natural to consider the following subvariety of X. Let

Y =
{
[q1, q2] ∈ X | q1 = ℓℓ1, q2 = ℓℓ2 with ℓ, ℓ1 ∈ P

(
F
)

and ℓ2 ∈ P
(
F
/
[ℓ1]
)}

. (3.2)

Let p be the intersection point of two lines ℓ1 and ℓ2, then Y can be illustrated as follows:

Y =





. ..................................................................................................................................................................................

ℓ

•p





This figure suggest that we need a cubic form in order to obtain three points on the line ℓ. In the

next section we are looking for that cubic form.

3.3 Quadruplets generated in degree three

Now, we will describe the cubic homogeneous polynomial f ∈ C[x0, x1, x2], that we need to add to

the ideal Iπ = 〈ℓℓ1, ℓℓ2〉 in order to get a quadruplets of points in the plane.

3.1. Lemma. Let I = 〈ℓℓ1, ℓℓ2, f〉 ⊂ C[x0, x1, x2] be an ideal where ℓ, ℓ1 and ℓ2 are linear forms

such that [ℓ1, ℓ2] ∈ G2(F) and f 6∈ 〈ℓℓ1, ℓℓ2〉 is a cubic homogeneous polynomial. Then we have

that

1. If f 6∈ 〈ℓ〉 and f ∈ 〈ℓ1, ℓ2〉 then I is saturated and the Hilbert polynomial of the variety defined

by I is 4.

2. If f 6∈ 〈ℓ〉 and f 6∈ 〈ℓ1, ℓ2〉 then I is saturated and the Hilbert polynomial of the variety defined

by I is 3.

3. If f ∈ 〈ℓ〉 then the saturation of I is I = 〈ℓ〉 and the Hilbert polynomial of the variety defined

by I is t + 1.

Proof. See [21].
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In the general case we have the following pictures:
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q1 = ℓℓ1, q2 = ℓℓ2,

f3 ∈ 〈ℓ1, ℓ2〉 \ 〈ℓ〉.

ℓ

q1 = ℓℓ1, q2 = ℓℓ2,

f3 ∈ 〈ℓ〉.

We conclude from Lemma 3.1 that a good choice for a cubic form f such that the ideal

〈ℓℓ1, ℓℓ2, f〉 determines a quadruplets of points in the plane, will be to begin with f ∈ 〈ℓ1, ℓ2〉 \

〈ℓℓ1, ℓℓ2〉. Note that, the vector subspace of cubic forms ℓℓ1 ·F+ℓℓ2 ·F is equal to the 5-dimensional

vector space ℓ·Fp
2 of cubic forms that are multiple of the linear form ℓ times a conic passing through

the point p ({p} = ℓ1∩ℓ2). On the other hand, the vector space of cubic forms passing through the

point p, Fp
3 , have dimension 9, so f ∈ 〈ℓ1, ℓ2〉\ 〈ℓℓ1, ℓℓ2〉 is varying in a 4-dimensional vector space.

Thus we have obtained a P3-bundle E1 over Y (cf. (3.2)). In fact, we can consider E1 embedded

in G2(F2)×G6(F3) as follows:

E1 ∋ ([ℓℓ1, ℓℓ2], f) 7−→ ([ℓℓ1, ℓℓ2], ℓ · F
p
2 + [f ]) ∈ G2(F2)×G6(F3) (3.3)

with f ∈ P(Fp
3 /(ℓ · Fp

2 )).

Note that, to each point ([ℓℓ1, ℓℓ2], f) ∈ E1, we can associate the homogeneous ideal 〈ℓℓ1, ℓℓ2, f〉

in C[x0, x1, x2]. Next, we will give a description of those points in E1 whose associated ideal define

a quadruplets in the plane. Certainly, if f ∈ 〈ℓ〉 we do not obtain a quadruplet in the plane (cf.

Lemma 3.1). Thus the problem now it is to know when a cubic form f ∈ 〈ℓ1, ℓ2〉 \ 〈ℓℓ1, ℓℓ2〉 will be

a multiple of the line ℓ. In fact, we have the following result.

3.2. Lemma. Let W =
{
[ℓ2, ℓℓ1] ∈ X | [ℓ, ℓ1] ∈ G2(F)

}
⊂ Y, which is illustrated as

W =





. ............................................................................................................................................................

ℓ
•

p





where {p} = ℓ ∩ ℓ1. Then we have that

1. If [ℓℓ1, ℓℓ2] ∈ Y \W then 〈ℓ1, ℓ2〉 ∩ 〈ℓ〉 = 〈ℓℓ1, ℓℓ2〉. Therefore does not exist a cubic form

f ∈ 〈ℓ1, ℓ2〉 \ 〈ℓℓ1, ℓℓ2〉 being a multiple of ℓ.

2. If [ℓ2, ℓℓ1] ∈ W then 〈ℓ, ℓ1〉 ∩ 〈ℓ〉 = 〈ℓ〉 and 〈ℓ〉3 = 〈ℓ2, ℓℓ1〉3 ⊕ [ℓϕ] with ϕ(p) 6= 0, that is,

ϕ ∈ F2 \ 〈ℓ, ℓ1〉2. Thus the fiber of E1 over [ℓ2, ℓℓ1] has exactly one point, does not define a

quadruplet and all the others will do. In fact, the locus where f is a multiple of ℓ is given by

the following section of E1
|W



CUBO
12, 1 (2010)

Projective Squares in P2 ... 201

E1
|W ⊃ W1 ∋ ([ℓ2, ℓℓ1], ℓϕ) 7−→ ([ℓ2, ℓℓ1], ℓ · F2) ∈ G2(F2)×G6(F3)

↑ ↑

W ∋ [ℓ2, ℓℓ1]

(3.4)

And the saturation of the ideal 〈ℓ2, ℓℓ1, ℓϕ〉 is equal to 〈ℓ〉.

3.4 Quadruplets generated in degree four

It Follows from Lemma 3.1 (2.) that it does not help to add any other new generator to the ideal

〈ℓℓ1, ℓℓ2, f〉 in order to get a quadruplets of points in P2. And from (3.) and Bézout’s Theorem

that, it is sufficient to choose a degree four homogeneous polynomial g ∈ C[x0, x1, x2] with g 6∈ 〈ℓ〉.

Thus we have obtained a P4-bundle E2 over W1 (cf. (3.4)). In fact, we can consider E2 embedded

in G2(F2)×G6(F3)×G11(F4) as follows:

E2 ∋ ([ℓ2, ℓℓ1], ℓϕ, g̃) 7−→ ([ℓ2, ℓℓ1], ℓ · F2, ℓ · F3 + [g]) ∈ G2(F2, )×G6(F3)×G11(F4) (3.5)

with ℓϕ ∈ P(Fp
3 /(ℓ · Fp

2 )) and g̃ ∈ P(F4/(ℓ · F3)). In fact, we have that.

