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ABSTRACT

The notion of a complex hyperpolar action on a symmetric space of non-compact type
has recently been introduced as a counterpart to the hyperpolar action on a symmetric
space of compact type. As examples of a complex hyperpolar action, we have Hermann
type actions, which admit a totally geodesic singular orbit (or a fixed point) except for one
example. All principal orbits of Hermann type actions are curvature-adapted and proper
complex equifocal. In this paper, we give some examples of a complex hyperpolar action
without singular orbit as solvable group free actions and find complex hyperpolar actions
all of whose orbits are non-curvature-adapted or non-proper complex equifocal among the
examples. Also, we show that some of the examples possess the only minimal orbit.

RESUMEN

La nocién de una accién hiperpolar compleja sobre un espacio simétrico de tipo no com-
pacto fue recientemente introducida como el anidlogo de la accién hiperpolar sobre un
espacio simétrico de tipo compacto. Como ejemplos de una acciéon hiperpolar complejas,
nosotros tenemos acciones de tipo Hermann, las cuales admiten una orbita (o un punto
fijo) singular totalmente geodesica excepto para un ejemplo. Todas las orbitas principales
de acciones de tipo Hermann son curvatura-adaptadas y unifocales complejas propias. En
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este articulo, nosotros damos algunos ejemplos de una accién hiperpolar compleja sin or-
bitas singulares como grupo soluble de acciones libres y encontramos acciones complejas
hiperpolares cuyas orbitas son no curvatura-adaptadas o no propias unifocales complejas.
También, mostramos que algunos de los ejemplos poseen solamente orbitas minimales.

Key words and phrases: symmetric space, complex hyperpolar action, complex equifocal submani-
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1 Introduction

In symmetric spaces, the notion of an equifocal submanifold was introduced in [30]. This notion is
defined as a compact submanifold with globally flat and abelian normal bundle such that the focal
radius functions for each parallel normal vector field are constant. However, this conditions of the
equifocality is rather weak in the case where the symmetric spaces are of non-compact type and the
submanifold is non-compact. So we [13, 14] have recently introduced the notion of a complex equifocal
submanifold in a symmetric space G/K of non-compact type. This notion is defined by imposing the
constancy of the complex focal radius functions instead of focal radius functions. Here we note that
the complex focal radii are the quantities indicating the positions of the focal points of the extrinsic
complexification of the submanifold, where the submanifold needs to be assumed to be complete and
of class C¥ (i.e., real analytic). On the other hand, Heintze-Liu-Olmos [10] has recently defined
the notion of an isoparametric submanifold with flat section in a general Riemannian manifold as a
submanifold such that the normal holonomy group is trivial, its sufficiently close parallel submanifolds
are of constant mean curvature with respect to the radial direction and that the image of the normal
space at each point by the normal exponential map is flat and totally geodesic. We [14] showed the
following fact:

All isoparametric submanifolds with flat section in a symmetric space G/K of non-compact type
are complex equifocal and that conversely, all curvature-adapted and complex equifocal submanifolds
are isoparametric ones with flat section.

Here the curvature-adaptedness means that, for each normal vector v of the submanifold, the
Jacobi operator R(-,v)v preserves the tangent space of the submanifold invariantly and the restriction
of R(-,v)v to the tangent space commutes with the shape operator A,, where R is the curvature
tensor of G/K. Furthermore, as a subclass of the class of complex equifocal submanifolds, we [15]
defined that of the proper complex equifocal submanifolds in G/K as a complex equifocal submanifold
whose lifted submanifold to H°([0,1],¢) (g := Lie G) through some pseudo-Riemannian submersion
of H°([0,1],g) onto G/K is proper complex isoparametric in the sense of [13], where we note that
H°([0,1],9) is a pseudo-Hilbert space consisting of certain kind of paths in the Lie algebra g of G.
Let G/K be a symmetric space of non-compact type and H be a closed subgroup of G which admits
an embedded complete flat submanifold meeting all H-orbits orthogonally. Then the H-action on
G/K is called a complex hyperpolar action. This action was named thus because this action has not
necessarily a singular orbit (which should be called a pole of this action) but the complexified action



CUBO

2010 Examples of a complex hyperpolar action without singular orbit 129
12, 2 (2010

has a singular orbit. Note that all cohomogeneity one actions are complex hyperpolar. We [14] showed
that principal orbits of a complex hyperpolar actions are isoparametric submanifolds with flat section
and hence they are complex equifocal. Conversely we [17] have recently showed that all homogeneous
complex equifocal submanifolds occurs as principal orbits of complex hyperpolar actions. Let H' be
a symmetric subgroup of G (i.e., there exists an involution ¢ of G with (Fixo)y € H' C Fixo),
where Fixo is the fixed point group of ¢ and (Fixo)g is the identity component of Fixo. Then
the H'-action on G/K is called a Hermann type action. A Hermann type action admits a totally
geodesic orbit or a fixed point. Except for one example, the totally geodsic orbit is singular (see
Theorem E of [17]). We [15] showed that principal orbits of a Hermann type action are proper
complex equifocal and curvature-adapted. We [17] have recently showed that all complex hyperpolar
actions of cohomogeneity greater than one on G/K admitting a totally geodesic orbit and all complex
hyperpolar actions of cohomogeneity one on G/K admitting reflective orbit are orbit equivalent to
Hermann type actions (see Theorems B, C and Remark 1.1 in [17]). Let G/K be a symmetric space
of non-compact type, g = f +p (f := Lie K) be the Cartan decomposition associated with (G, K), a
be the maximal abelian subspace of p, a be the Cartan subalgebra of g containing a and g =f+a+n
be the Iwasawa’s decomposition. Let A, A and N be the connected Lie subgroups of G having a, a
and n as their Lie algebras, respectively. Let 7 : G — G/K be the natural projection. The symmetric
space G/K is identified with the solvable group AN with a left-invariant metric through 7|any. In
this paper, we first prove the following fact for a complex hyperpolar action without singular orbit.

