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ABSTRACT

The object of the present paper is to study a type of contact metric manifolds, called N(k)-
contact metric manifolds admitting a non-null concircular and torse forming vector field.
Among others it is shown that such a manifold is either locally isometric to the Riemannian
product En+1(0)× Sn(4) or a Sasakian manifold. Also it is shown that such a contact metric

manifold can be expressed as a warped product I×e
p

∗

M , where (
∗

M,
∗

g) is a 2n-dimensional
manifold.

RESUMEN

El objetivo del presente art́ıculo es estudiar un tipo de variedades métricas de contacto, lla-
madas N(k)-variedades métricas de contacto admitiendo un campo de vectores concircular
y forma torse. Es demostrado también que tales variedades son o localmente isométricas a
productos Riemannianos En+1(0)×Sn(4) o una variedade Sasakian. Es demostrado que tales

variedades métricas de contacto pueden ser expresadas como un producto deformado I×e
p

∗

M ,

donde (
∗

M,
∗

g) es una variedad 2n-dimensional.
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1 Introduction

A contact manifold is a smooth (2n + 1)-dimensional manifold M2n+1 equipped with a global

1-form η such that η ∧ (dη)n 6= 0 everywhere. Given a contact form η, there exists a unique vector

field ξ, called the characteristic vector field of η, satisfying η(ξ)=1 and dη(X, ξ)=0 for any vector

field X on M2n+1. A Riemannian metric g is said to be associated metric if there exists a tensor

field φ of type (1, 1) such that

η(X) = g(X, ξ), dη(X, Y ) = g(X, φY ) and φ2X = −X + η(X)ξ (1.1)

for all vector fields X, Y on M2n+1. Then the structure (φ, ξ, η, g) on M2n+1 is called a contact

metric structure and the manifold M2n+1 equipped with such a structure is said to be a contact

metric manifold [2]. It can be easily seen that in a contact metric manifold, the following relations

hold :

φξ = 0, η ◦ φ = 0, g(φX, φY ) = g(X, Y ) − η(X)η(Y ) (1.2)

for any vector field X, Y on M2n+1.

Given a contact metric manifold M2n+1(φ, ξ, η, g) we define a (1, 1) tensor field h by h =
1

2
£ξφ,

where £ denotes the operator of Lie differentiation.Then h is symmetric and satisfies

hξ = 0, hφ = −φh, T r.h = Tr.φh = 0. (1.3)

If ∇ denotes the Riemannian connection of g, then we have the following relation

∇Xξ = −φX − φhX. (1.4)

A contact metric manifold M2n+1(φ, ξ, η, g) for which ξ is a Killing vector field is called a K-contact

manifold. A contact metric manifold is Sasakian if and only if

R(X, Y )ξ = η(Y )X − η(X)Y, (1.5)

where R is the Riemannian curvature tensor of type (1, 3).

In 1988, S. Tanno [7] introduced the notion of k-nullity distribution of a contact metric man-

ifold as a distribution such that the characteristic vector field ξ of the contact metric manifold

belongs to the distribution. The contact metric manifold with ξ belonging to the k-nullity dis-

tribution is called N(k)-contact metric manifold and such a manifold is also studied by various
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authors. Generalizing this notion in 1995, Blair, Koufogiorgos and Papantoniou [4] introduced the

notion of a contact metric manifold with ξ belonging to the (k, µ)-nullity distribution, where k

and µ are real constants. In particular, if µ = 0, then the notion of (k, µ)-nullity distribution

reduces to the notion of k-nullity distribution.

The present paper deals with a study of N(k)-contact metric manifolds. The paper is organised

as follows. Section 2 is concerned with the discussion of N(k)-contact metric manifolds. In section

3, we obtain a necessary and sufficient condition for a N(k)-contact metric manifold to be an η−

Einstein manifold. Section 4 is devoted to the study of N(k)-contact metric manifolds admitting

a non-null concircular vector field and it is proved that such a manifold is either locally isometric

to the Riemannian product En+1(0) × Sn(4) or a Sasakian manifold. The last section deals with

a study of N(k)-contact metric manifolds admitting a non-null torse forming vector field and it is

shown that such a torse forming vector field reduces to a unit proper concircular vector field. Hence

a N(k)-contact metric manifold admits a proper concircular vector field, namely, the characteristic

vector field ξ, and it is proved that a N(k)-contact metric manifold is a subprojective manifold in

the sense of Kagan [1]. Finally it is shown that a N(k)-contact metric manifold can be expressed

as a warped product I×ep

∗

M , where (
∗

M,
∗

g) is a 2n-dimensional manifold.