3.3. Lemma. Let I = 〈ℓ, g〉 ⊂ C[x0, x1, x2] be an ideal where ℓ is a linear form and g 6∈ 〈ℓ〉 is a

quartic homogeneous polynomial. Then we have that I is saturated and the Hilbert polynomial of

the variety defined by I is 4.

Proof. See [21].

4 Enumerative Application

Now we are interested in giving an answer to the following enumerative question:

How many squares are there with its set of vertices meeting eight general lines?
(

• •

• •

)
More

generally, how many N -gons are there with its set of vertices meeting 2N general lines? Note

that, each vertex in the N -gon is determined by the intersection of a pair of distinct lines. So, let

ℓ1, ..., ℓ2N be 2N general given lines in P2 and set

PN = {N − gons having its vertices in exactly one pair of these distinct lines}.

Now, fix 2N + 2 general lines ℓ1, ..., ℓ2N+2 in P2 and let

PN+1,i = {(N + 1)− gons having one vertex over ℓ2N+2 and ℓi} for i = 1, ..., 2N + 1.

Note that:

• PN+1,i ∩ PN+1,j = ∅ for i 6= j;

• PN+1,i are in bijection with PN for i = 1, ..., 2N + 1;
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• PN+1 =
⋃2N+1

i=1 PN+1,i.

Thus, we have that #(PN+1) =
∑2N+1

i=1 #(PN+1,i) = (2N + 1) ·#(PN ). Using induction, we

see that #(PN+1) = (2N + 1) · (2N − 1) · ... · 5 · 3 · 1 = {2N + 1}! = the factorial of odd’s numbers

between 1 and 2N + 1. Therefore, #(P4) = {7}! = 7 · 5 · 3 · 1 = 105.

Next we will use Bott’s localization formula to find the answer to the enumerative problem(
• •

• •

)
on an appropriate parameter space. The Bott’s localization formula that we will apply

express the integral of a homogeneous polynomial in the Chern classes of a bundle on a smooth,

compact variety with a C∗-action in terms of data given by the induced linear actions on the fiber

of the bundle and the tangent bundle in the (isolated) fixed points of the action. In fact, Bott’s

residues formula said that.

4.1. Theorem. Let T be a torus and X be a smooth, complete variety with a T -action. Let

E1, . . . , Es be T– equivariant vector bundles. Then we have that.

∫

X

p(E) ∩ [X ] =
∑

F⊂XT

(πF )∗

(
pT (E|F ) ∩ [F ]T

cT
dF

(NF X)

)
(4.1)

where

• F is a (dimX − dF )-dimensional component of XT ;

• XT is the fixed point locus;

• p(E) = p(E1, ..., Es) is a homogeneous polynomial of degree dimX in the Chern classes of the

bundles E′
js. In fact, p(E) is a weighted homogeneous polynomial in the variables xi

j = ci(Ej),

where xi
j has degree i;

• NF X denoted the normal bundle of F in X;

• [F ]T is the T -equivariant fundamental class of F ;

• cT
dF

(NF X) denoted the top T -equivariant Chern class of the normal bundle NFX;

• pT (E|F ) = p(E1T , ..., EsT ), where EiT denoted the quotient bundles associated to Ei;

• (πF )∗ denoted the proper pushforward of the morphism F
iF

→֒ X
πX−→ pt︸ ︷︷ ︸

πF

.

In spite of the possibly awe-inspiring appearance of (4.1) at first (in part because we do not

explain what means each ingredient in the formula), we hope to convince the reader that it is

rather simple to apply in practice. See [3], [5], [6] and the elementary exposition in [17] for details.

See [8] and chapter 9 in [4] for applications. See also [11] for a computational improvement to

Bott’s application that have a close connection with Cauchy’s residue formula.
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4.1 Parameter space for squares

Let us consider the following two closed subvarieties of G2(F2)×G6(F3) and G2(F2)×G6(F3)×

G11(F4) respectively.

For each pencil of conics [q1, q2] ∈ G2(F2) , let C ∈ G6(F3) be the linear system defined as

follows

C =





q1 · F + q2 · F if gcd(q1, q2) = 1,

ℓ · Fp
2 + [f ] if q1 = ℓℓ1, q2 = ℓℓ2 with ℓ ∈ P(F), [ℓ1, ℓ2] ∈ G2(F)

and f ∈ P(Fp
3 /(ℓ · Fp

2 )) where {p} = ℓ1 ∩ ℓ2.

(4.2)

Let

X1 =
{
([q1, q2],C) ∈ G2(F2)×G6(F3) | C is defined as in (4.2)

}
. (4.3)

Now for each ([q1, q2],C) ∈ X1, let Q ∈ G11(F4) be the linear system defined as follows:

Q =





q1 · F2 + q2 · F2 if gcd(q1, q2) = 1,

ℓ · Fp
3 + f · F if q1 = ℓℓ1, q2 = ℓℓ2, ℓ ∈ P(F), [ℓ1, ℓ2] ∈ G2(F)

and f ∈ P(Fp
3 /(ℓ · Fp

2 )) with {p} = ℓ1 ∩ ℓ2 such that f /∈ 〈ℓ〉,

ℓ · F3 + [g] if q1 = ℓℓ1, q2 = ℓℓ2, f = ℓϕ where ϕ ∈ F2 \ F
p
2

and g̃ ∈ P(F4/(ℓ · F3)).

(4.4)

Let

X2 =
{
([q1, q2],C,Q) ∈ X1 ×G11(F4) | Q is defined as in (4.4)

}
. (4.5)

Follows from (3.3), (4.2) and (4.3) that E1 is a subvariety of X1. In the same way follows from

(3.5), (4.4) and (4.5) that E2 is a subvariety of X2. Therefore, we have the following diagram for

our parameter space X2.

E2 →֒ X2

ւ ց

W1 →֒ E1 →֒ X1

↓ ↓ ↓

W →֒ Y →֒ X

(4.6)

In fact, it is verified that X1 is the blowup of X along Y with E1 being the exceptional divisor and

also that X2 is the blowup of X1 along W1 with E2 being the exceptional divisor (see [1], [21]).

On the other hand, for a ∈ C, ([x2
0, x0(x1 + ax2)], x0 · F2, x0 · F3 + [x4

1]) are distinct points

in X2, but its image in Hilb4P2 is equal to the ideal
〈
x0, x

4
1

〉
. Therefore X2 is not isomorphic to

Hilb4P2. Nevertheless, can be verified that X2 is isomorphic to the the blowup of Hilb4P2 along

the 6-dimensional subvariety of aligned quadruplets (see [1]) (
〈
x0, x

4
1

〉
is an aligned quadruplets).
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5 Divisor of Incidence to a Line

Let ℓ be a line in P2 and Dℓ be the hypersurface in X = G2(F2) defined by the condition

ℓ ∩ q1 ∩ q2 6= ∅ for [q1, q2] ∈ X.

