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ABSTRACT

The purpose of this paper is to present a general answer for the following problem:

Let (X, d) be a metric space and T1,7> : X — P(X) two multifunctions. Determine the metric
conditions which imply that (71,7%) is a weakly Picard pair of multifunctions and 71, 7% are
weakly Picard multifunctions , for multifunctions satisfying an implicit contractive condition,
generalizing some results from [6] and [7].

RESUMEN

El proposito de este articulo es presentar una respuesta general para el siguiente problema:
Sea (X, d) un espacio métrico y T1,T> : X — P(X) dos multifunciones. Determine los condi-
ciones metricas para las cuales (71, 7%2) sea un par de multifunciones de Picard debil y 11, T
sean multifunciones satisfaziendo una condicién contractiva implicita, generalizando algunos
resultados de [6] y [7].
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1 Introduction and Preliminaries

Let X be a nonempty set. We denote P(X) the set of all nonempty subsets of X, i.e. P(X)={Y:
P£LY CX}. Let T: X — P(X) a multifunction. We denote by Fr the set of fixed points of T,
ie. Fp={zeX:zeT(x)}.

Let (X,d) be a metric space. We denote by Pcl(X) the set of all nonempty and closed sets of X.
We also recall the functional

D: P(X)x P(X)— Ry, defined by

D(A, B) = inf{d(a,b) : a € A,b € B} for each A, B € P(X) and generalized Hansdorff-Pompeiu
metric

H:P(X)x P(X) — Ry U{+oo} defined by

H(A, B) = max {sup[D(a, B),a € A], sup[D(A,b),b € B]} for A, B € P(X).

The following property of H is well-known.

Lemma 1.1. Let (X,d) be a metric space, A4, B € P(X) and ¢ > 1. Then for every a € A, there
exists b € B such that d(a,b) < ¢H(A, B).

Definition 1.1. Let (X,d) be a metric space and T : (X,d) — P(X) a multifunction. We say that
T is a weakly Picard multifunction [3],[4] if for each z € X and for every y € T'(z), there exists a
sequence (2, )nen such that:

(i) zo =z, 21 = y;

(ii) @py1 € T(zy) , for each n € N*

(iii) the sequence (z,)nen is convergent and its limit is a fixed point of T.

Definition 1.2. Let (X,d) be a metric space and T1,T» : X — P(X) two multifunctions. We
say that (T1,T») is a weakly Picard pair of multifunctions if for each x € X and for every y €
Ty (x) UTz(x), there exists a sequence (2, )nen such that

(i) zo = =, 71 = y;

(ii) zant1 € Ti(xan) and xont2 € Tj(x2n41), for n € N, where 4,5 € {1,2}, i # 7 ;

(iil) the sequence (2, )nen is convergent and its limit is a common fixed point of 77 and Tb.

Problem 1.1 [4]. Let (X,d) be a metric space and T1,T» : (X,d) — P(X) two multifunctions.
Determine the metric conditions which implies (T3, 7T») is a weakly Picard pair of multifunctions
and T7,T5 are weakly Picard multifunctions.

Partial answers to Problem 1.1. was established by Sintamarian in [4]-[7].

In [1] and [2] is introduced the study of fixed point for mappings satisfying implicit relations.
The purpose of this paper is to prove two general fixed points theorems for multifunctions which
satisfy a new type of implicit contractive relation which generalize some results from [6], [7].
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2 Implicit Relations

Let F be the set of all continuous multifunctions F(ty,...,ts) : RS — R satisfying the following
conditions:

(F1): F is increasing in variable ¢; and nonincreasing in variables ts, ..., ts;

(Fy): there exists k > 1, h € [0,1) and g > 0 such that for every u > 0, v > 0, w > 0, such that
(Fo): w <kt and F(t,v,v + w,u+w,u+ v+ w,w) <0, or

(Fp): u <kt and F(t,v,u+ w,v +w,w,u+ v+ w) < 0 implies u < hv + gw.

Example 2.1. F(ty,...,tg) = t1 — ate — b(t3 + t4) — c(t5 + t6), when 0 < a + 2b+ 2¢ < 1.
(F1): Obviously.
(Fy): F(t,v,v+w,u+w,u+v+ww) =t—av—>blu+ v+ 2w) —c(u+ v+ 2w) <0, where

1
1<k < s3gpra -

Then u < kt < klav+b(u+v+2w)+c(u+v+2w)]. Hence u < hv+gw, where 0 < h = f@&gig <0
and g = % >0

Similarly, F(t,v,u + w,w + v, w,u 4+ v+ w < 0 implies u < hv + gw.