Theorem A. Any complex hyperpolar action on G/K (= AN) without singular orbit is orbit equiv-
alent to the free action of some solvable group contained in AN.

Next we give some examples of a complex hyperpolar action without singular orbit as the free
actions of solvable groups contained in AN (see Examples 1 and 2 of Section 3), which contain examples
of cohomogeneity one actions without singular orbit constructed by J. Berndt and H. Tamaru [3] as
special cases (see also [1]). Among these examples, we find complex hyperpolar actions all of whose
orbits are non-proper complex equifocal or non-curvature-adapted. As its result, we have the following
facts.

Theorem B. (i) For any symmetric space G/K of non-compact type and any positive integer r
with r < rank(G/K), there exists a complex hyperpolar action without singular orbit such that the
cohomogeneity is equal to r and that any of the orbits is not proper complex equifocal.

(ii) Let G/K be one of SU(p,q)/S(U(p) x U(q)) (p < q), Sp(p,q)/Sp(p) x Sp(q) (p < ),
SO*(2n)/U(n) (n : odd), Eg**/Spin(10) - U(1) or F;*°/Spin(9). Then, for any positive integer r
with r < rank(G/K), there exists a complex hyperpolar action without singular orbit such that the
cohomogeneity is equal to r and that any of the orbits is not curvature-adapted.

Also, among those examples, we find complex hyperpolar actions possessing the only minimal
orbit. As its result, we have the following fact.
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Theorem C. For any irreducible symmetric space G/K of non-compact type and any positive integer

r < [4(rank(G/K) + 1)], there exists a complex hyperpolar action without singular orbit such that
the cohomogeneity is equal to r and that the only orbit is minimal.

2 Complex equifocal submanifolds

In this section, we recall the notions of a complex equifocal submanifold and a proper complex equifocal
submanifold. We first recall the notion of a complex equifocal submanifold. Let M be an immersed
submanifold with abelian normal bundle in a symmetric space N = G/ K of non-compact type. Denote
by A the shape tensor of M. Let v € T;M and X € T,M (z = gK). Denote by 7, the geodesic in
N with 4,(0) = v. The strongly M-Jacobi field Y along ~, with Y(0) = X (hence Y'(0) = —A,X) is
given by

Y(s) = (P

Yo

0.5 © (D20 = 8D3, 0 Ay))(X),

where Y'(0) = V,Y, P, |, 1s the parallel translation along v, o 5] and DgJ (resp. D3t is given by

D} = g« o cos(V—1ad(sg; 'v)) 0 g !
T -1
<resp. DS — goo sin(y/ 1ad(s€§ v)) og*l) '
Vv—1lad(sgx "v)

Here ad is the adjoint representation of the Lie algebra g of G. All focal radii of M along -, are

obtained as real numbers so with Ker(D¢$, —sqD3¢ 0A,) # {0}. So, we call a complex number zo with

Spov Sov
Ker(D$°,—zD5! 0 AS) # {0} a complex focal radius of M along ~, and call dim Ker(D$°,—zo D% o0 AS)

Zov

the multiplicity of the complex focal radius zg, where A§ is the complexification of A, and DZ, (resp.

D$t ) is a C-linear transformation of (T, N)¢ defined by

Zov

D, = g o cos(v—1ad®(z09; 'v)) o (g5)
. in(v/—Tad®(zog: !
(vesp. Dz =gz SR 00 1),
v—1ad®(zog« "v)

where g¢ (resp. ad®) is the complexification of g, (resp. ad). Here we note that, in the case where

M is of class C¥, complex focal radii along -, indicate the positions of focal points of the extrinsic
complexification M¢(— G€¢/K¢) of M along the complexified geodesic ¢ ,, where G¢/K¢ is the
anti-Kaehlerian symmetric space associated with G/K and ¢ is the natural immersion of G/K into
G°/K*°. See Section 4 of [14] about the definitions of G°/K°, M°(— G°¢/K°) and ~¢,. Also, for
a complex focal radius zo of M along 7,, we call zgv (€ (T;*M)®) a complex focal normal vector of
M at x. Furthermore, assume that M has globally flat normal bundle, that is, the normal holonomy
group of M is trivial. Let © be a parallel unit normal vector field of M. Assume that the number
(which may be 0 and oo) of distinct complex focal radii along 73, is independent of the choice of
x € M. Furthermore assume that the number is not equal to 0. Let {r; ;|7 = 1,2,---} be the set
of all complex focal radii along vz, , where |r; | < |rig1,z] or "|riz| = |rit1,2] & Reriz > Rerip1,”
or 7|rizl = |riv1,0| & Reriy = Rerip1, & Imr;p = —Imripq, < 07, Let 7, (i = 1,2,--+) be
complex valued functions on M defined by assigning r; » to each x € M. We call these functions r;
(i=1,2,---) complex focal radius functions for v. We call r;0 a complex focal normal vector field for
v. If, for each parallel unit normal vector field v of M, the number of distinct complex focal radii
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along ~;, is independent of the choice of x € M, each complex focal radius function for v is constant
on M and it has constant multiplicity, then we call M a complezx equifocal submanifold.