2 N(k)-Contact Metric Manifolds

Let us consider a contact metric manifold M2n+1(φ, ξ, η, g). The k-nullity distribution [7] of a

Riemainnian manifold (M, g) for a real number k is a distribution

N(k) : p → Np(k) = {Z ∈ TpM : R(X, Y )Z = k[g(Y, Z)X − g(X, Z)Y ]}

for any X, Y ∈ TpM. Hence if the characteristic vector field ξ of a contact metric manifold belongs

to the k-nullity distribution, then we have

R(X, Y )ξ = k[η(Y )X − η(X)Y ]. (2.1)

Thus a contact metric manifold M2n+1(φ, ξ, η, g) satisfying the relation (2.1) is called a N(k)-

contact metric manifold. From (1.5) and (2.1) it follows that a N(k)-contact metric manifold is

a Sasakian manifold if and only if k = 1. Also in a N(k)-contact metric manifold, k is always a

constant such that k ≤ 1 [7].

The (k, µ)-nullity distribution of a contact metric manifold M2n+1(φ, ξ, η, g) is a distribu-

tion [4]

N(k, µ) : p → Np(k, µ) =
[

Z ∈ TpM : R(X, Y )Z = k{g(Y, Z)X − g(X, Z)Y }

+µ{g(Y, Z)hX − g(X, Z)hY }
]
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for any X, Y∈ TpM , where k, µ are real constants. Hence if the characteristic vector field ξ belongs

to the (k, µ)-nullity distribution, then we have

R(X, Y )ξ = k{η(Y )X − η(X)Y } + µ{η(Y )hX − η(X)hY }. (2.2)

A contact metric manifold M2n+1(φ, ξ, η, g) satisfying the relation (2.2) is called a N(k, µ)-contact

metric manifold or simply a (k, µ)-contact metric manifold. In particular, if µ = 0, then the rela-

tion (2.2) reduces to (2.1) and hence a N(k)-contact metric manifold is a N(k, 0)-contact metric

manifold.

Let M2n+1(φ, ξ, η, g) be a N(k)-contact metric manifold. Then the following relations hold ([5],

[7]):

Qφ − φQ = 4(n − 1)hφ, (2.3)

h2 = (k − 1)φ2, k ≤ 1, (2.4)

Qξ = 2nkξ, (2.5)

R(ξ, X)Y = k[g(X, Y )ξ − η(Y )X ], (2.6)

where Q is the Ricci operator, i.e., g(QX, Y ) = S(X, Y ), S being the Ricci tensor of type (0,

2). In view of (1.1)-(1.2), it follows from (2.3)– (2.6) that in a N(k)-contact metric manifold, the

following relations hold:

Tr.h2 = 2n(1 − k), (2.7)

S(X, φY ) + S(φX, Y ) = 2(2n − 2)g(φX, hY ), (2.8)

S(φX, φY ) = S(X, Y ) − 2nkη(X)η(Y ) − 2(2n− 2)g(hX, Y ), (2.9)

Qφ + φQ = 2φQ + 2(2n− 2)hφ, (2.10)

η(R(X, Y )Z) = k[g(Y, Z)η(X) − g(X, Z)η(Y )], (2.11)

S(φX, ξ) = 0 (2.12)

for any vector field X, Y on M2n+1. Also in a N(k)-contact metric manifold the scalar curvature r

is given by ([4], [5])

r = 2n(2n− 2 + k). (2.13)

We now state a result as a lemma which will be used later on.

Lemma 2.1. [3] Let M2n+1(φ, ξ, η, g) be a contact metric manifold with R(X, Y )ξ=0 for all vector

fields X, Y. Then the manifold is locally isometric to the Riemannian product En+1(0) × Sn(4).



CUBO
12, 1 (2010)

On N(k)-Contact Metric Manifolds 185

3 η-Einstein N(k)-Contact Metric Manifolds

Definition 3.1. A N(k)-contact metric manifold M2n+1 is said to be η-Einstein if its Ricci tensor

S of type (0, 2) is of the form

S = ag + bη ⊗ η, (3.1)

where a, b are smooth functions on M2n+1.