Remark 2.1. Ifa+4b+4c<land 1 <k < m then h+g¢g < 1.

Example 2.2. F(ty,...,tg) = t1 — mmaz{ta, 3,14, %(tg, +t6)} where 0 <m < %

(F1): Obviously.

(Fy): LetuZO,vZO,wZO,l<k<ﬁand

F(t,v,v+w,u+w,u+v+w,w) :t—mmax{v,u—l—w,u—i—v,%(u+v—|—2w)} <0

which implies ¢ < m(u + v + w).

Then u < kt < km(u + v+ w). Hence, u < hv + gw where 0 < h = 15’,?7” <landg= 157,?”1 > 0.

Similarly, F(¢,v,u 4+ w,v + w,w,u + v + w) < 0 implies u < hv + gw .

Remark 2.2. If0<m<%and1<k<$thenh+g<1.

Example 2.3. F(ty,...,ts) = 13 — mmax{t3, tsts, t5tc}, where 0 < m < 1.

(F1): Obviously.

(F»): Letuzo,sz,wZO,1<k<ﬁand

F(t,v,v+w,u+w,u+v+w w) =t —mmazr{v?, (v+w)(u+w),wu+v+w)) <0

which implies t? < m(u+v+w)? and t < v/m(u+v+w). Then u < kt < ky/m(u+v+w). Hence,
u < hv 4+ gw, where 0 < h < v <landg= kvim_

T—kym T=kym =
Similarly, F(t,v,u + w,v + w,w,u + v+ w) < 0 implies u < hv 4+ gw.

Remark 2.3. If0§m<%andl<k<ﬁthenh+g<1.

Example 2.4. F(ty,...tg) =13 + 13 + m —m(t3 + 13 +t3), where 0 <m < {5.

(F1): Obviously.

(Fy): LetuZO,vZO,wZOand1<k<ﬁand

F(t,v,v+w,u+w,u+v+w,w) :t3+t2+m —m(v? + (v+w)? + (u+w)?) <0
which implies
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2 < m?+ (u+v)?+ (u+w?) <3mu+v+w)? and t < V3m(u+v+w). Ifu <kt <

_ k\/gm _ k\/gm
k\/gm(u—i-v—i—w)thenuﬁhv—i—gw,whereogh—m<1andg—m20.
Similarly, F(t,v,u + w,v + w,w,u + v + w) < 0 implies u < hv + gw.

Remark 2.4. If0<m<2—17and1<k<3\/1§m then h +¢g < 1.

3 Main Results

Theorem 3.1. Let 71,75 : (X,d) — Pcl(X) be two multifunctions. If the inequality

(1) ®(H(T1(2), To(y)), d(x, y), D(z, Ti (), d(y, Ta(y)), D(x, To(y)), D(y, Ta(x)) <0
holds for all z,y € X, where F' € F and Fr, # ® or Fp, # ®, then Fr, = Fp,.

Proof. Let u € Fry, then u € T1(u) and by (1) we have

O(H(Ty(u), Ta(w)), d(u, w), d(u, T1 (u)), D(u, Ta(w)), D(u, Te(u)), D(u, T1(u)) <0

By D(u,Ta(u)) < H(T1(u), T2 (u)) it follows that

®(D(u, T>(u)), 0,0, D(u, Ta(w)), D(u, T2(u)),0) <0

Since D(u,T2(u)) < kD(u,T2(u)) by (Fy) we have that D(u,T>(u)) = 0. Since Tz(u) is closed we
obtain u € Ty(u) i.e. u € Fp, and Fr, C Fp,. Similarly, by (F;) we obtain Fr, C Fp. Similarly,
if u € Frp,, then Fr, = Fr,.

Theorem 3.2. Let (X,d) be a complete metric space and T1,T» : (X, d) — Pcl(X) two multifunc-
tions. If (1) holds for all z,y € X, where F € F, then T} and T have a common fixed point and
F‘T1 = FT2 S PCl(X)

Proof. Let 29 € X and 21 € T(zg). Then there exists xo € Ta(z1) so that
d(z1,22) < kH(Ti(z0), To(21))

Suppose that x2, x3, ..., Tan_1, Tan, ... such that o, € T1Ton_2, Top € Toxo,_1,n € N* and
(2) d(zon—1,x2n) < kH(Ti(22n—2), To(T2n—-1)) »

(3) d(w2p—2,2n—1) < kH(T1(w2n—2), T2 (72n—3))