Dℓ =





ℓ

•

•

•

•





Let D̃ℓ be the subvariety of ℓ× X defined by

D̃ℓ =
{
(q, π) ∈ ℓ× X | q ∈ base locus of the pencil π

}
.

Note that:

• D̃ℓ is a codimension two subvariety of ℓ× X.

• The image of D̃ℓ under p2 : ℓ×X −→ X, the projection in the second coordinate, is equal to Dℓ.

5.1 Class of Dℓ

Let A be the tautological subbundle of G2(F2) as in (2.1). Let us consider the diagram of natural

maps of vector bundles over ℓ× X,

A →֒ F2

ց ↓

F2/F•
2
∼= Oℓ(2)

here the fiber F2/F•
2 (q,π) is equal to F2/F2

q.

Note that the slant arrow vanishes at (q, π) ∈ ℓ× X if and only if (q, π) ∈ D̃ℓ.

Hence we have

[D̃ℓ] = (c2(A
∨ ⊗Oℓ(2))) ∩ [ℓ× X] = (c2(A)− 2h · c1(A)) ∩ [ℓ× X],

where h = c1(Oℓ(1)). Pushing forward via p2 : ℓ× X −→ X, it follows that

[Dℓ] = −2c1(A) ∩ [X].

In fact,

p2⋆(c2(p
⋆
2A) ∩ [ℓ× X]) = c2(A) ∩ p2⋆[ℓ× X] = 0.
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c1(p
⋆
1Oℓ(1)) ∩ [ℓ× X] = c1(p

⋆
1Oℓ(1)) ∩ [p⋆

1(ℓ)],

= p⋆
1(c1(Oℓ(1)) ∩ [ℓ]),

= p⋆
1([pt]),

= [pt× X].

then

p2⋆(c1(p
⋆
2A) · c1(p

⋆
1Oℓ(1)) ∩ [ℓ× X]) = p2⋆(c1(p

⋆
2A) ∩ [pt× X]),

= c1(A) ∩ [X].

A local coordinate check shows that Dℓ contains the blowup center Y (see (3.2)) with multiplicity

one. Hence we find the formula for the class of the strict transform in X1,

[D
(1)
ℓ ] = −2c1(A) ∩ [X1]− [E1].

Similarly, (omitting pullbacks) we get for the succeeding strict transform,

[D
(2)
ℓ ] = −2c1(A) ∩ [X2]− [E2,1]− [E2].

Here we have omitted the pull-back in A and E2,1 denote the strict transform of E1. Now a solution

to the question ( • •

• •

) in Section 4 asks us to compute the degree of the self-intersection [D
(2)
ℓ ]8.

Thus from Bott’s formula (cf. (4.1)) we have that.

∫

[X2]

[D
(2)
ℓ ]8 =

∑

F

∫

[F ]T

[2cT
1 (AF ) + cT

1 (O(E2,1)F ) + cT
1 (O(E2)F )]8

cT
dF

(NF X2)
, (5.1)

where dF denotes the codimension of the component F in X. F is a component of XT the locus of

fixed points for a suitable torus action, starting at X and following all the way up to X2.

6 Fixed Points at X2

Let V be an n-dimensional complex vector space. Then a general action of C∗ on V is diagonalized,

so there is a basis {v1, ..., vn} of V such that t · vi = λ(t)vi for all t ∈ C. In fact, λ is a character of

the group C∗. So λ(t) = twi for some integer wi. We also have an induced action on Gk(V ), the

Grassmann variety of k-planes in V, given by

t ·W = [t · w1, ..., t · wk] for any W = [w1, ..., wk] ∈ Gk(V ).

And the fixed points are given by:

Wi1,i2,...,ik
= [vi1 , vi2 , ..., vik

] where (i1i2...ik) is a k-cicle in Sn,

so we have at all
(

n

k

)
fixed points in Gk(V ).
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Consider now the action of C∗ over Fd given by t ◦ xi0
0 xi1

1 xi2
2 = ti0w0+i1w1+i2w2xi0

0 xi1
1 xi2

2 with

i0 + i1 + i2 = d and extend it by linearity. We also have an induced action on Gn(Fd), X1 and X2

respectively.

According to (4.6) the image of E2 and E1 in X are respectively W and Y. And we also have

that X2 \E2 ∼= X1 \W1 and X1 \E1 ∼= X \Y. Let E2,1 ⊂ X2 be the strict transform of E1, then we

have that:

Fixed points in
are in correspondence

with fixed points in

are in correspondence

with fixed points in

X2 \ (E2,1 ∪ E2) X1 \ E1 X \ Y

Fixed points in are mapped on fixed points in are mapped on fixed points in

E2,1 \ E2 E1 \W1 Y \W

E2 W1 W

(6.1)

So we will look for fixed points having in mind (6.1).

6.1 Fixed points in X2 \ (E2,1 ∪ E2)

If the weights (w0, w1, w2) are sufficiently general, we find the following 6 fixed points in X \ Y:

π1 = [x2
0, x

2
1], π2 = [x2

0, x1x2], π3 = [x2
0, x

2
2], π4 = [x0x1, x

2
2], π5 = [x0x2, x

2
1], π6 = [x2

1, x
2
2].

Since this 6 fixed points lie off Y then they lift (isomorphically) all the way up to X2. So their

contribution can be obtained at once, down on X. Of course the exceptional divisors give no

contribution here. On the numerator of (5.1) we have for 2cT
1 (Aπi

) i = 1, ..., 6,

Fixed points

in X \ Y
Aπi

Decomposition of Aπi
into eigenspaces 2cT

1 (Aπi
)

π1 = [x2
0, x

2
1] [x2

0, x
2
1] t2w0 + t2w1 2(2w0 + 2w1)

π2 = [x2
0, x1x2] [x2

0, x1x2] t2w0 + tw1+w2 2(2w0 + w1 + w2)

π3 = [x2
0, x

2
2] [x2

0, x
2
2] t2w0 + t2w2 2(2w0 + 2w2)

π4 = [x0x1, x
2
2] [x0x1, x

2
2] tw0+w1 + t2w2 2(w0 + w1 + 2w2)

π5 = [x0x2, x
2
1] [x0x2, x

2
1] tw0+w2 + t2w1 2(w0 + w2 + 2w1)

π6 = [x2
1, x

2
2] [x2

1, x
2
2] t2w1 + t2w2 2(2w1 + 2w2)

On the denominator of (5.1) we get Nπi
X = Tπi

X2 = Tπi
X = F2/Aπi

⊗A∨
πi

.

Note that the eigen-decomposition of F2 is given by
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F2 =
∑

0≤i≤j≤2

twi+wj = t2w0 + tw0+w1 + tw0+w2 + t2w1 + tw1+w2 + t2w2 .

Thus for π1 = [x2
0, x

2
1] we have that

Tπ1X = F2/Aπ1⊗A
∨
π1

= F2/[x2
0, x

2
1]⊗[x2

0, x
2
1]

∨ = (tw0+w1 + tw0+w2 + tw1+w2 + t2w2 )(t−2w0 + t−2w1 ).