From (3.1) it follows that

(i) r = (2n + 1)a + b, (ii) 2nk = a + b, (3.2)

which yields by virtue of (2.13) that a = 2n − 2 and b = 2n(k − 1) + 2. Obviously a and b are

constants as k is a constant. Hence by virtue of (3.1) we can state the following:

Proposition 3.1 In an η-Einstein N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1),

the Ricci tensor is of the form

S = (2n − 2)g + {2n(k − 1) + 2}η ⊗ η. (3.3)

Let M2n+1(φ, ξ, η, g)(n > 1) be a N(k)-contact metric manifold. Now we have

(R(X, Y ) · S)(U, V ) = −S(R(X, Y )U, V ) − S(U, R(X, Y )V ),

which implies that

(R(X, ξ) · S)(U, V ) = −S(R(X, ξ)U, V ) − S(U, R(X, ξ)V ). (3.4)

First we suppose that a N(k)-contact metric manifold is an η-Einstein manifold. Then we have

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (3.5)

where a and b are given by a = 2n− 2 and b = 2n(k − 1) + 2. Using (3.5), (2.5) and (2.6) in (3.4)

we obtain

(R(X, ξ) · S)(U, V ) = k[(2nk − a)g(X, U)η(V ) + g(X, V )η(U) (3.6)

−2bη(X)η(U)η(V )].

From (3.2)(ii) it follows that

b = 2nk − a. (3.7)

In view of (3.7), (3.6) reduces to

(R(X, ξ) · S)(U, V ) = kb[g(X, U)η(V ) + g(X, V )η(U) (3.8)

−2η(X)η(U)η(V )].
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Putting V = ξ in (3.8) we obtain

(R(X, ξ) · S)(U, ξ) = k{2n(k − 1) + 2}[g(X, U)− η(X)η(U)]. (3.9)

Hence we can state the following:

Theorem 3.1. If a N(k)-contact metric manifold M2n+1(φ, ξ, η, g) (n > 1) is η-Einstein, then

the relation (3.9) holds.

Next, we suppose that in a N(k)-contact metric manifold M2n+1(n > 1) the relation (3.9)

holds. Then using (2.5) and (2.6) in (3.4) we get

(R(X, ξ) · S)(U, ξ) = k[2nkg(X, U)− S(X, U)]. (3.10)

By virtue of (3.9) and (3.10) we obtain

k[S(X, U) − (2n − 2)g(X, U) − {2n(k − 1) + 2}η(X)η(U)] = 0.

This implies either k = 0,

or, S(X, U) = (2n − 2)g(X, U) + {2n(k − 1) + 2}η(X)η(U). (3.11)

If k = 0, then from (2.1) we have

R(X, Y )ξ = 0 for all X, Y.

Hence by Lemma 2.1, it follows that the manifold is locally isometric to the Riemannian product

En+1(0) × Sn(4). Again (3.11) implies that the manifold is η-Einstein. Hence we can state the

following:

Theorem 3.2. If in a N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1) the relation (3.9)

holds, then either the manifold is locally isometric to the Riemannian product En+1(0)× Sn(4) or

the manifold is η-Einstein.

Combining Theorem 3.1 and Theorem 3.2 we can state the following:

Theorem 3.3. A N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1)(k 6= 0) is an η-Einstein

manifold if and only if the relation (3.9) holds.

4 N(k)-Contact Metric Manifolds Admitting a Non-null Con-

circular Vector Field

Definition 4.1. A vector field V on a Riemannian manifold is said to be concircular vector field [6]

if it satisfies an equation of the form

∇XV = ρX for all X, (4.1)

where ρ is a scalar.
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We suppose that a N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1) admits a non-null

concircular vector field. Then we have (4.1). Differentiating (4.1) covariantly we get

∇Y ∇XV = ρ∇Y X + dρ(Y )X. (4.2)

From (4.2) it follows that (since the torsion tensor T (X, Y ) = ∇XY −∇Y X − [X, Y ] = 0)

∇Y ∇XV −∇X∇Y V −∇[X,Y ]V = dρ(X)Y − dρ(Y )X. (4.3)

Hence by Ricci identity we obtain from (4.3)

R(X, Y )V = dρ(X)Y − dρ(Y )X, (4.4)

which implies that

R̃(X, Y, V, Z) = dρ(X)g(Y, Z) − dρ(Y )g(X, Z), (4.5)

where R̃(X, Y, V, Z) = g(R(X, Y )V, Z).