By (1) we have successively

O(H(Th (x2n—2), Ta(xan—-1)), d(T2n—2, Tan—1), D(xan—2, Ti(z2n—2)),
D(zon—1,Ta(x2n-1)), D(zan—2, Ta(xan—1)), D(z2n—1,Ti(z2n—-2)) <0
O(H(Th (x2n—2), Ta(xan—-1)), d(z2n—2, Tan—1), d(T2n—1, Tan—2),
d(xon—1,Tan), d(Tan—2,%2,),0) <0

(4) ®(H(T1(z2n-2), T2(T2n-1)), d(x2n—2, Ton—1), d(T2n—2, Ton—1),
d(xgn_l s l‘gn), d(xgn_g, l’zn_l) + d(wzn_l N ,Tgn), 0) < 0

Since ® € F then by (2),(4) and (F,) we obtain

(5) d(zon—1,%2n) < hd(xon—2, Tan—1)

Similarly, by (3) and (F}) we obtain

(6) d(w2p—2,22n—1) < hd(22n_2, Ton_3)
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Then by a rutine calculation one can show that (x,)nen is a Cauchy sequence and since (X,d) is

complete we have limx, = x for some x € X.

Now, if n € N*, (1) implies

(H(T1(x), T2(22n-1)), d(x, ¥2n-1), D(@, T1(2)), D(x2n-1, Ta(x2n-1)), D(@, T2 (¥20-1)),
D(,Tgn_l,Tl,T) S 0

As D(x9n, Ti(x)) < H(To(z2n—1), T1(x)) we have

(D (xaopn, T1(x)), d(x, xon—1), D(x, T1(x)), d(x2n-1, T2n), d(z, x2n ), D(xan—1,T1(x)) <0

Letting n tend to infinity we obtain

(D(x, T1(x)),0, D(x,T1(x)),0,0, D(x, T1(x)) <0

Since D(z,Ti(x)) < kD(z,Ti(x)) by (Fy) we obtain D(z,Ti(x)) = 0. Since Ti(x) is closed,
x € Ty(x). Hence z € Fr,. By Theorem 3.1 Fr, = Fr,.

Let us prove that F, = Fp, € Pcl(X). For this purpose that y,, € Fr, = Fr, for each n € N such
that y, — y* as n — oco. For example y,, € T (yn).

Then by Lemma 1.1 there exists v,, € Toy™ such that

(7) Ay, on) < KH(Ti(yn), To(5)) -

By (1) and (F7) we have successively

Q(H(T1(yn), T2(y")), d(yn, y"), D(yn, T1(yn)), D(y*, T2 (y™)),

D(yn, To(y*)), D(y™, T1(yn)) <0

Q(H(T1(yn), T2(y"))s d(Yn, y™), 0, d(y™, vn), d(Yn, vn), d(y*, yn)) < 0

(8) @(H(T1(yn), T2(y")), d(yn: y* ), d(yn, y*) + d(Yn, y™), A", yn) + d(Yn, vn), d(yn, vn) + d(yn, y*) +
Ad(Yn,y*); d(yn,y*)) <0

Since ® € F by (7) and (8) it follows that

d(Yn,vn) < hd(Yn,y*) + gd(y*, yn)

Using the triangle inequality we obtain

d(y™,vn) < d(y*, yn) + d(yn, vn) < (L+h+ g)d(y™, yn)

Letting n tend to infinity we obtain that limv, = y*. Since v, € Ta(y*), for each n € N* and
T>(y*)is closed, it follows that y* € To(y*), hence y* € Fp, = Fr, and Fp, is closed.

Therefore, Frr, = Fp, € Pcl(X).

Theorem 3.3. Let (X,d) be a complete metric space and T1,T> : (X,d) — Pcl(X). If (1)
holds for all z,y € X, where ® € F, then F, = Fp, € Pcl(X) and (T1,T») is a weakly Picard
pair of multifunctions. If in adition we have that h + g < 1, then 77 and T» are weakly Picard
multifunctions.

Proof. The first part it follows from Theorem 3.2.