Next we give the eigen-decomposition of Tπi
X and cT

8 (Tπi
X), for i = 1, ..., 6:

π1 = [x2
0, x

2
1] ↔ (tw0+w1 + tw0+w2 + tw1+w2 + t2w2)(t−2w0 + t−2w1),

↔ (w1 − w0)(w0 − w1)(w2 − w0)(w0 + w2 − 2w1)(w1 + w2 − 2w0)(w2 − w1)(2w2 − 2w0)

(2w2 − 2w1),

π2 = [x2
0, x1x2] ↔ (tw0+w1 + tw0+w2 + t2w1 + t2w2)(t−2w0 + t−(w1+w2)),

↔ (w1 − w0)(w0 − w2)(w2 − w0)(w0 − w1)(2w1 − 2w0)(w1 − w2)(2w2 − 2w0)(w2 − w1),

π3 = [x2
0, x

2
2] ↔ (tw0+w1 + tw0+w2 + t2w1 + tw1+w2)(t−2w0 + t−2w2),

↔ (w2 − w0)(w0 − w2)(w1 − w0)(w0 + w1 − 2w2)(w1 + w2 − 2w0)(w1 − w2)(2w1 − 2w0)

(2w1 − 2w2),

π4 = [x0x1, x
2
2] ↔ (t2w0 + tw0+w2 + t2w1 + tw1+w2)(t−2w2 + t−(w0+w1)),

↔ (w1 − w2)(w2 − w0)(w0 − w2)(w2 − w1)(2w1 − 2w2)(w1 − w0)(2w0 − 2w2)(w0 − w1),

π5 = [x0x2, x
2
1] ↔ (t2w0 + tw0+w1 + tw1+w2 + t2w2)(t−2w1 + t−(w0+w2)),

↔ (w2 − w1)(w1 − w0)(w0 − w1)(w1 − w2)(2w2 − 2w1)(w2 − w0)(2w0 − 2w1)(w0 − w2),

π6 = [x2
1, x

2
2] ↔ (t2w0 + tw0+w1 + tw0+w2 + tw1+w2)(t−2w1 + t−2w2),

↔ (w1 − w2)(w2 − w1)(w0 − w2)(w0 + w2 − 2w1)(w1 + w0 − 2w2)(w0 − w1)(2w0 − 2w2)

(2w0 − 2w1).

So the first six contributions to (5.1) are:





28(2w0+2w1)
8

(w1−w0)(w0−w1)(w2−w0)(w0+w2−2w1)(w1+w2−2w0)(w2−w1)(2w2−2w0)(2w2−2w1)
+

28(2w0+w1+w2)
8

(w1−w0)(w0−w2)(w2−w0)(w0−w1)(2w1−2w0)(w1−w2)(2w2−2w0)(w2−w1)
+

28(2w0+2w2)
8

(w2−w0)(w0−w2)(w1−w0)(w0+w1−2w2)(w1+w2−2w0)(w1−w2)(2w1−2w0)(2w1−2w2)
+

28(w0+w1+2w2)8

(w1−w2)(w2−w0)(w0−w2)(w2−w1)(2w1−2w2)(w1−w0)(2w0−2w2)(w0−w1)
+

28(w0+w2+2w1)8

(w2−w1)(w1−w0)(w0−w1)(w1−w2)(2w2−2w1)(w2−w0)(2w0−2w1)(w0−w2)
+

28(2w1+2w2)
8

(w1−w2)(w2−w1)(w0−w2)(w0+w2−2w1)(w1+w0−2w2)(w0−w1)(2w0−2w2)(2w0−2w1)
.

6.2 Fixed points in E2,1 \ E2

Since E2,1 \ E2 is isomorphic to E1 \W1. Then, we have to look for fixed points on Y \W (cf.

(6.1)). We find after some computation the following 3 fixed points in Y \W.

π7 = [x0x1, x0x2], π8 = [x1x0, x1x2], π9 = [x2x0, x2x1]. (6.2)
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Thus to determine the contributions to (5.1) in this case, we only have to calculate cT
8 (Ty1X1),

cT
1 (O(E1)y1) for those fixed points y1 ∈ E1 lying over πi and 2cT

1 (Aπi
) for i = 7, 8, 9.

According to (3.3) the fiber of E1 over [ℓℓ1, ℓℓ2] ∈ Y \W is given by

E1
[ℓℓ1,ℓℓ2]

= P(〈 ℓ3
1, ℓ

2
1ℓ2, ℓ1ℓ2

2, ℓ
3
2 〉) (6.3)

where f indicates classes of f ∈ Fp
3 modulo ℓ · Fp

2 with {p} = ℓ1 ∩ ℓ2. Note that, ℓ = x0, ℓ1 =

x1, ℓ2 = x2 for π7 and so on. And can be verified that ([ℓℓ1, ℓℓ2], ℓ · Fp + [f ]) ∈ E1 ⊂ X1 with

f ∈ {ℓ3
1, ℓ

2
1ℓ2, ℓ1ℓ

2
2, ℓ

3
2} are fixed points for the induced action of T = C∗ on X1. Thus we obtain

3 × 4 = 12 fixed points lying in E1 \W1. In order to compute the contributions coming from this

12 fixed points to (5.1) we need to determine tangent and normal spaces.

Since the exact sequence of C∗–representations 0 → TπY → TπX → (NYX)π → 0 splits, we

may write the following decomposition into eigen spaces for [ℓℓ1, ℓℓ2] ∈ Y \W,

(NYX)[ℓℓ1,ℓℓ2] = T[ℓℓ1,ℓℓ2]X− T[ℓℓ1,ℓℓ2]Y

= T[ℓℓ1,ℓℓ2]G2(F2)− T[ℓℓ1,ℓℓ2](

∼=Y︷ ︸︸ ︷
P(F)×G2(F))

= (ℓℓ1 + ℓℓ2)
∨ ⊗

F2−(ℓℓ1+ℓℓ2)︷ ︸︸ ︷
(ℓ2 + ℓ2

1 + ℓ1ℓ2 + ℓ2
2)−

T[ℓℓ1,ℓℓ2]Y︷ ︸︸ ︷(ℓ1

ℓ
+

ℓ2

ℓ
+

ℓ

ℓ1
+

ℓ

ℓ2

)

=
ℓ22
ℓℓ1

+
ℓ21
ℓℓ2

+ ℓ1
ℓ

+ ℓ2
ℓ
.

(6.4)

Note that from (6.3) and (6.4) we have the two descriptions,

E1
[ℓℓ1,ℓℓ2]

= P((NYX)[ℓℓ1,ℓℓ2]) = P(〈 ℓ3
1, ℓ

2
1ℓ2, ℓ1ℓ2

2, ℓ
3
2 〉) and (NYX)[ℓℓ1,ℓℓ2] =

ℓ2
2

ℓℓ1
+

ℓ2
1

ℓℓ2
+

ℓ1

ℓ
+

ℓ2

ℓ
.