Let N = G/K be a symmetric space of non-compact type and = be the natural projection of
G onto G/K. Let (g,0) be the orthogonal symmetric Lie algebra of G/K, f = {X € g|0(X) = X}
and p = {X € g|6(X) = —X}, which is identified with the tangent space Tex N. Let (, ) be
the Ad(G)-invariant non-degenerate symmetric bilinear form of g inducing the Riemannian metric
of N. Note that (, )|jxs (resp. (, )|pxp) is negative (resp. positive) definite. Denote by the same
symbol ( , ) the bi-invariant pseudo-Riemannian metric of G induced from { , ) and the Riemannian
metric of N. Set g := p, g— = fand (, )g. = -7y (, )+ 7, (, ), where m5_ (vesp. mg,)
1],g) be the space of all L2-integrable paths
1],9-) (resp. H°([0,1],9+)) be the space of
1

] — g+) with respect to —(, )|g_xg_ (resp.

[0,
0
_ (resp u : [0,

is the projection of g onto g_ (resp. g.). Let H(
w : [0,1] — g (with respect to (, )g,). Let HY([0,
all L2-integrable paths u : [0,1] — g
(', Mayxgy) It is clear that H°([0,1],g) = ([O 1],9- )EB HO([O 1] g+). Define a non-degenerate
symmetric bilinear form ( , )o of H°([0,1],¢) by (u,v)o : fo ))dt. Tt is easy to show that the
decomposition HY([0,1],g) = H°([0,1], ¢ )@HO([O 1],9+) is an orthogonal time-space decomposition
] )and< ) >0,Hi == HE< ) >0+7TH3< ) >07
where 7yo (resp. 7o) is the projection of H°([0,1],9) onto HY (resp. HY). It is clear that
(u,v)o,59 = f01<u(t),v(t)>gidt (u, v € H°([0,1],9)). Hence (H°([0,1],9), (, )o,rry) is a Hilbert
space, that is, (H°([0,1],g), (, )o) is a pseudo-Hilbert space. Let H'([0,1],G) be the Hilbert Lie
group of all absolutely continuous paths g : [0, 1] — G such that the weak derivative g’ of g is squared
integrable (with respect to (, )q, ), that is, g7 'g’ € H°([0,1],g). Define a map ¢ : H°([0,1],g9) — G
by ¢(u) = gu(1) (u € H([0,1],g)), where g, is the element of H'([0,1],G) satisfying g,(0) = e
and g,lg,, = u. We call this map the parallel transport map (from 0 to 1). This submersion ¢ is
a pseudo-Riemannian submersion of (HY([0,1],g),(, )o) onto (G,(, )). Let 7 : G — G/K be the
natural projection. It follows from Theorem A of [13] (resp. Theorem 1 of [14]) that, in the case where

with respect to ( , )o. For simplicity, set H) := HO([0,

M is curvature adapted (resp. of class C*), M is complex equifocal if and only if each component
of (m o ¢)~1(M) is complex isoparametric. See [13] about the definition of a complex isoparametric
submanifold in a pseudo-Hilbert space. In particular, if each component of (7 o ¢)~!(M) are proper
complex isoparametric, that is, for each normal vector v, there exists a pseudo-orthonormal base of
the complexified tangent sapce consisting of the eigenvectors of the complexified shape operator for

v, then we call M a proper complex equifocal submanifold.

Next we recall the notion of an infinite dimensional anti-Kaehlerian isoparametric submanifold.
Let M be an anti-Kaehlerian Fredholm submanifold in an infinite dimensional anti-Kaehlerian space
V and A be the shape tensor of M. See [14] about the definitions of an infinite dimensional anti-
Kaehlerian space and anti-Kaehlerian Fredholm submanifold in the space. Denote by the same symbol
J the complex structures of M and V. Fix a unit normal vector v of M. If there exists X (#£ 0) € TM
with A, X = aX +bJ X, then we call the complex number a+by/—1 a J-eigenvalue of A, (or a complex
principal curvature of direction v) and call X a J-eigenvector for a + by/—1. Also, we call the space
of all J-eigenvectors for a + bv/—1 a J-eigenspace for a + br/—1. The J-eigenspaces are orthogonal
to one another and each J-eigenspace is J-invariant. We call the set of all J-eigenvalues of A, the
J-spectrum of A, and denote it by Spec;A,. The set Spec;A, \ {0} is described as follows:

Spec; A, \ {0} ={N|i=1,2,---}
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IXil > [Aix1] or 7|\ = |Nis1| & Re ;s > Re \iyq”
or ”l/\i| = |)\i+1| & Re /\z = Re /\i+1 & IIII)\Z = —Im/\i_H > 07 '

Also, the J-eigenspace for each J-eigenvalue of A, other than 0 is of finite dimension. We call the
J-eigenvalue \; the i-th complex principal curvature of direction v. Assume that M has globally flat
normal bundle. Fix a parallel normal vector field ¥ of M. Assume that the number (which may be
o0) of distinct complex principal curvatures of direction v, is independent of the choice of z € M.
Then we can define functions \; (i=1,2,---) on M by assigning the i-th complex principal curvature
of direction v, to each x € M. We call this function Xz the i-th complex principal curvature function
of direction v. If M satisfies the following condition (AKI), then we call M an anti-Kaehlerian
isoparametric submanifold:

(AKI) For each parallel normal vector field ¥, the number of distinct complex principal curvatures
of direction v, is independent of the choice of x € M, each complex principal curvature function of
direction v is constant on M and it has constant multiplicity.