Replacing Z by ξ in (4.5) we get

η(R(X, Y )V ) = dρ(X)η(Y ) − dρ(Y )η(X). (4.6)

Again from (2.11) we have

η(R(X, Y )V ) = k[g(Y, V )η(X) − g(X, V )η(Y )]. (4.7)

By virtue of (4.6) and (4.7) we have

dρ(X)η(Y ) − dρ(Y )η(X) = k[g(Y, V )η(X) − g(X, V )η(Y )]. (4.8)

Putting X = φX and Y = ξ in (4.8), and then using (1.2) we get

dρ(φX) = −kg(φX, V ). (4.9)

Substituting X by φX in (4.9), we obtain by virtue of (1.1) that

dρ(X) − dρ(ξ)η(X) = k[g(X, V ) − η(X)η(V )]. (4.10)

Now we have g(X, V ) 6= 0 for all X . For, if g(X, V ) = 0 for all X, then g(V, V ) = 0 which means

that V is a null vector field, contradicts to our assumption. Hence multiplying both sides of (4.10)

by g(X, V ) we have

dρ(X)g(X, V ) − dρ(ξ)g(X, V )η(X) = kg(X, V )[g(X, V ) − η(X)η(V )]. (4.11)

Also from (4.5) we get for Z = V (since R̃(X, Y, V, V ) = 0)

dρ(X)g(Y, V ) = dρ(Y )g(X, V ). (4.12)

Putting Y = ξ in (4.12) and then using (1.1) we obtain

dρ(X)η(V ) = dρ(ξ)g(X, V ). (4.13)
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Since η(X) 6= 0 for all X, multiplying both sides of (4.13) by η(X), we have

dρ(X)η(X)η(V ) = dρ(ξ)η(X)g(X, V ). (4.14)

By virtue of (4.11) and (4.14) we get

[dρ(X) − kg(X, V )][g(X, V ) − η(X)η(V )] = 0. (4.15)

Hence it follows from (4.15) that

either dρ(X) = kg(X, V ) for all X (4.16)

or, g(X, V ) − η(X)η(V ) = 0 for all X. (4.17)

First we consider the case of (4.16). By virtue of (4.16) we obtain from (4.5) that

R̃(X, Y, V, Z) = k[−g(Y, V )g(X, Z) + g(X, V )g(Y, Z)]. (4.18)

Let {ei : i = 1, 2,...., 2n+1} be an orthonormal basis of the tangent space at any point of the

manifold. Then putting X = Z = ei in (4.18) and taking summation over i, 1 ≤ i ≤ 2n+1, we get

S(Y, V ) = −2nkg(Y, V ). (4.19)

Now

(∇ZS)(Y, V ) = ∇ZS(Y, V ) − S(∇ZY, V ) − S(Y,∇ZV ). (4.20)

Using (4.1) and (4.19) in (4.20) we obtain

(∇ZS)(Y, V ) = ρ[−2nkg(Y, Z) + S(Y, Z)]. (4.21)

Setting Y = Z = ei in (4.21) and then taking summation over 1 ≤ i ≤ 2n + 1, we get

1

2
dr(V ) = ρ[−2nk(2n + 1) + r], (4.22)

where r denotes the scalar curvature of the manifold. Since in a N(k)-contact metric mani-

fold M2n+1(φ, ξ, η, g)(n > 1) k is a constant, by virtue of (2.13) it follows that r is constant

and hence (4.22) yields (since r 6= 2nk(2n + 1)) ρ = 0, which implies by virtue of (4.4) that

R(X, Y )V = 0 for all X and Y . This yields S(Y, V ) = 0, which implies by virtue of (4.19) that

k = 0. If k = 0 then from (2.1) we have R(X, Y )ξ = 0 for all X and Y and hence by Lemma 2.1,

it follows that the manifold is locally isometric to the Riemannian product En+1(0) × Sn(4).

Next we consider the case (4.17). Differentiating (4.17) covariantly along Z, we get

(∇Zη)(X)η(V ) + (∇Zη)(V )η(X) = (∇Zg)(X, V ) = 0. (4.23)
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Now we have

(∇Xη)(Y ) = ∇Xη(Y ) − η(∇XY )

= ∇Xg(Y, ξ) − g(∇XY, ξ).