We can reconcile this two descriptions noting that to any normal vector ξ as in (6.4) we can

associated a curve γt in X with tangent ξ at t = 0 such that γt ∈ X \ Y for t 6= 0, so it lifts to

a curve γ1
t in X1 whose tangent at t = 0 give a monomial in {ℓ3

1, ℓ
2
1ℓ2, ℓ1ℓ

2
2, ℓ

3
2} associated to the

normal direction corresponding to ξ as described in the following table:

Normal vector ξ Curve with tangent ξ Lifts to a curve in X
1

ℓ
2
2

ℓℓ1
= (ℓℓ1)

∨⊗ℓ22 γt = [ℓℓ1 + tℓ22, ℓℓ2] γ1
t = (γt, ℓℓ2 ·F + (ℓℓ1 + tℓ22)ℓ + (ℓℓ1 + tℓ22)ℓ1 + tℓ32)

ℓ
2
1

ℓℓ2
= (ℓℓ2)

∨⊗ℓ21 γt = [ℓℓ1, ℓℓ2 + tℓ21] γ1
t = (γt, ℓℓ1 ·F + (ℓℓ2 + tℓ21)ℓ + (ℓℓ2 + tℓ21)ℓ2 + tℓ31)

ℓ1
ℓ

= (ℓ)∨⊗ℓ1 γt = [ℓℓ1, ℓℓ2 + tℓ1ℓ2] γ1
t = (γt, ℓℓ1 ·F + (ℓℓ2 + tℓ1ℓ2)ℓ + (ℓℓ2 + tℓ1ℓ2)ℓ2 + tℓ21ℓ2)

ℓ2
ℓ

= (ℓ)∨⊗ℓ2 γt = [ℓℓ1, ℓℓ2 + tℓ22] γ1
t = (γt, ℓℓ1 ·F + (ℓℓ2 + tℓ22)ℓ + (ℓℓ2 + tℓ22)ℓ2 + tℓ1ℓ

2
2)

(6.5)

Determination of cT
8 (Ty1X1), cT

1 (O(E1)y1) for those fixed points y1 ∈ E1 lying over πi

and 2cT
1 (Aπi

) for i = 7, 8, 9.
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On the other hand, for any π1 ∈ E1 lying over π ∈ Y, we have that

Tπ1X1 = Tπ1E1 + (NE1X1)π1

= Tπ1E1
π + TπY + [π1]. Note that [π1] = OE1(−1)π1 = O(E1)π1 .

(6.6)

Let y = [ℓℓ1, ℓℓ2] ∈ Y\W and y1
i = (y, fi)∈E1 with fi ∈ {ℓ3

1, ℓ
2
1ℓ2, ℓ1ℓ

2
2, ℓ

3
2}. So for y1

1 = (y, ℓ3
1) ∈ E1

we have that:

Ty1
1
X1 = Ty1

1
E1

y + TyY + [y1
1]

= Ty1
1

E
1
y︷ ︸︸ ︷

P([ ℓ3
1, ℓ

2
1ℓ2, ℓ1ℓ2

2, ℓ
3
2 ])+Ty(

∼= Y︷ ︸︸ ︷
P(F)×G∈(F)) + [y1

1]

=
ℓ2

ℓ1
+

ℓ2
2

ℓ2
1

+
ℓ3
2

ℓ3
1︸ ︷︷ ︸

T
y1
1

E1
y

+
ℓ1

ℓ
+

ℓ2

ℓ
+

ℓ

ℓ1
+

ℓ

ℓ2︸ ︷︷ ︸
TyY

+
ℓ2
1

ℓℓ2︸︷︷︸
O

E1(−1)
y1
1

.

Ay = ℓℓ1 + ℓℓ2 and O(E1)
(y,ℓ31)

= OE1(−1)
(y,ℓ31)

= ℓ3
1

from (6.5)
←→ ℓ21

ℓℓ2
.

We listed below, the eigen-decomposition of the tangent and first exceptional divisor at each fixed

point y1
i ∈ E1, following the description above.

Fixed point type for

ℓ = x0, ℓ1 = x1 and ℓ2 = x2.
Tangent and first exceptional divisor

y1
1 = ([x0x1, x0x2], x3

1)

Ty1
1
X1 = t(w2−w1) + t(2w2−2w1) + t(3w2−3w1) + t(w1−w0)+

t(w2−w0) + t(w0−w1) + t(w0−w2) + t(2w1−w0−w2),

O(E1)y1
1

= t(2w1−w0−w2).

y1
2 = ([x0x1, x0x2], x2

1x2)

Ty1
2
X1 = t(w1−w2) + t(w2−w1) + t(2w2−2w1) + t(w1−w0)+

t(w2−w0) + t(w0−w1) + t(w0−w2) + t(w1−w0),

O(E1)y1
2

= t(w1−w0).

y1
3 = ([x0x1, x0x2], x1x2

2)
Ty1

3
X1 = permute w1 and w2 in Ty1

2
X1,

O(E1)y1
3

= t(w2−w0).

y1
4 = ([x0x1, x0x2], x3

2)
Ty1

4
X1 = permute w1 and w2 in Ty1

1
X1,

O(E1)y1
4

= t(2w2−w0−w1).

Thus the contribution to (5.1) at each y1
i ∈ E1 lying over y = [ℓℓ1, ℓℓ2] ∈ Y \W is given by:
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Fixed point for

ℓ = x0, ℓ1 = x1

and ℓ2 = x2.

Contribution to the

numerator in (5.1)
Contribution to the denominator in (5.1)

y1
1 = (y, x3

1)
2cT

1 (Ay) = 2(2w0 + w1 + w2)+

cT
1 (O(E1)

y1
1
) = 2w1 − w0 − w2.

cT
8 (T

y1
1

X
1) = (w2 − w1)(2w2 − 2w1)(3w2 − 3w1)·

(w1 − w0)(w2 − w0)(w0 − w1)·

(w0 − w2)(2w1 − w0 − w2).

y1
2 = (y, x2

1x2)
2cT

1 (Ay) = 2(2w0 + w1 + w2)+

cT
1 (O(E1)

y1
2
) = w1 − w0.

cT
8 (T

y1
2

X
1) = (w1 − w2)w2 − w1)(2w2 − 2w1)(w1 − w0)·

(w2 − w0)(w0 − w1)(w0 − w2)(w1 − w0).

y1
3 = (y, x1x2

2)
permute w1 and w2 in

2cT
2 (Ay) + cT

1 (O(E1)
y1
2
).

cT
8 (T

y1
3

X
1) = permute w1 and w2 in cT

8 (T
y1
2

X
1).

y1
4 = (y, x3

2)
permute w1 and w2 in

2cT
2 (Ay) + cT

1 (O(E1)
y1
1
). cT

8 (T
y1
4

X
1) = permute w1 and w2 in cT

8 (T
y1
1

X
1).