Let {e;}$2, be an orthonormal system of T, M. If {e;}2, U {Je;}$2, is an orthonormal base of
T, M, then we call {e;}5°, a J-orthonormal base. If there exists a J-orthonormal base consisting of
J-eigenvectors of A, then A, is said to be diagonalized with respect to the J-orthonormal base. If M
is anti-Kaehlerian isoparametric and, for each v € T M, the shape operator A, is diagonalized with
respect to a J-orthonormal base, then we call M a proper anti-Kaehlerian isoparametric submanifold.
For arbitrary two unit normal vector v; and v of a proper anti-Kaehlerian isoparametric submanifold,
the shape operators A,, and A,, are simultaneously diagonalized with respect to a J-orthonormal
base. Let M be a proper anti-Kaehlerian isoparametric submanifold in an infinite dimensional anti-
Kaehlerian space V. Let {E;|i € I} be the family of distributions on M such that, for each z € M,
{E;(z)|i € I} is the set of all common J-eigenspaces of A,’s (v € T;- M). The relation T, M = @
i
holds. Let A; (i € I) be the section of (T+M)* ® C such that A, = Re);(v)id +Im\;(v)J on E;(m(v))
for each v € T+ M, where 7 is the bundle projection of T+ M. We call \; (i € I) complex principal
curvatures of M and call distributions F; (i € I) complex curvature distributions of M.

In the case where M is a real analytic submanifold in a symmetric space G/K of non-compact
type, it is shown that M is complex equifocal if and only if (7€ o ¢©)~!1(M*®) is anti-Kaehlerian
isoparametric, where 7¢ is the natural projection of G onto G¢/K*® and ¢° is the parallel transport
map for G¢ (which is defined in similar to the above ¢). Also, it is shown that M is proper complex
equifocal if and only if (7€ 0 ¢¢)~1(M¢) is proper anti-Kaehlerian isoparametric.

3 Proof of Theorems A and B

In this section, we first prove Theorem A.

Proof of Theorem A. Let H be a complex hyperpolar action on G/K (= AN) without singular orbit,
H = LR (L : semi-simple, R : solvable) be the Levi decomposition of H and L = K ANy, (K, :
compact, Ay, :abelian, Ny, :nilpotent) be the Iwasawa decomposition of L. Since K7, is compact, it
has a fixed point py by the Cartan’s fixed point theorem. Suppose that K -p ¢ Ap Ny R - p for some
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p € G/K. Then we have dim H - py < dim H - p, which implies that H - py is a singular orbit. This
contradicts the fact that the H-action has no singular orbit. Hence it follows that Ky -p C AL Ny R-p
for any p € G/ K. Therefore we can show that the Ay Ny R-action has the same orbits as the H-action.

The group ApNp R is decomposed into the product of some compact subgroup 7’ and some solvable
normal subgroup S’ admitting a maximal compact normal subgroup S% contained in the center of
S’ such that S’/S% is simply connected (see Theorem 6 of [19]). Since T is compact, it is shown
by the same argument as above that the S’-action has the same orbit as the Ay Ny R-action (hence
the H-action). Take any p € G/K and any g € S’ with g # e. Since S’ acts on G/K effectively,
there exists p; € G/K with g(p1) # p1. The section X, through p; is mapped into the section ¥y,
through g(p1) by g. Since the S’-action has no singular orbit, we have X, N Xy, ) = 0. Let ¢ be the
intersection of H-p with X, . Then g(q) is the intersection of H-p with ¥,,,). Hence we have g(q) # ¢.
Therefore S” acts on each H-orbit effectively. Since the isotropy group S), of S’ at any p € G/K is
compact, it is contained in a conjugate of Sy (see Theorem 4 of [19]). Hence 5}, is contained in the
center of S’. Therefore, since the S]’D-action has a fixed point p and it is effective, it is trivial. Thus
the S’-action is free. Let s’ := Lie S” (the Lie algebra of S’), s’ be a maximal solvable subalgebra of
g containing ' and S be the connected subgroup of G with Lie S’ = . Since g is a real semi-simple
Lie algebra and s’ is a maximal solvable subalgebra of g, s’ contains a Cartan subalgebra @’ of g. Let
t' (resp. a’) be the toroidal part (resp. the vector part) of a’. There exists a Cartan decomposition

g=f+p of gwitht Cf and o’ Cp’. Let g =gy + >. g5 be the root space decomposition with
PN
respect to a’ (i.e., gj is the centralizer of a’ in g and g\ = {X € g|ad(a)(X) = Aa)X for all a € o'}

and A" = {X e (a/)*\ {0} | g) # {0}}). Let n':= > g), where A, is the positive root system with
AEA,

respect to some lexicographic ordering of a’. The algebra @’ 4+ n’ is a maximal solvable subalgebra of g.
According to a result of [21], we may assume that s’ = a’ +n’ by retaking a’ if necessary. By imitating
the proof of Lemma 5.1 of [3], it is shown that a’ is a maximal abelian subspace of p’ because the
S’-action has flat section. There exists g € G satisfying Ad(g)(f) = f, Ad(g)(p’) = p, Ad(g)(a') = a
and Ad(g)(a’) = a, where Ad is the adjoint representation of G, a and @ are as in Introduction. Let
5 := Ad(g)(s’) and S be the connected subgroup of G with Lie S = s. Since the S-action is conjugate
to the S’-action and S C EN, we obtain the statement of Theorem A. q.e.d.

Let a be a maximal abelian subspace of p. Fix a lexicographic ordering of a. Let g =go+ >_ g,
AEAN
p=a+ > prand f=fo+ > fx be the root space decompositions of g, p and f with respect to
NEAL AEAL
a, where we note that

gy ={X eglad(a)X =Aa)X forall a € a} (A€ A),
pr = {X €plad(a)®’X = Aa)’X foralla € a} (A€ Ay),
fr={X €flad(a)’X = X(a)’X foralla € a} (A€ Ay U{0}).

