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ABSTRACT

The object of the present paper is to study a type of contact metric manifolds, called N(k)-
contact metric manifolds admitting a non-null concircular and torse forming vector field.
Among others it is shown that such a manifold is either locally isometric to the Riemannian
product E™T1(0) x S™(4) or a Sasakian manifold. Also it is shown that such a contact metric

manifold can be expressed as a warped product I Xer ]\*J, where (]\*J, 5) is a 2n-dimensional
manifold.

RESUMEN

El objetivo del presente articulo es estudiar un tipo de variedades métricas de contacto, lla-
madas N (k)-variedades métricas de contacto admitiendo un campo de vectores concircular
y forma torse. Es demostrado también que tales variedades son o localmente isométricas a
productos Riemannianos E™*(0) x S™(4) o una variedade Sasakian. Es demostrado que tales

N
variedades métricas de contacto pueden ser expresadas como un producto deformado I Xer M,

donde ( M , 5) es una variedad 2n-dimensional.
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1 Introduction

A contact manifold is a smooth (2n + 1)-dimensional manifold M?"*! equipped with a global
1-form 7 such that g A (dn)™ # 0 everywhere. Given a contact form 7, there exists a unique vector
field &, called the characteristic vector field of 7, satisfying n(£)=1 and dn(X, £)=0 for any vector
field X on M?"*+1. A Riemannian metric g is said to be associated metric if there exists a tensor
field ¢ of type (1, 1) such that

n(X) = g(X,€),dn(X,Y) = g(X,¢Y) and ¢’X = —X +n(X)¢ (1.1)

for all vector fields X,Y on M?"*!. Then the structure (¢,&,n,g) on M?"*+1 is called a contact
metric structure and the manifold AM2"+! equipped with such a structure is said to be a contact
metric manifold [2]. It can be easily seen that in a contact metric manifold, the following relations
hold :

p€¢=0, no¢p=0, g(¢X,¢Y)=g(X,Y)—nX)nY) (1.2)
for any vector field X,Y on M?"t1,

1
Given a contact metric manifold M2"+1(¢, £, 1, g) we define a (1, 1) tensor field h by h = §£5¢,
where £ denotes the operator of Lie differentiation.Then h is symmetric and satisfies

hé =0, h¢=—oh, Tr.h=Tr.ph=0. (1.3)
If V denotes the Riemannian connection of g, then we have the following relation
Vx&=—¢pX — phX. (1.4)

A contact metric manifold M?"*1(¢, &, n, g) for which ¢ is a Killing vector field is called a K-contact
manifold. A contact metric manifold is Sasakian if and only if

R(X,Y)E = n(Y)X —n(X)Y, (1.5)

where R is the Riemannian curvature tensor of type (1, 3).

In 1988, S. Tanno [7] introduced the notion of k-nullity distribution of a contact metric man-
ifold as a distribution such that the characteristic vector field £ of the contact metric manifold
belongs to the distribution. The contact metric manifold with £ belonging to the k-nullity dis-
tribution is called N (k)-contact metric manifold and such a manifold is also studied by various
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authors. Generalizing this notion in 1995, Blair, Koufogiorgos and Papantoniou [4] introduced the
notion of a contact metric manifold with £ belonging to the (k, w)-nullity distribution, where k
and p are real constants. In particular, if ;4 = 0, then the notion of (k, p)-nullity distribution
reduces to the notion of k-nullity distribution.

The present paper deals with a study of N (k)-contact metric manifolds. The paper is organised
as follows. Section 2 is concerned with the discussion of N (k)-contact metric manifolds. In section
3, we obtain a necessary and sufficient condition for a N(k)-contact metric manifold to be an n—
Einstein manifold. Section 4 is devoted to the study of N(k)-contact metric manifolds admitting
a non-null concircular vector field and it is proved that such a manifold is either locally isometric
to the Riemannian product E"™1(0) x S™(4) or a Sasakian manifold. The last section deals with
a study of N(k)-contact metric manifolds admitting a non-null torse forming vector field and it is
shown that such a torse forming vector field reduces to a unit proper concircular vector field. Hence
a N (k)-contact metric manifold admits a proper concircular vector field, namely, the characteristic
vector field £, and it is proved that a N(k)-contact metric manifold is a subprojective manifold in
the sense of Kagan [1]. Finally it is shown that a N(k)-contact metric manifold can be expressed

as a warped product IX.» ]\j[ , where ( ]\*/[ , 5) is a 2n-dimensional manifold.