In fact, if we make a cyclic permutation of x′
is in the table above, we will obtain all the 12

contributions to (5.1) determined by the 3 fixed points πi ∈ Y \W for i = 7, 8, 9 (cf. (6.2)).

6.3 Fixed points in E2

According to (6.1) we have to look for fixed points in W. After some computation we find the

following 6 fixed points in W:

π10 =[x2
0, x0x1], π11 =[x2

0, x0x2], π12 =[x2
1, x1x0], π13 =[x2

1, x1x2], π14 =[x2
2, x2x0], π15 =[x2

2, x2x1].

(6.7)

In order to determine the contributions to (5.1) in this case we have to calculate cT
8 (Tπ2X2),

cT
1 (O(E2)π2) for those fixed points π2 ∈ E2 lying over fixed points π1 ∈W1 ⊂ E1, cT

1 (O(E1)π1) for

those fixed points π1 ∈ E1 lying over πi and 2cT
1 (Aπi

) for i = 10, ..., 15.

We have from (3.3) that the fiber of E1 over [ℓ2, ℓℓ1] ∈W is given by:

E1
[ℓ2,ℓℓ1]

= P(〈 ℓℓ2
2, ℓ

3
1, ℓ

2
1ℓ2, ℓ1ℓ2

2 〉) (6.8)

where f indicates classes of f ∈ Fp
3 modulo ℓ · Fp

2 with {p} = ℓ∩ ℓ1. Note that, ℓ = x0, ℓ1 = x1 for

π10 and so on. And can be verified that ([ℓ2, ℓℓ1], ℓ·Fp+[f ]) ∈ E1 ⊂ X1 with f ∈ {ℓℓ2
2, ℓ

3
1, ℓ

2
1ℓ2, ℓ1ℓ

2
2}

are fixed points for the induced action of T = C∗ on X1. Thus we obtain:

{
6× 3 = 18 fixed points lying in E1 \W1 if f ∈ {ℓ3

1, ℓ
2
1ℓ2, ℓ1ℓ

2
2},

6× 1 = 6 fixed points lying in W1 if f = ℓℓ2
2.

(6.9)

In order to compute the contribution of this fixed points to (5.1) we need to determine tangent

and normal spaces as we did in (6.4).
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We may write the following decomposition into eigen spaces for [ℓ2, ℓℓ1] ∈W,

(NYX)[ℓ2,ℓℓ1] = T[ℓ2,ℓℓ1]X− T[ℓ2,ℓℓ1]Y

= T[ℓ2,ℓℓ1]G2(F2)− T[ℓ2,ℓℓ1](

∼=Y︷ ︸︸ ︷
P(F)×G2(F))

= (ℓ2 + ℓℓ1)
∨ ⊗

F2−(ℓ2+ℓℓ1)︷ ︸︸ ︷
(ℓℓ2 + ℓ2

1 + ℓ1ℓ2 + ℓ2
2)−

T[ℓ2,ℓℓ1]Y︷ ︸︸ ︷(ℓ1

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ1

)

=
ℓ21
ℓ2

+ ℓ1ℓ2
ℓ2

+
ℓ22
ℓ2

+
ℓ22
ℓℓ1

.

(6.10)

Note that from (6.8) and (6.10) we have the two descriptions,

E1
[ℓ2,ℓℓ1]

= P((NYX)[ℓ2,ℓℓ1]) = P(〈 ℓℓ2
2, ℓ

3
1, ℓ

2
1ℓ2, ℓ1ℓ2

2 〉) and (NYX)[ℓ2,ℓℓ1] =
ℓ2
1

ℓ2
+

ℓ1ℓ2

ℓ2
+

ℓ2
2

ℓ2
+

ℓ2
2

ℓℓ1
.

Again we can reconcile this two descriptions as we did in (6.5). In this case the correspondence is

given by:

ℓ21
ℓ2

ℓ1ℓ2
ℓ2

ℓ22
ℓ2

ℓ22
ℓℓ1

l l l l

ℓ3
1 ℓ2

1ℓ2 ℓ1ℓ
2
2 ℓℓ2

2

(6.11)

Now, let w1
i = ([ℓ2, ℓℓ1], fi) ∈ E1 with fi ∈ {ℓℓ2

2, ℓ
3
1, ℓ

2
1ℓ2, ℓ1ℓ

2
2}.

Contributions to (5.1) coming from w1
i for i = 2, 3, 4

Note that the three points w1
i for i = 2, 3, 4 lift (isomorphically) all the way up to X2 since

X2 \ E2 ∼= X1 \W1. So their contribution can be obtained at once on X1.

So for w1
2 = (w, ℓ3

1) ∈ E1 lying over w = [ℓ2, ℓℓ1] we have from (6.6) that

Tw1
2
X1 = Tw1

2
E1

w + TwY + [w1
2]

= Tw1
2

E
1
w︷ ︸︸ ︷

P([ ℓℓ2
2, ℓ

3
1, ℓ

2
1ℓ2, ℓ1ℓ2

2 ])+Tw(

∼= Y︷ ︸︸ ︷
P(F)×G∈(F)) + [w1

2]

=
ℓℓ2

2

ℓ3
1

+
ℓ2

ℓ1
+

ℓ2
2

ℓ2
1︸ ︷︷ ︸

T
w1

2
E1
w

+
ℓ1

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ1︸ ︷︷ ︸
TwY

+
ℓ2
1

ℓ2︸︷︷︸
O

E1(−1)
w1

2

.

(6.12)

A[ℓ2,ℓℓ1] = ℓ2 + ℓℓ1 and O(E1)
([ℓ2,ℓℓ1],ℓ31)

= OE1(−1)
([ℓ2,ℓℓ1],ℓ31)

= ℓ3
1

from (6.11)
←→ ℓ21

ℓ2
.

We listed below, the eigen-decomposition of the tangent and first exceptional divisor at each fixed

point w1
i ∈ E1 for i = 2, 3, 4, following the description above.
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Fixed point for

ℓ = x0 and ℓ1 = x1.
Tangent and first exceptional divisor

w1
2 = ([x2

0, x0x1], x3
1)

Tw1
2
X1 = t(w0+2w2−3w1) + t(w2−w1) + t(2w2−2w1) + t(w1−w0)+

t(w2−w0) + t(w2−w0) + t(w2−w1) + t(2w1−2w0),

O(E1)w1
2

= t(2w1−2w0).

w1
3 = ([x2

0, x0x1], x2
1x2)

Tw1
3
X1 = t(w0+w2−2w1) + t(w1−w2) + t(w2−w1) + t(w1−w0)+

t(w2−w0) + t(w2−w0) + t(w2−w1) + t(w1+w2−2w0),

O(E1)w1
3

= t(w1+w2−2w0).

w1
4 = ([x2

0, x0x1], x1x2
2)

Tw1
4
X1 = t(w0−w1) + t(2w1−2w2) + t(w1−w2) + t(w1−w0)+

t(w2−w0) + t(w2−w0) + t(w2−w1) + t(2w2−2w0),

O(E1)w1
4

= t(2w2−2w0).