Also, let g = f+a+n be the Iwasawa decomposition of g and G = K AN be the corresponding Iwasawa

decomposition of G, where we note that n = . g,. Now we shall give examples of a solvable group
AEA L

contained in AN whose action on G/K(= AN) is complex hyperpolar. Denote by 7 the natural
projection of G onto G/K. Since G/K is of non-compact type, 7 gives a diffeomorphism of AN onto
G/K. Denote by (, ) the left-invariant metric of AN induced from that of G/K by m|an. Also,
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denote by (, )¢ the bi-invariant metric of G inducing that of G/K. Note that (, ) # ¢*( , )¢, where
¢ is the inclusion map of AN into G. Let [ be a r-dimensional subspace of a+n and set s := (a+n)©&1,
where (a+n)© 1 denotes the orthogonal complement of ! in a+n with respect to ( , )., where e is the
identity element of G. If s is a subalgebra of a+n and [, := pr,, (/) (pr, : the orthogonal projection of
g onto p) is abelian, then the S-action (S := exp(s)) is a complex hyperpolar action without singular
orbit. We shall give examples of such a subalgebra s of a + n and investigate the structure of the
S-orbit.

Ezample 1. Let b be a r(> 1)-dimensional subspace of a and s, := (a+n) ©b. It is clear that b, (= b)
is abelian and that s is a subalgebra of a + n. Hence the Sp-action (Sp := expa(sp)) on G/K is a
complex hyperpolar action without singular orbit.

Ezample 2. Let {A1, -+, \x} be a subset of a simple root system II of A such that Hy,,---, Hy,
are mutually orthogonal, b be a subspace of a © Span{Hy,, -, Hy,} (where b may be {0}) and ;
(¢ =1,---,k) be a one-dimensional subspace of RHy, + g, with /; # RH),, where H}, is the element

of a defined by (Hy,,-)A:i(-) and RH), is the subspace of a spanned by Hy,. Set [ := b+ Z l;. Then,

it follows from Lemma 3.1 (see the below) that [, is abelian and that sy, ... 5, = (a + n) ©lisa
subalgebra of a + n. Hence the Sp ... ;. -action (Sppy ... 1, = €xpg (o4, .1 )) on G/K is a complex
hyperpolar action without singular orbit.

Lemma 3.1. Let | and sp y,,... ;, be as in Example 2. Then [, is abelian and sy, ... 5, is a subalgebra
of a+n.

Proof. Let H € band X; € [; (1 =1,---,k). Since \;(H) = 0 and (X;), € RH), @ p»,, we have
[H,(Xi)p] = 0. Fix i,j € {1,---,k} (i # j). Since A; and A; are simple roots and (Hy,, Hy,) = 0,

we have [(X;)p, (X;)p] = 0. Thus [, is abelian. Let VW € sp ... 1. Since sp4y..., = (a O
k
(6 + > RH),))  ( > gr) D (Z((RHA +95)©h)), Vand W are described as V =
i=1 AEA NN Ak} i=1
k k
Vo + > W+ Y Viand W = Wy + > Wy + > W;, respectively, where
AEAN{Ar Ak} i=1 AEAN{ A1 Ak} i=1
k
Vo,Wo€ao (b+ > RH),), Vo, Wy € gx and V;, W; € (RH), + g»,) © ;. Easily we have
i=1
V. W] = > Vi, W,]

A pEALN{AL, Ak}

k kK k
n 3 S (VA Wil + Vi, W) + > Vi, W] (mod sp .. )-

AEA N[ AL, A} i=1 i=1 j=1

Since Ay, - - -, A\ are simple roots, [V, W], [Va, Wi, [Vi, Wil and [V, W] (A, pp € A \{ A1, -+, A}, 1<
1.~ Therefore we have [V,W] € sp 4, ...,
a+n. q.e.d.

i,7 < k) belong to sp 4, ... l,- Thus spj, ...;, is a subalgebra of

)
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For the orbit Sz, ... 1, - €, we have the following facts.

Sl

Lemma 3.2. Let sg,.... ;, be as in Example 2, § € b, &, := mf |>\ i tanh(|A;|t;)Hx, be a
unit vector of l; (i = 1,--- , k), where £ is a unit vector of gy,. Denote by A the shape tensor of the
orbit Sp,i,,... i, - € (C AN). Then, for A¢, and A , the following statements (i) ~ (vii) hold:

k
(i) For X €eao (b+ ) RHy,), WehaveAgonAgiino (i=1,---,k).

i=1
(i) For X € Ker(ad(&')lq,,) © RE', we have Ag, X = 0 and AEiiX = —|\;| tanh (| A |t) X
(iii) Assume that 2)\; € A;. For X € gay,, we have Ag, ([0¢%, X]) = 0 and

1 .
-0 X
2cosh(|/\i|ti)[ & X,

X — |Ag| tanh(|\|£:)[6€7, X],

: [Ail?
Az ([0€',X]) = ————+—
gti([ 5 ’ ]) COSh(l/\ilti)
where 0 is the Cartan involution of g with Fix6 = f.
(iv) For X € (RE' + RH),) © li, we have Ag, X = 0 and Ag; X = —|\i| tanh(|A;[t;) X
(v) For X € (g, ©RE) + (RE + RHy) © ;) + gan; (j # 1), we have Ag, X = Ay X = 0.

(vi) For X € g, (p € A\ {1, -, Ac}), we have A, X = (&)X

(vii) Let k; := exp ( (&' +0¢ )) , where exp is the exponential map of G. Then Ad(k;) o

V2|

k
Aééi = —Agéi o Ad(k;) holds over n & Z:l(g,\i + g2y, ), where Ad is the adjoint representation of G.