2 N(k)-Contact Metric Manifolds

Let us consider a contact metric manifold M?"*1(¢4,€&,7,g). The k-nullity distribution [7] of a
Riemainnian manifold (M, g) for a real number k is a distribution

N(k):p— Ny(k) ={Z € T,M : R(X,Y)Z = k[g(Y, Z)X — g(X, Z)Y]}

for any X,Y € T, M. Hence if the characteristic vector field £ of a contact metric manifold belongs
to the k-nullity distribution, then we have

R(X,Y)§ = k[n(Y)X —n(X)Y]. (2.1)

Thus a contact metric manifold M?"*1(¢, &, n, g) satisfying the relation (2.1) is called a N(k)-
contact metric manifold. From (1.5) and (2.1) it follows that a N(k)-contact metric manifold is
a Sasakian manifold if and only if K = 1. Also in a N(k)-contact metric manifold, k is always a
constant such that k <1 [7].

The (k, p)-nullity distribution of a contact metric manifold M?"*1(¢, £, n,g) is a distribu-
tion [4]
Nk p)ip— Nylkow) = |2 €T,M: R(X,Y)Z = k{g(Y, 2)X - g(X,Z)Y}

+1u{g(Y, Z)hX — g(X, Z)hY'}
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for any X, Y€ T, M, where k, p are real constants. Hence if the characteristic vector field £ belongs
to the (k, p)-nullity distribution, then we have

R(X,Y)§=k{n(Y)X —n(X)Y} + p{n(Y)hX — n(X)hY}. (2.2)

A contact metric manifold M2"+1(¢, €, 7, g) satisfying the relation (2.2) is called a N (k, u)-contact
metric manifold or simply a (k, p)-contact metric manifold. In particular, if ¢ = 0, then the rela-
tion (2.2) reduces to (2.1) and hence a N (k)-contact metric manifold is a N(k,0)-contact metric

manifold.

Let M?"tL(¢, €, 1, g) be a N(k)-contact metric manifold. Then the following relations hold ([5],
[7):

Qd — ¢Q = 4(n — 1)ho, (2.3)

h? = (k —1)¢?, k<1, (2.4)
Q€ = 2nkg, (2.5)

R(& X)Y = k[g(X,Y)§ —n(Y)X], (2.6)

where @ is the Ricci operator, i.e., g(QX,Y) = S(X,Y), S being the Ricci tensor of type (0,
2). In view of (1.1)-(1.2), it follows from (2.3)— (2.6) that in a N(k)-contact metric manifold, the
following relations hold:

Tr.h? =2n(1 — k), (2.7)

S(X,0Y) + S(6X,Y) = 2(2n — 2)g(6X, hY), (2.8)
S(pX,¢Y) = S(X,Y) — 2nkn(X)n(Y) — 2(2n — 2)g(hX,Y), (2.9)
Qo + ¢Q = 2¢Q + 2(2n — 2)ho, (2.10)

n(R(X,Y)Z) = klg(Y, Z)n(X) — g(X, Z)n(Y)], (2.11)
S(¢X,€) =0 (2.12)

for any vector field X, Yon M?"*+1. Also in a N(k)-contact metric manifold the scalar curvature r
is given by ([4], [5])
r=2n2n—-2+k). (2.13)

We now state a result as a lemma which will be used later on.

Lemma 2.1. [3] Let M?"*1(¢,€,m,g) be a contact metric manifold with R(X,Y)¢=0 for all vector
fields X, Y. Then the manifold is locally isometric to the Riemannian product E"1(0) x S™(4).
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3 n-Einstein N(k)-Contact Metric Manifolds

Definition 3.1. A N (k)-contact metric manifold M>"*1 is said to be n-Einstein if its Ricci tensor
S of type (0, 2) is of the form
S=ag+bnamn, (3.1)

where a, b are smooth functions on M*"+1,
From (3.1) it follows that
(1) r=02n+1)a+b, (it) 2nk=a+0b, (3.2)

which yields by virtue of (2.13) that a = 2n — 2 and b = 2n(k — 1) + 2. Obviously a and b are
constants as k is a constant. Hence by virtue of (3.1) we can state the following;:

Proposition 3.1 In an n-Einstein N (k)-contact metric manifold M>*"*t1(¢,&,m,9)(n > 1),
the Ricci tensor is of the form

S=(2n—2)g+{2n(k—1) + 2. (3.3)

Let M2 (¢, &,m,9)(n > 1) be a N(k)-contact metric manifold. Now we have
(R(X,Y) -S)(U,V)=-S(R(X,Y)U,V) - S(U,R(X,Y)V),
which implies that
(R(X,€) - 9)(U, V) = =S(R(X,§)U, V) = S(U, R(X, E)V). (3-4)
First we suppose that a N(k)-contact metric manifold is an 7-Einstein manifold. Then we have
S(X,Y) = ag(X,Y) + bn(X)n(¥), (3.5)

where a and b are given by a = 2n — 2 and b = 2n(k — 1) + 2. Using (3.5), (2.5) and (2.6) in (3.4)

we obtain

(R(X,)-S)U,V) = K[@2nk —a)g(X,U)n(V) +g(X,V)n(U) (3.6)
—2bn(X)n(U)n(V)].
From (3.2)(ii) it follows that
b= 2nk — a. (3.7)
In view of (3.7), (3.6) reduces to
(R(X, ) -9)(U, V) = kblg(X,U)n(V) + g(X,V)n(U) (3.8)

=2n(X)n(U)n(V)].
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Putting V' = ¢ in (3.8) we obtain
(R(X,€) - 5)(U, &) = k{2n(k — 1) + 2}[g(X, U) = n(X)n(U)]. (3.9)
Hence we can state the following:

Theorem 3.1. If a N(k)-contact metric manifold M*"*1(¢,&,m,9) (n > 1) is n-Einstein, then
the relation (3.9) holds.

Next, we suppose that in a N(k)-contact metric manifold M2"+1(n > 1) the relation (3.9)
holds. Then using (2.5) and (2.6) in (3.4) we get

(R(X,€) - 8)(U, &) = k[2nkg(X,U) — S(X,U)). (3.10)
By virtue of (3.9) and (3.10) we obtain
E[S(X,U) — (2n = 2)g(X,U) — {2n(k — 1) + 2}n(X)n(U)] = 0.
This implies either & = 0,
or, S(X,U)=(2n—2)g(X,U)+ {2n(k — 1) + 2}n(X)n(U). (3.11)
If k = 0, then from (2.1) we have
R(X,Y)t=0 forall X,Y.

Hence by Lemma 2.1, it follows that the manifold is locally isometric to the Riemannian product
E™1(0) x S™(4). Again (3.11) implies that the manifold is n-Einstein. Hence we can state the
following;:

Theorem 3.2. If in a N(k)-contact metric manifold M*"T(¢,&,n,9)(n > 1) the relation (3.9)
holds, then either the manifold is locally isometric to the Riemannian product E"*1(0) x S™(4) or
the manifold is n-FEinstein.

Combining Theorem 3.1 and Theorem 3.2 we can state the following:

Theorem 3.3. A N(k)-contact metric manifold M*" (¢, &,n,9)(n > 1)(k # 0) is an n-Einstein
manifold if and only if the relation (3.9) holds.

4 N(k)-Contact Metric Manifolds Admitting a Non-null Con-
circular Vector Field

Definition 4.1. A vector field V on a Riemannian manifold is said to be concircular vector field [6]
if it satisfies an equation of the form

VxV =pX for all X (4.1)

where p is a scalar.
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We suppose that a N (k)-contact metric manifold M2+ (¢, &, n, g)(n > 1) admits a non-null
concircular vector field. Then we have (4.1). Differentiating (4.1) covariantly we get