= (∇Xg)(Y, ξ) + g(Y,∇Xξ).

That is, (∇Xη)(Y ) = g(Y,∇Xξ). (4.24)

By virtue of (4.24) we get from (4.23) that

η(V )g(X,∇Zξ) + η(X)g(V,∇Zξ) = 0. (4.25)

In view of (1.4), (4.25) yields

[g(X, φZ) + g(X, φhZ)]η(V ) + [g(V, φZ) + g(V, φhZ)]η(X) = 0. (4.26)

Putting X = ξ in (4.26) we get

g(X, φZ) + g(V, φhZ) = 0. (4.27)

Substituting Z by φZ in (4.27), we obtain by virtue of (1.1), hφ = −φh and hξ = 0 that

−g(V, Z) + η(V )η(Z) + g(V, hZ) = 0. (4.28)

Using (4.17) in (4.28) we get

g(V, hZ) = 0 for all Z.

Since h is symmetric, the above relation implies that g(hV, Z) = 0 for all Z, which gives us hV = 0.

But since V is non-null, by our assumption, we must have h = 0 and hence from (2.4) it follows

that k = 1. Therefore the manifold is Sasakian. Hence summing up all the cases we can state the

following:

Theorem 4.1. If a N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1) admits a non-null

concircular vector field, then either the manifold is locally isometric to the Riemannian product

En+1(0) × Sn(4) or the manifold is Sasakian.

5 N(k)-Contact Metric Manifolds Admitting a Non-null Torse

Forming Vector Field

Definition 5.1. A vector field V on a Riemannian manifold is said to be torse forming vector

field ([6], [8]) if the 1-form ω(X) = g(X, V ) satisfies the equation of the form

(∇Xω)Y = ρg(X, Y ) + π(X)ω(Y ), (5.1)

where ρ is a non-vanishing scalar and π is a non-zero 1-form given by π(X) = g(X, P ).
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If the 1-form π is closed, then the vector field V is called a proper concircular vector field.

In particular if the the 1-form π is zero, then the vector field V reduces to a concircular vector field.

Let us consider a N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1) admitting a unit

torse forming vector field U corresponding to the non-null torse forming vector field V . Hence if

T (X) = g(X, U), then we have

T (X) =
ω(X)

√

ω(X)
. (5.2)

By virtue of (5.2), it follows from (5.1) that

(∇XT )(Y ) = βg(X, Y ) + π(X)T (Y ), (5.3)

where β =
α

√

ω(V )
is a non-zero scalar. Since U is a unit vector field, substituting Y by U in (5.3)

yields

π(X) = −βT (X)

and hence (5.3) reduces to the following

(∇XT )(Y ) = β[g(X, Y ) + T (X)T (Y )]. (5.4)

The relation (5.4) implies that the 1-form T is closed. Differentiating (5.4) covariantly we obtain

by virtue of Ricci identity that

−T (R(X, Y )Z) = (Xβ)[g(Y, Z) + T (Y )T (Z)] − (Y β)[g(X, Z) + T (X)T (Z)] (5.5)

+β2[g(Y, Z)T (X) + g(X, Z)T (Y )].

Setting Z = ξ in (5.5) and then using (2.1) we get

(Xβ)[η(Y ) + T (Y )η(U)] − (Y β)[η(X) + T (X)η(U)] (5.6)

+(k + β2)[g(Y, Z)T (X) + g(X, Z)T (Y )] = 0.

Putting X = U in (5.6) we obtain

[k + β2 + (Uβ)][η(Y ) − η(U)T (Y )] = 0,

which implies that

either [k + β2 + (Uβ)] = 0 (5.7)

or, η(Y ) − η(U)T (Y ) = 0. (5.8)

We first consider the case of (5.7). From (5.5) it follows that

S(Y, U) = [2nβ2 + (Uβ)]T (Y ) − (2n − 1)(Y β), (5.9)

which yields for Y = ξ that

(ξβ) = (Uβ)η(U). (5.10)
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Again, setting Y = ξ in (5.6) we obtain by virtue of (5.10) that

[1 − (η(U))2][(Xβ) − (k + β2)T (X)] = 0. (5.11)

In this case η(Y )− η(U)T (Y ) 6= 0 for all Y and hence 1− (η(U))2 6= 0. Consequently, (5.11) gives

us

(Xβ) = (k + β2)T (X). (5.12)

Again, from π(X) = −βT (X) it follows that

Y π(X) = −[(Y β)T (X) + β(Y T (X))]. (5.13)

In view of (5.13) we obtain

dπ(X, Y ) = −βdT (X, Y ).