Proof. Let prl,, (resp. prZ.,) be the projection of g onto a + n with respect to the decomposition

g=f+(a+n) (resp. g = (fo+ > pa)+ (a+n)), pr; (resp. pr,) be the projection of g onto f (resp.
AEA L
p) with respect to the decomposition g = f+ p and prj, be the projection of g onto fo with respect to

the decomposition g = fo + (a + > ga). Then we have
PYSYAN

(3.1) pry, o pr%lJrn =pr, and pr;o pr?lJrn = pr; — pry, -

Let H € a, N, Na € nand F € gy (A € A4). Denote by ad(H)* (resp. ad(E)*) the adjoint operator
of ad(H) (resp. ad(F)) : a +n — a + n with respect to (, ). Easily we can show

(3.2) ad(H)* = ad(H).

For simplicity, we denote pri(-) (resp. pr,(-)) by (-); (resp. (-)p). From (3.1) and the skew-
symmetricness of ad(-) with respect to { , )&, we have

(ad(E)N1, N2je = < d(E;)((N1)p) + ad(Ep) (N1)g), (N2)p)E
~((N1)p, ad(Ep)((N2)p))e — ((N1)g, ad(Ey)((Na)p))
~((N1)p, (Praya(ad(Ep)N2))p)¢
—((N1)y, (pryn(ad(By)N2))j + pry, (ad(Ep)Na)) ¢
—(N1, pro o (ad(Ey)Na))e + (N1, pra . (ad(Ep)Na))e
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and hence
pr,(ad(E)*Na) = pr, (—pro, (ad(Ef)N2) + pry i, (ad(Ep)N2)),
where pr, is the projection of a + n onto n. Also, we have

(ad(EYH, N3)e = —A(H){(E,N3). = —(H,(E, N2)cH))e

and hence pr,(ad(E)*N2) = —(FE, Na).Hy, where pr, is the projection of a 4+ n onto a. Also, we can
show ad(E)*H = 0. Therefore, we have

0 ona
(33) a'd(E)* = _<E7 '>€ ® HA —Pbry© pr%ﬂrn ° ad(Ef)

onn
+pr, 0 priy, 0 ad(Ey)

On the other hand, according to the Koszul’s formula, we have

<A5X7 Y)G =

N =

(<[X7 Y]7§>e - <[Y, §]7X>e + <[§aX]7y>e)
L ((ad(¢) + ad(€)") X, V).

T2
k
for any X, Y € To(So.1y - 1, - €)Sp.1y 4, and any & € T (Spp, ... 4 - €) = b+ > I, That is, we have

) )
=1

1 *
(3.4) A¢ = gprro (ad(£) +ad(£)"),
where prq is the orthogonal projection of a + n onto sg ... ;.. From (3.2) and (3.4), we have

0 (X € Sp1y, 1 O Z g,\)
A X = REALN{ AL, Ak}

p(&)X (X €gy),

where € A4\ {A1,-++, Ax}. From (3.3) and (3.4), we have
k
Ag X =0 (Xe€ae(b+) RHy)):
i=1
Set gfj = Ker(ad(§<j)|%) and gg\j = Im(ad(@fj)bmj) (j =1,---,k). Then we have gy, = gﬁfj @gﬁj.
By simple calculations, it is shown that this decomposition is orthogonal with respect to {, ).. If
X e gf\(j © R&, then it follows from (3.2), (3.3), (3.4), i, A; € Il and (Hy,, H),) = 0 (when i # j)
that
Ag X = { —[il tanh(|A|t) X (i = j)

0 (i # J).
If X € goy,, then it follows from (3.2), (3.3), (3.4), \i, A; € Il and (H),, Hy;) = 0 (when i # j) that
1 .
—2|\| tanh (A |6)X — ————— 1068 X] (i =g
g x| TBINX — o X (=)
l 0 (i 4 J).

Also, we have
il

Aééi ([951’ X]) - COSh(|/\i |tz)

X — |\i| tanh(|\|£)[0€8, X
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Let X := tanh(|)\;[t;)&7 + m , which is a unit vector of (R& + RH),) © l;. From

(3.2), (3.3), (34), \i, A\j € IT and (Hy,, H > =0 (when i # j), we have

1 1 1) *
Agle = ——|)\-|tanh(|)\i|ti)X + mprT(ad(f ) X)

2|/\ | tanh(|\;|¢; ) pre(ad(Hy)* X)

~J —[Niltanh(|\ift) X (i = j)

- { 0 (i # ).
This completes the proof of (i) ~ (vi). Finally we shall show the statement (vii). Let X € n &
i(gx + g2y,) and k; be as in the statement (vii). From (3.2), (3.3), (3.4), A\; €Il (j=1,--- ,k) and

i=1

(Hx;, Hy,;) = 0 (when i # j), we have

1 ,
Ag X=—[¢
& cosh(|\[t;) &, X] = |)\ |

tanh(|\;|¢;)[Hy,, X].
By operating Ad(k;) to both sides of this relation, we have
Ad(k))(Ag X) = —Ag (Ad(k;)X),

where we use Ad(k;)(&)) = =&, and Ad(k;)(Hy,) = —H),. Thus the statement (vii) is shown.

Also, we have the following fact.

Lemma 3.3. Let sy ,,...,;, be as in Example 2 and I, be the orthogonal projection of l; onto gy,.
k. _

Set sp7, .7, = (@+n) S (b+ > L) and Sy 7, .. 3 = expg(sp7,... 3,)- Then the Sy . j -action is
i=1

conjugate to the Sy, ... 1, -action.