VyVxV =pVy X +dp(Y)X. (4.2)
From (4.2) it follows that (since the torsion tensor T(X,Y) = VxY — Vy X — [X,Y] =0)
VyVxV = VxVyV = Vix vV =dp(X)Y —dp(Y)X. (4.3)
Hence by Ricci identity we obtain from (4.3)
R(X,Y)V = dp(X)Y — dp(Y)X, (4.4)

which implies that

R(X,Y,V,Z)=dp(X)g(Y,Z) —dp(Y)g(X, Z), (4.5)

where R(X,Y,V,Z) = g(R(X,Y)V, Z).
Replacing Z by £ in (4.5) we get

N(R(X,Y)V) = dp(X)n(Y) — dp(Y)n(X). (4.6)
Again from (2.11) we have
n(R(X,Y)V) = k[g(Y, V)n(X) = g(X, V)n(Y)]. (4.7)
By virtue of (4.6) and (4.7) we have
dp(X)n(Y) = dp(Y)n(X) = k[g(Y, V)n(X) — g(X, V)n(Y)]. (4.8)
Putting X = ¢X and Y = £ in (4.8), and then using (1.2) we get
dp(¢X) = —kg(dX, V). (4.9)
Substituting X by ¢X in (4.9), we obtain by virtue of (1.1) that
dp(X) = dp(§)n(X) = k[g(X, V) = n(X)n(V)]. (4.10)

Now we have g(X,V) # 0 for all X. For, if (X, V) = 0 for all X, then ¢g(V,V) = 0 which means
that V is a null vector field, contradicts to our assumption. Hence multiplying both sides of (4.10)
by g(X,V) we have

dp(X)g(X, V) = dp(£)g(X, V)n(X) = kg(X, V)[g(X, V) = n(X)n(V)]. (4.11)
Also from (4.5) we get for Z =V (since R(X,Y,V,V) =0)
dp(X)g(Y, V) = dp(Y)g(X, V). (4.12)
Putting ¥ = ¢ in (4.12) and then using (1.1) we obtain

dp(X)n(V) = dp(§)g(X, V). (4.13)
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Since n(X) # 0 for all X, multiplying both sides of (4.13) by n(X), we have
dp(X)n(X)n(V) = dp(&)n(X)g(X, V). (4.14)
By virtue of (4.11) and (4.14) we get
[dp(X) = kg(X, V)][g(X, V) = n(X)n(V)] = 0. (4.15)
Hence it follows from (4.15) that
either dp(X) = kg(X,V) for all X (4.16)

or, g(X,V)—=n(X)n(V)=0 for all X. (4.17)

First we consider the case of (4.16). By virtue of (4.16) we obtain from (4.5) that

R(X,Y,V,Z) = k[-g(Y,V)g(X, Z) + g(X, V)g(Y, Z)]. (4.18)

Let {e; : @ =1, 2,...., 2n+1} be an orthonormal basis of the tangent space at any point of the
manifold. Then putting X = Z = ¢; in (4.18) and taking summation over i, 1 <14 < 2n+1, we get

S(Y,V) = —2nkg(Y, V). (4.19)

Now
(V29 (Y, V)=VzSY,V)-S(VzY,V) - S(Y,V;V). (4.20)

Using (4.1) and (4.19) in (4.20) we obtain
(VzS)(Y, V) = p[=2nkg(Y, Z) + 5(Y, Z)]. (4.21)
Setting Y = Z = e; in (4.21) and then taking summation over 1 <14 < 2n + 1, we get
%dr(V) = p[—2nk(2n+1) + 1], (4.22)

where r denotes the scalar curvature of the manifold. Since in a N(k)-contact metric mani-
fold M?" (¢, &,m,9)(n > 1) k is a constant, by virtue of (2.13) it follows that 7 is constant
and hence (4.22) yields (since r # 2nk(2n + 1)) p = 0, which implies by virtue of (4.4) that
R(X,Y)V =0 for all X and Y. This yields S(Y,V) = 0, which implies by virtue of (4.19) that
k =0. If £ = 0 then from (2.1) we have R(X,Y)¢ =0 for all X and Y and hence by Lemma 2.1,
it follows that the manifold is locally isometric to the Riemannian product E"*1(0) x S™(4).

Next we consider the case (4.17). Differentiating (4.17) covariantly along Z, we get

(Vzn)(X)n(V) + (Vzn)(V)n(X) = (Vzg)(X,V) = 0. (4.23)
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Now we have

(Vxn)(Y) = Vxn)-n(VxY)
=Vxg(Y.§) — 9(VxY,§).
= (Vxg)(Y,§) + g(Y, Vx¢).