Let 29 € X and a1 € T1(zp). There exists y; € T(x1) such that

(9) d(x1,vy1) < kH(T1(20), T2(21))

By (1) and (F}) we have successively

(I)(H(Tl (1‘0), Tg(l‘l)), d(,T(), LL‘l), D(,To, T1 (1‘0)), D(,Tl 5 Tg(l‘l)), D(,To, Tg(xl)), D(l‘l, T1 (1‘0)) S 0
O(H(T1(x0), To(x1)), d(x0,21), d(x0, 21), d(21, Y1), d(20,91),0) <0
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(10) ®(H (T1(w0), To(21)), d(x0,71), d(20,71),d(21, Y1), d(T0, 21) + d(71,¥1),0) <0
Since ® € F by (9) and (10) it follows that

d(z1,y1) < hd(zo, 1)

Also, there exists xo € T1(x1) such that

(11) d(z2,y1) < kH(T1 (1), T2 (21))

By (1) we have successively

(I)(H(Tl(l'l), Tg(l‘l)), 0, D(.”L‘l, Tl(l'l)), D(,Tl, Tg(xl)), D(.”L‘l, Tg(l‘l)), D(,Tl,Tl(,Tl)) S 0

®(H(T1 (1), To(21)), 0, d(z1, 22), d(z1, Y1), d(21,91), d(21, 22)) <0

(12) @(H(T1(21), To(21)), 0, d(21, 22), (21, 32) + d(22,91), d(21, 22) + d(22,91), d(21, 22)) < 0
Since ® € F by (11) and (12) it follows that

d(y1,z2) < gd(z1,x2)

Using the triangle inequality we have
d(z1,22) < d(21,y1) + d(y1,72) < hd(wo, 1) + gd(w1, 72)
which implies that

d(.fCl, .IQ) S %d(xo, .Il)

Now, there exists yo € To(x2) such that

(13) d(w2,y2) < kH(T1(z1), T2(22))

By (1) we have successively

O(H(T1(x1), To(x2)), d(x1,22), D(x1, T1(x1)), D(22, To(x2)), D(x1, Ta(x2)), D(x2, T1(21)) <0
O(H(Ty(z1), To(x2)),d(x1,22), d(x1,22), d(x2,Y2), d(21,Yy2),0) <0

(14) ®(H(T1(x1), To(x2)), d(x1, x2), d(x1, 22), d(x2, y2), d(1, T2) + d(22,y2),0) <0

Since ® € F by (13) and (14) it follows that

d(z2,y2) < hd(z1,x2)

Also, there exists z3 € Ty (z2) such that

(15) d(zs, y2) < kH(T1(x2), Ta(x2))

By (1) we have successively

(I)(H(Tl (.’L‘g), Tg(l‘g)), 0, D(SCQ, T1 (1‘2)), D(,TQ, Tg(xg)), D(SCQ, Tg(l‘g)), D(,TQ, T1 (,Tg)) S 0

®(H (T (22), To(22)), 0, d(22, 23), d(22, y2), d(22, y2), d(z2, 23)) <0

(16) @(H(T1(22), To(x2)), 0, d(x2, x3), d(x2, x3) + d(23y2), d(22, ¥3) + d(23,Y2), d(22, x3)) < 0
Since ® € F by (15) and (16) it follows that

d(.ng, y?) < gd(x27 .Ig)

Using again the triangle inequality we obtain
d(w2,23) < d(22,y2) + d(y2,23) < hd(z1,22) + gd(z2,73)
and so
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d(ZCQ, .Ig) S %d(ml, .IQ)

By induction we obtain that there exists a sequence (z,)nen starting from zg, 27 with 2,41 €
T, (x,) such that

d(ZCn, anrl) < 1Thgd(xnfla In)

for each n € N*. Since 1Thg < 1 it follows that (xy,)nen is a convergent sequence, because (X,d) is
a complete metric space. Let x* = limx,,.

By (1) we have

(I)(Tl (xn)v TQ('I*))’ d(x*v xn)v D(xnv Ty (xn))v D(I*v TQ('I*))’ D(xnv TQ('I*))’ D(x*v Ty (In))) <0
Since D(xp11,T2(x*)) < H(T1(zp), T2(x*) we obtain

O(D(@ans1), To(@™)), d(@*, 1), d(n, Tas1), D(a, To(@")), D, Ta()), D(@*, n11))) < 0
Letting n tend to infinity we obtain

O(D(z*,Ta(x*)), 0,0, D(x*, To(z*)), D(z*, Ta(z*)),0) <0

Since D(z*, To(z*)) < kD(x*,T2(z*)) and ® € F we obtain D(z*, T»(z*)) = 0 and since Th(x*) is
closed we have that z* € Ty(z*) and z* € Fp, = Fr,.

Hence T3 is a weakly Picard multifunction. The fact that T is a weakly Picard multifunction is
similar proved.

Remark 3.1. By Theorems 2 and 3 and Ex. 2.1 we obtain generalizations of the results from
Theorem 2.1 [6] and Theorem 2.1 [7].
By Ex. 2.2 -2.4 we obtain new results.
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