Proof. Denote by V the Levi-Civita connection of the left-invariant metric of AN. Let H be a vector
of b, & be a unit vector of }; (i = 1,--- ,k) and ¢ be the geodesic in AN with 44 (0) = £°. Let t;
. mﬁl —tanh(|A;|t;)Hy, € ; (i = 1,.- -+, k). Denote by the same symbols
H, & and H), the left-invariant vector fields arising from H, £* and H),, respectively. By using the

be a real number with

relation (5.4) of Section 5 of [20] (arising the Koszul formula for the left-invariant vector fields), we
can show

vﬁlgl = [Mi[Ha,, Ve Hy, = _|)‘1|§1

Vea& =VaH=Vy, & =Vy, & =Vu, H\, =V, H=0,

where ¢ = 2,--- k. From V&' = |\|Hy,, VaHy, = =M€Y, Vi, £ = Vg, Hy, =0, it follows
that exp R{¢', Hy, } is a totally geodesic subgroup of AN. Hence 4¢1(t) is expressed as e (t) =
a(t)(Hx, )y (1) +b(t)(§1)'y§1(t)' Furthermore, we have V4 , ¢ = (a’ + A1 |62 H ), + (U —|A1]ab)ét =0,
that is, @’ = —|\1]b? and b' = |A\1|ab. By solving this differential equation under the initial conditions

a(0) = 0 and b(0) = 1, we have a(t) = —tanh(|A(|t) and b(t) = Hence we obtain

1
cosh([A1]t) "
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Yer (t) = m(ﬁl)%l(ﬂ — tal_lh(|/\1|t)(H>\1)v51(t)' From V£1€i =VaH = Vthi = VHMH =0
(¢ = 2,---,k), it follows that £ (i = 2,---,k) and H are parallel along ve1 (with respect to V).
Denote by P,
translation by 71 (t). From the above facts, we have

the parallel translation along 7e1|j4 (with respect to V) and L'Ygl(t) the left

k k
T’il (tl)(Sbjlw' jk) = P’751 l[0,¢1] (b+ Z L) = (L751(t1))*(b + Z Li+h)
i=1 i=2
= (Logy (42))+ (T2 Sp,1, v 1)

which implies g1 (t1) 1Sy 7, .. 3,71 (t1) = Sp.p, 3,.... .- By repeating the same discussion, we obtain

(yer (t1) - yer (t)) " Sy 7, 7, (Yer (B1) -+ Yen (tk)) = Sy -

Thus the S 7, ... 3 -action is conjugate to the Sy, ... 5, -action. q.e.d.

For parallel submanifolds of a proper complex equifocal submanifold and a curvature-adapted
complex equifocal submanifold, we have the following facts.

Lemma 3.4. (i) All parallel submanifolds of a proper complex equifocal submanifold are proper
complex equifocal.

(ii) All parallel submanifolds of a curvature-adapted complex equifocal submanifold are curvature-
adapted and complex equifocal.

Proof. First we shall show the statement (i). Let M be a proper complex equifocal submanifold in
a symmetric space G/K of non-compact type and v be the parallel normal vector field of M which
is not a focal normal vector field. Denote by ny the end-point map for ¥ and My := nz(M), which
is a parallel submanifold of M. The vector field v is regarded as a parallel normal vector field of
the complexification M€ along M. Let % be the horizontal lift of ¥ to H°([0,1],¢%) by the anti-
Kaehlerian submersion 7€ o ¢¢ : HY([0,1],g°) — G¢/K*¢, which is a parallel normal vector field of
Me(:= (7€ 0 ¢°) "1 (M®)). Set MCysz := nye (M), where gz is the end-point map for 7. Note that
Mes, = (7€ 0 ) ~1((M5)¢). Denote by A and A?" the shape tensors of M¢ and M¢., respectively.
Let {\;|i € I} be the set of all complex principal curvatures of Me¢ and FE; be the complex curvature

distribution for X;. Then, according to Lemma 3.2 of [16], we have

(3.5) A, — %id (i eI, ue Mey),

where we note that T;,_, (U)M/%L = TUMVC(: @ (E;)y). This implies that J\A/[sz is proper anti-
v el

Kaehlerian isoparametric, that is, Mz is proper complex equifocal. Thus the statement (i) is shown.

Next we shall show the statement (ii). Let M be a curvature-adapted complex equifocal submanifold in

G/K and v be the parallel normal vector field of M. Set Mz := n3(M). Denote by A and A? the shape

tensors of M and Mg, repsectively. Let w € T; M. Without loss of generality, we may assume that x =

eK. Let a be a maximal abelian subspace of p := Tox (G/K) containing T3 M and p=a+ . pa
aEAN L

be the root space decomposition with respect to a. Let X € Ker(4, — Aid) N Ker(A,, — pid) Np,



CUBO

2010 Examples of a complex hyperpolar action without singular orbit 139
12, 2 (2010

(A € Spec Ay, p € Spec Ay, o € A4). Let w be the parallel tangent vector field on the (flat) section
3 of M through eK with w.x = w. Since My is regarded as a partial tube over M, it follows from
(ii) of Corollary 3.2 in [15] that

1
a(v) — Atanh a(v)

M olw ann a(v 1
D) aw) + ptanih afo)} o). .

Let Z be the element of p with exps(Z)K = nz(eK). For simplicity, set g := exps(Z). Since

(Aa)mmem((%)*X) = {—a(v)a(w) tanh a(v)
o A,

g« : p — Ty (ei) (G/K) is the parallel translation along the normal geodesic Wz(ﬁ
vz (t) = exps(tZ)K), it follows from (3.1) of [15] that

(nﬁ)*X = g*(szo(X) - szl(AvX))

— ( cosh afv) — sinh a(v)
= (oo o) - 2255

Also, we have g;l(Tnlﬂ(eK)Mg) = T4M C a. Hence we have R((15)«X, Wy (ek))Wns(ek) =
—a(w)?(n5)« X, which together with (3.6) implies

) 9+ X € giPa-

[(A'U)wnﬂ(cl() ) R(’ {Dnﬂ(EK)){DUﬂ(EK)]((nﬁ)*X) = 0.