That is, (Vxn)(Y) = g(¥,Vx&). (4.24)
By virtue of (4.24) we get from (4.23) that
n(V)g(X,VzE) +n(X)g(V,VzE) = 0. (4.25)
In view of (1.4), (4.25) yields
[9(X,02) + g(X,0hZ)In(V) + [9(V,0Z) + g(V, ohZ)n(X) = 0. (4.26)
Putting X = ¢ in (4.26) we get
9(X,02) + g(V,¢hZ) = 0. (4.27)
Substituting Z by ¢Z in (4.27), we obtain by virtue of (1.1), h¢ = —¢h and h¢ = 0 that
—9(V,Z) +n(V)n(Z) + g(V,hZ) = 0. (4.28)

Using (4.17) in (4.28) we get
g(V,hZ)=0 forall Z.

Since h is symmetric, the above relation implies that g(hV, Z) = 0 for all Z, which gives us hV = 0.
But since V' is non-null, by our assumption, we must have h = 0 and hence from (2.4) it follows
that £ = 1. Therefore the manifold is Sasakian. Hence summing up all the cases we can state the
following:

Theorem 4.1. If a N(k)-contact metric manifold M>*"*1(¢,&,n,g)(n > 1) admits a non-null
concircular vector field, then either the manifold is locally isometric to the Riemannian product
E™1(0) x S™(4) or the manifold is Sasakian.

5 N(k)-Contact Metric Manifolds Admitting a Non-null Torse
Forming Vector Field

Definition 5.1. A vector field V' on a Riemannian manifold is said to be torse forming vector

field ([6], [8]) if the 1-form w(X) = g(X, V) satisfies the equation of the form
(Vxw)Y = pg(X, V) + m(X)w(Y), (5.1)

where p is a non-vanishing scalar and m is a non-zero 1-form given by w(X) = g(X, P).
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If the 1-form 7 is closed, then the vector field V is called a proper concircular vector field.

In particular if the the 1-form 7 is zero, then the vector field V' reduces to a concircular vector field.

Let us consider a N(k)-contact metric manifold M?"1(¢,&,n,g)(n > 1) admitting a unit
torse forming vector field U corresponding to the non-null torse forming vector field V. Hence if
T(X)=g(X, U), then we have

T(X)= —. (5.2)
By virtue of (5.2), it follows from (5.1) that
(VxT)(Y) = Bg(X, YV) +=(X)T(Y), (5:3)

where 0 =

o) is a non-zero scalar. Since U is a unit vector field, substituting Y by U in (5.3)
w
yields

m(X) = =pT(X)
and hence (5.3) reduces to the following
(VxT)(Y) = Blg(X, YV) + T(X)T(Y)]. (5-4)

The relation (5.4) implies that the 1-form T is closed. Differentiating (5.4) covariantly we obtain
by virtue of Ricci identity that

-T(RX,Y)Z) = (XP)g(Y, 2)+TWT(2)] - (YB)g(X, 2) +T(X)T(Z)]  (55)
+6%g(Y, 2)T(X) +g(X, Z)T(Y)].

Setting Z = ¢ in (5.5) and then using (2.1) we get

(XB)MY) + T )nU)] — Y B)n(X) +T(X)n(U)] (5.6)
+(k+ 8)[g(Y, 2)T(X) +g(X, Z)T(Y)] = 0.
Putting X = U in (5.6) we obtain
[k + 32 + (UB)In(Y) —n(U)T(Y)] =0,

which implies that
either [k + 8%+ (UB)] =0 (5.7)

or, n(Y) —nU)T(Y)=0. (5.8)
We first consider the case of (5.7). From (5.5) it follows that
S(Y,U) = [2np* + (UBT(Y) — (2n = 1)(Y B), (5.9)

which yields for Y = £ that
(&B) = (UBNU). (5.10)
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Again, setting Y = ¢ in (5.6) we obtain by virtue of (5.10) that

[ = (@))*(XB) — (k + 54T (X)] = 0. (5.11)

In this case n(Y) —n(U)T(Y) # 0 for all Y and hence 1 — (n(U))? # 0. Consequently, (5.11) gives
us

(XB) = (k + F)T(X). (5.12)
Again, from 7(X) = =T (X) it follows that

Yr(X) = -[(YB)T(X) + B(YT(X))]. (5.13)

In view of (5.13) we obtain
dr(X, Y) = —BdT(X, Y).