Since T is closed, π is also closed and hence the vector field V is a proper concircular vector field

in this case.

Next, we consider the case of (5.8). The relation (5.8) implies that

(η(U))2 = 1

and hence η(U) = ±1. Consequently (5.8) reduces to

η(Y ) = ±T (Y ). (5.14)

Differentiating (5.14) covariantly along X , we obtain by virtue of (5.14) that

(∇Xη)(Y ) = ±β[g(X, Y ) − η(X)η(Y )], (5.15)

which yields by virtue of (1.4) that

g(X + hX, φY ) = ±β[g(X, Y ) − η(X)η(Y )]. (5.16)

Replacing Y by φY in (5.16) and then using (1.2) we get

−g(X, Y ) − g(hX, Y ) + η(X)η(Y ) = ±βg(X, φY ). (5.17)

Again setting X = hX in (5.17) we obtain by virtue of (1.1) and (2.4) that

−g(hX, Y ) + (k − 1)[g(X, Y ) − η(X)η(Y )] = ±βg(hX, φY ). (5.18)

Putting X = Y = ei in (5.18) and then taking summation over 1 ≤ i ≤ 2n + 1 we get by virtue of

(1.3) that

k = 1 (5.19)

and hence the manifold is Sasakian.
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Let us now suppose that the manifold is non-Sasakian. Then k < 1 [4]. Hence from (5.17)

and (5.18) it follows that

(k − β2)[g(X, Y ) − η(X)η(Y )] = ∓2βg(X, φY ) (5.20)

which yields by contraction k = ±β2. Since β 6= 0, it follows that (Xβ) = 0 for any X and hence

β is constant. Consequently we obtain π(X) = −βT (X) where β is constant, it follows that the

1-form π is also closed and hence the vector field V is a proper concircular vector field. Considering

all the cases we can state the following:

Theorem 5.1. In a N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1), a non-null torse

forming vector field is a proper concircular vector field.

From (1.4) and (5.4) it follows that in a N(k)-contact metric manifold the characteristic vector

field ξ is a unit torse forming vector field and hence by virtue of Theorem 5.1, we can state the

following:

Theorem 5.2. A N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1) admits a proper concir-

cular vector field.

Again, it is known that if a Riemannian manifold admits a proper concircular vector field,

then the manifold is a subprojective manifold in the sense of Kagan ([1]). Since a N(k)-contact

metric manifold admits a concircular vector field, namely, the vector field ξ, in view of the known

result we can state the following:

Theorem 5.3. A N(k)- contact metric manifold M2n+1(φ, ξ, η, g)(n > 1) is a subprojective man-

ifold in the sense of Kagan.

By virtue of Theorem 5.2 and Theorem 4.1 we can state the following:

Theorem 5.4. A N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1) is either locally isometric

to the Riemannian product En+1(0) × Sn(4) or a Sasakian manifold.

K. Yano [8] proved that if a Riemannian manifold M2n+1 admits a concircular vector field, it is

necessary and sufficient that there exists a coordinate system with respect to which the fundamental

quadratic differential form may be written as

ds2 = (dx1)2 + ep
∗

gλµ dxλdxµ, (5.21)

where
∗

gλµ=
∗

gλµ (xν) are the function of xν only (λ, µ, ν = 2, 3, ...... , 2n) and p = p(x1) 6=

constant, is a function of x1 only. Since a N(k)-contact metric manifold admits a proper concircular

vector field, namely, the characteristic vector field ξ, by virtue of the above it follows that there

exists a coordinate system with respect to which the fundamental quadratic differential form can

be written as (5.21). Consequently the manifold can be expressed as a warped product I×ep

∗

M ,

where (
∗

M,
∗

g) is a 2n-dimensional manifold. Hence we can state the following:
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Theorem 5.5. A N(k)-contact metric manifold M2n+1(φ, ξ, η, g)(n > 1) can be expressed as a

warped product I×ep

∗

M , where (
∗

M,
∗

g) is a 2n-dimensional manifold.

Received: July, 2008. Revised: January, 2009.
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