Thus the contribution to (5.1) at each w1
i ∈ E1 for i = 2, 3, 4 lying over w = [ℓ2, ℓℓ1] is given

by:

Fixed point for

ℓ = x0, ℓ1 = x1.

Contribution to the

numerator in (5.1)

2c
T
1 (Aw)

︸ ︷︷ ︸
2(3w0+w1)

+ cT
1 (O(E1)

w1
i
)

Contribution to the denominator in (5.1)

cT
8 (T

w1
i

X
1)

w1
2 = (w, x3

1) 2(3w0 + w1) + (2w1 − 2w0) 4(w0 + 2w2 − 3w1)(w2 − w1)
3(w1 − w0)

2(w2 − w0)2

w1
3 = (w, x2

1x2) 2(3w0 + w1) + (w1 + w2 − 2w0) −(w0 + w2 − 2w1)(w2 − w1)
3(w1 − w0)(w2 − w0)

2

(w1 + w2 − 2w0)

w1
4 = (w, x1x2

2) 2(3w0 + w1) + (2w2 − 2w0) 4(w0 − w1)2(w1 − w2)3(w2 − w0)
3

Making a cyclic permutation of x′
is in the table above, we will obtain all the 18 contribu-

tions to (5.1) determined by the 6 fixed points πi ∈ W for i = 10, ..., 15 (cf. (6.7) and (6.9)).

Contributions to (5.1) coming from w1
1 = ([ℓ2, ℓℓ1], ℓℓ2

2) ∈W1

In order to determine the contributions to (5.1) in this case we have to calculate cT
8 (Tw2X2),

cT
1 (O(E2)w2) for those fixed points w2 ∈ E2 lying over the fixed point w1

1 ∈W1 ⊂ E1, cT
1 (O(E1)w1

1
)

and 2cT
1 (Aw).

Consider now the fiber of E2 over w1
1 = ([ℓ2, ℓℓ1], ℓℓ2

2). According to (3.5), it is just

E2

([ℓ2,ℓℓ1],ℓ̃ℓ22)
= P(〈 ℓ̃4

1, ℓ̃
3
1ℓ2, ℓ̃2

1ℓ
2
2, ℓ̃1ℓ3

2, ℓ̃
4
2 〉) (6.13)

where g̃ indicates classes of g ∈ F4 modulo ℓ·F3. And can be verified that ([ℓ2, ℓℓ1], ℓ·F2, ℓ·F2+[g]) ∈

E2 ⊂ X2 with g ∈ {ℓ4
1, ℓ

3
1ℓ2, ℓ

2
1ℓ

2
2, ℓ1ℓ

3
2, ℓ

4
2} are fixed points for the induced action of T = C∗ on X2.

Thus we obtain 6 × 5 = 30 fixed points lying in E2. In order to compute the contribution of this

30 fixed points to (5.1) we need to determine tangent and normal spaces as we did in (6.4).
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We may write the following decomposition into eigen spaces for w1
1 = (w, ℓℓ2

2) ∈W1 lying over

w = [ℓ2, ℓℓ1],

(NW1X1)w1
1

= Tw1
1
X1 − Tw1

1
W1

= Tw1
1
E1

w + TwY + [w1
1]− Tw1

1
W1

= Tw1
1

E
1
w︷ ︸︸ ︷

P([ ℓℓ2
2, ℓ

3
1, ℓ

2
1ℓ2, ℓ1ℓ2

2 ]) +Tw(

∼= Y︷ ︸︸ ︷
P(F)×G∈(F)) + [w1

1]− Tw1
1
W1

=
ℓ3
1

ℓℓ2
2

+
ℓ2
1

ℓℓ2
+

ℓ1

ℓ︸ ︷︷ ︸
T
w1

1
E1
w

+
ℓ1

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ1︸ ︷︷ ︸
TwY

+
ℓ2
2

ℓℓ1︸︷︷︸
O

E1(−1)
w1

1

−

(
ℓ1

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ1

)

︸ ︷︷ ︸
T
w1

1
W1

=
ℓ31
ℓℓ22

+
ℓ21
ℓℓ2

+ ℓ1
ℓ

+ ℓ2
ℓ

+
ℓ22
ℓℓ1

.

(6.14)

Note that from (6.13) and (6.14) we have the two descriptions at w1
1 = ([ℓ2, ℓℓ1], ℓℓ2

2),

E2
w1

1
= P((NW1X1)w1

1
) = P(〈 ℓ̃4

1, ℓ̃
3
1ℓ2, ℓ̃2

1ℓ
2
2, ℓ̃1ℓ3

2, ℓ̃
4
2 〉) and (NW1X1)w1

1
=

ℓ3
1

ℓℓ2
2

+
ℓ2
1

ℓℓ2
+

ℓ1

ℓ
+

ℓ2

ℓ
+

ℓ2
2

ℓℓ1
.

We can reconcile this two descriptions as we did in (6.5) and (6.11). In this case the correspondence

is given by:

ℓ31
ℓℓ22

ℓ21
ℓℓ2

ℓ1
ℓ

ℓ2
ℓ

ℓ22
ℓℓ1

l l l l l

ℓ4
1 ℓ3

1ℓ2 ℓ2
1ℓ

2
2 ℓ1ℓ

3
2 ℓ4

2

(6.15)

Now let w2
i = (w1

1, g̃i) ∈ E2 with gi ∈ {ℓ4
1, ℓ

3
1ℓ2, ℓ

2
1ℓ

2
2, ℓ1ℓ

3
2, ℓ

4
2}. For w2

1 = (w1
1, ℓ̃

4
1) ∈ E2 lying over

w1
1 = ([ℓ2, ℓℓ1], ℓℓ2

2) we have from (6.6) changing 1 by 2 that:

Tw2
1
X2 = Tw2

1
E2

w1
1

+ Tw1
1
W1 + [w2

1]

=
ℓ3
1ℓ2

ℓ4
1

+
ℓ2
2

ℓ2
1

+
ℓ3
2

ℓ3
1

+
ℓ4
2

ℓ4
1︸ ︷︷ ︸

T
w2

1
E2

w1
1

+
ℓ1

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ1︸ ︷︷ ︸
T
w1

1
W1

+
ℓ3
1

ℓℓ2
2︸︷︷︸

O
E2(−1)

w2
1

.

O(E2)w2
1

= OE2(−1)
(w1

1,ℓ̃41)
= ℓ4

1 (
from (6.15)
←→ ℓ31

ℓℓ22
).