Since T is closed, 7 is also closed and hence the vector field V' is a proper concircular vector field
in this case.

Next, we consider the case of (5.8). The relation (5.8) implies that
(n(U))* =1
and hence n(U) = £1. Consequently (5.8) reduces to
n(Y) =T (Y). (5.14)
Differentiating (5.14) covariantly along X, we obtain by virtue of (5.14) that
(Vxn)(Y) = £5[g(X, V) = n(X)n(Y)], (5.15)
which yields by virtue of (1.4) that
9(X +hX, ¢Y) = +6[g(X, V) —n(X)n(Y)]. (5.16)
Replacing Y by ¢Y in (5.16) and then using (1.2) we get
—9(X, Y) = g(hX, Y) +n(X)n(Y) = £69(X, ¢Y). (5.17)
Again setting X = hX in (5.17) we obtain by virtue of (1.1) and (2.4) that
—g(hX, V) + (k= D[g(X, Y) = n(X)n(Y)] = £89(hX, ¢Y). (5.18)

Putting X =Y =¢; in (5.18) and then taking summation over 1 < i < 2n + 1 we get by virtue of
(1.3) that
k=1 (5.19)

and hence the manifold is Sasakian.
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Let us now suppose that the manifold is non-Sasakian. Then k& < 1 [4]. Hence from (5.17)
and (5.18) it follows that

(k = B2)[g(X, Y) = n(X)n(Y)] = F2B9(X, ¢Y) (5.20)

which yields by contraction k = £+32. Since 3 # 0, it follows that (X3) = 0 for any X and hence
B is constant. Consequently we obtain m(X) = —GT(X) where (3 is constant, it follows that the

1-form 7 is also closed and hence the vector field V' is a proper concircular vector field. Considering
all the cases we can state the following:

Theorem 5.1. In a N(k)-contact metric manifold M>*"*1(¢,&,n,g)(n > 1), a non-null torse
forming vector field is a proper concircular vector field.

From (1.4) and (5.4) it follows that in a N (k)-contact metric manifold the characteristic vector
field £ is a unit torse forming vector field and hence by virtue of Theorem 5.1, we can state the
following;:

Theorem 5.2. A N(k)-contact metric manifold M?"1(4,€,1,9)(n > 1) admits a proper concir-

cular vector field.

Again, it is known that if a Riemannian manifold admits a proper concircular vector field,
then the manifold is a subprojective manifold in the sense of Kagan ([1]). Since a N (k)-contact
metric manifold admits a concircular vector field, namely, the vector field £, in view of the known
result we can state the following:

Theorem 5.3. A N(k)- contact metric manifold M?" (¢, £,m,9)(n > 1) is a subprojective man-
ifold in the sense of Kagan.

By virtue of Theorem 5.2 and Theorem 4.1 we can state the following:

Theorem 5.4. A N(k)-contact metric manifold M*" (¢, &,m, g)(n > 1) is either locally isometric
to the Riemannian product E"T1(0) x S™(4) or a Sasakian manifold.

K. Yano [8] proved that if a Riemannian manifold M?"*! admits a concircular vector field, it is
necessary and sufficient that there exists a coordinate system with respect to which the fundamental
quadratic differential form may be written as

ds* = (dz')* + e? 5)\# dzdat, (5.21)

where 5>\u:5/\u (x¥) are the function of z¥ only (A, u, v =2, 3, ..... , 2n) and p = p(zt) #
constant, is a function of 2! only. Since a N (k)-contact metric manifold admits a proper concircular
vector field, namely, the characteristic vector field &, by virtue of the above it follows that there
exists a coordinate system with respect to which the fundamental quadratic differential form can
be written as (5.21). Consequently the manifold can be expressed as a warped product IXe» ]\*4 ,

where ( M , 5) is a 2n-dimensional manifold. Hence we can state the following:
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Theorem 5.5. A N(k)-contact metric manifold M?"T(¢,£,m,9)(n > 1) can be expressed as a

warped product I X o» ]\j[, where (]\*4, 5) s a 2n-dimensional manifold.

Received: July, 2008. Revised: January, 2009.
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