We listed below, the eigen-decomposition of the tangent and first exceptional divisor at each fixed

point w2
i ∈ E2 for i = 1, ..., 5, following the description above.
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Fixed point for

ℓ = x0, ℓ1 = x1

and ℓ2 = x2.

Tangent and second exceptional divisor

w2
1 = (w1

1, x̃
4
1)

Tw2
1
X2 = t(w2−w1) + t(2w2−2w1) + t(3w2−3w1) + t(4w2−4w1)+

t(w1−w0) + t(w2−w0) + t(w2−w1) + t(3w1−w0−2w2),

O(E2)w2
1

= t(3w1−w0−2w2).

w2
2 = (w1

1, x̃
3
1x2)

Tw2
2
X2 = t(w1−w2) + t(w2−w1) + t(2w2−2w1) + t(3w2−3w1)+

t(w1−w0) + t(w2−w0) + t(w2−w1) + t(2w1−w0−w2),

O(E2)w2
2

= t(2w1−w0−w2).

w2
3 = (w1

1, x̃
2
1x

2
2)

Tw2
3
X2 = t(2w1−2w2) + t(w1−w2) + t(w2−w1) + t(2w2−2w1)+

t(w1−w0) + t(w2−w0) + t(w2−w1) + t(w1−w0),

O(E2)w2
3

= t(w1−w0).

w2
4 = (w1

1, x̃1x3
2)

Tw2
4
X2 = t(3w1−3w2) + t(2w1−2w2) + t(w1−w2) + t(w2−w1)+

t(w1−w0) + t(w2−w0) + t(w2−w1) + t(w2−w0),

O(E2)w2
4

= t(w2−w0).

w2
5 = (w1

1, x̃
4
2)

Tw2
5
X2 = t(4w1−4w2) + t(3w1−3w2) + t(2w1−2w2) + t(w1−w2)+

t(w1−w0) + t(w2−w0) + t(w2−w1) + t(2w2−w0−w1) ,

O(E2)w2
5

= t(2w2−w0−w1).

Following the description given in (6.12), we obtain the following eigen-decomposition for the

tangent space of X1 at w1
1.

Tw1
1
X1 = Tw1

1
E1

w + TwY + [w1
1]

= Tw1
1

E
1
w︷ ︸︸ ︷

P([ ℓℓ2
2, ℓ

3
1, ℓ

2
1ℓ2, ℓ1ℓ2

2 ])+Tw(

∼= Y︷ ︸︸ ︷
P(F)×G∈(F)) + [w1

1]

=
ℓ3
1

ℓℓ2
2

+
ℓ2
1

ℓℓ2
+

ℓ1

ℓ︸ ︷︷ ︸
T
w1

1
E1
w

+
ℓ1

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ
+

ℓ2

ℓ1︸ ︷︷ ︸
TwY

+
ℓ2
2

ℓℓ1︸︷︷︸
O

E1(−1)
w1

1

.

(6.16)

andO(E1)
([ℓ2,ℓℓ1],ℓℓ22)

= OE1(−1)
([ℓ2,ℓℓ1],ℓℓ22)

= ℓℓ2
2

from (6.11)
←→ ℓ22

ℓℓ1
, then cT

1 (O(E1)w1
1
) = 2w2−w0−w1

doing ℓ = x0, ℓ1 = x1 and ℓ2 = x2.

Thus the contribution to (5.1) at each w2
i ∈ E2 for i = 1, ..., 5 lying over w1

1 is given by:
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Fixed point for

ℓ = x0, ℓ1 = x1

and ℓ2 = x2.

Contribution to the

numerator in (5.1)

2c
T
1 (Aw)

︸ ︷︷ ︸
2(3w0+w1)

+ c
T
1 (O(E

1
)
w1

1
)

︸ ︷︷ ︸
2w2−w0−w1

+ cT
1 (O(E2)

w2
i
)

Contribution to the denominator in (5.1)

cT
8 (T

w2
i

X
2)

w2
1 = (w1

1, x̃4
1) (5w0 + w1 + 2w2) + (3w1 − w0 − 2w2) 24(w2 − w1)5(w1 − w0)(w2 − w0)(3w1 − w0 − 2w2)

w2
2 = (w1

1, x̃3
1x2) (5w0 + w1 + 2w2) + (2w1 − w0 − w2) −6(w2 − w1)5(w1 − w0)(w2 − w0)(2w1 − w0 − w2)

w2
3 = (w1

1, x̃2
1x2

2) (5w0 + w1 + 2w2) + (w1 − w0) 4(w2 − w1)5(w1 − w0)
2(w2 − w0)

w2
4 = (w1

1, x̃1x3
2) (5w0 + w1 + 2w2) + (w2 − w0) −6(w2 − w1)5(w1 − w0)(w2 − w0)

2

w2
5 = (w1

1, x̃4
2)

(5w0 + w1 + 2w2) + (2w2 − w0 − w1) 24(w2 − w1)
5(w1 − w0)(w2 − w0)(2w2 − w0 − w1)

Making a cyclic permutation of x′
is in the table above, we will obtain all the 30 contributions

to (5.1) determined by the 6 fixed points w1
1 = ([ℓ2, ℓℓ1], ℓℓ2

2) ∈W1 (cf. (6.7) and (6.9)).

So, there are altogether 66 fixed points as indicated bellow by the bold points. In fact, consider

the diagram below, where we use ”•” to indicate the terminal fixed points and ”◦” to indicate the

non-terminal ones.

E2 ∋





• • • • • •

• • • • • •

• • • • • •

• • • • • •

• • • • • •

↓

W1 ∋
{
◦ ◦ ◦ ◦ ◦ ◦

E1 \W1 ∋





• • • • • •

• • • • • •

• • • • • •

• • •

• • •

• • •

• • •




∈ E1 \W1

↓ ↓

◦ ◦ ◦ ◦ ◦ ◦
︸ ︷︷ ︸

W

◦ ◦ ◦
︸ ︷︷ ︸

Y\W

• • • • • •
︸ ︷︷ ︸

X\Y

In the first line in the bottom we put the 15 = 6 (in X \ Y)︸ ︷︷ ︸
terminal

+ 3 (in Y \W)︸ ︷︷ ︸
non-terminal

+ 6 (in W)︸ ︷︷ ︸
non-terminal

fixed points

in X.

In the middle, we have 12 (respectively 18) terminal fixed points in E1 \W1 that are mapped

to the 3 (respectively 6) fixed points in Y \W (respectively W) by the the first blow-up map, and

we also have 6 non-terminal fixed points in W1 that are mapped to the 6 fixed points in W (W1 is

the second blow-up center and W1 ∼= W).
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At the top, we have 30 terminal fixed points in E2 that are mapped to the 6 fixed points in

W1 by the the second blow-up map (this last 6 fixed points in W1 are mapped isomorphically to

the 6 fixed points in W by the first blow-up map).

Finally using a MAPLE script, we find one more time that there exist 105 squares whose

vertices lie over 8 lines in general position in P
2.
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