Therefore, it follows from the arbitrariness of X that [(A'ﬁ)@m(cm s R(+, Wy, (ek) )W, (ek)] vanishes over

(n5)«(Ker(A, — Aid) N Ker(A,, — pid) Npy). Since M is curvature-adapted, we have

& ()« (Ker(A, — Nid) N Ker(A,, — pid) Npa) = Ty (o) M-
AESpec A, pESpec Ay a€A+(n ) ( ( ) ( H ) P ) 5 (e k)

Hence we have [(A'ﬁ)@m(cm s R(+, Wy, (ek) ) Wny (eic)) = 0. Therefore, it follows from the arbitrariness of
w that My is curvature-adapted. It is clear that My is complex equifocal. Thus the statement (ii) is
shown. q.e.d.

For the Sp-action and the Sg ... ;,-action, we have the following facts.

Proposition 3.5. (i) All orbits of the Sy-action are curvature-adapted but they are not proper
complex equifocal.

(ii) Let A1, -+, A (€ Ay) be as in Example 2. If the root system A of G/K is non-reduced and
2Xi, € A4 for someig € {1,--- ,k}, then all orbits of the Sy y, ... 1, -action are not curvature-adapted.
Also, if b # {0}, then they are not proper complex equifocal.

Proof. First we shall show the statement (i). The group Sy acts isometrically on (AN, (, )). Denote
by A the shape tensor of the orbit Sy - e in AN. Since ( , ) is left-invariant, it follows from the Koszul
formula that (4, X,Y) = (ad(v)X,Y) for any v € | = T-(Sp - €) and X,Y € 5 = T.(Se - €). Hence we
have A,|aer = 0 and A,|g, = AM(v)id (A € Ay), where v € T;5(Sp - €) = I(C p). Therefore, the orbit
Sp - e is curvature-adapted but it is not proper complex equifocal by (ii) of Theorem 1 of [14]. Hence
so are all orbits of the Sy-action by Lemma 3.3.
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Next we shall show the statement (ii). Assume that the root system A of G/K is non-reduced.
Denote by A the shape tensor of the orbit Se y, ... 5, e (C AN). Also, let & € b and &}, : m{l -
ﬁ tanh(|\;[t;)Hy, (€ € gy;) be a unit (tangent) vector of ;. Then, according to Lemma 3.2, we see
that

Ag 5.0y, D@5 ax,) T 0,

Agla, =pe)id (we A\ A},
(3.7) Aééi aS(b+35_ RHy,) = 0,

Ag; |Ker(ad(e)]s,, )orer = —|As] tanh([Ai]ti)id

Agi [meirray, ol = —|Ail tanh([Ait;)id

and that, in case of 2X\; € Ay, A

Im(ad(6¢1) g,y )+023, has two eigenvalues

1

3

and 3 1

with the same multiplicity. Note that gy, = Ker(ad(¢)|q,,) ® Im(ad(6€’)lq,,,). The eigenspace for
wi (vesp. p;) is spanned by

Zgﬂyy = [0, Y] + |\ (sinh(|/\i|ti) —/sinh® (| \[t:) + 2) Y's (Y € gay,)

(vesp. Zg y = 667, Y] + |\l (sinh(|)\i|ti)+ sinh2(|/\i|ti)+2) Y's (Y € gan,))).

Denote by R the curvature tensor of (, ). Also, denote by X; (resp. X,) the f-component (resp. the
p-component) of X € g. Then we have

(R(z2 v €06i,) = —all(ZE ) (€)1 (6)s)
(3:8) = a2 €061 + 1(ZE )5 (611, (6]
HUZE )1 (€D €D + (ZE 3o €D €D

for some non-zero constant a, where we note that @ = 1 if the metric of G/K is induced from the
restriction of the Killing form of g to p. Also we have

(3'9) [[(Zgiy)lﬂv (le)f]a (521%] =0,

tanh(|/\i |tl)

(3.10) (122 5 (€1 (605) = — e ot v g,
and
(3.11) (2 506051 (61 )5] = PSR e, v, ),

Let 7 (resp. 7) be the element of a + n with n; = [[0¢", Y]y, &f] (vesp. 7 = [[6€7, Y]y, &f]). Then it
follows from (3.8) ~ (3.11) that

a|)\i|tanh(|)\i|ti)

(R(ngyagl)ftll)p = _a[[ZgE,Y’gzi]’gzi]p + COSh(|/\i|ti)

(27710 + ﬁp),
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that is,

a|)\i|tanh(|)\i|ti)

(3.12) R(Z5 €606, = —allZg v &) 60 + = a1+

We have [¢¢,0¢'] = bH,, for some non-zero constant b. By simple calculation, we have

(25 v 400. €]

36|\ |
(3.13) = 2|\;| tanh®(|\;]t;) (— ad

+ tanh? (| )\ |t;)[0€7, Y.

=+ sinh(|/\i|ti) F SinhQ(l/\i|ti) + 2) Y

From (3.12) and (3.13), it follows that R(Zi Y,§t )& belongs to Im ad(0¢%) ® gox,. Hence R(-, &} )&/
preserves Im ad(0€%) @ goy, invariantly. It is clear that so is also Agi . From (3.12) and (3.13), we

have [R(-,&;,)&}, 5 Agi Jltm ad(6¢i)@gay, 7 0, under a suitable choice of ;. Therefore, S 1, ... 1, - € is not

k
curvature-adapted under suitable choices of I1,--- , lr. Then, so are all orbits of the Sb 1, I, -action
by Lemma 3.4. Furthermore, it follows from Lemma 3.3 that all orbits of the Sy j, . act1on are not
curvature-adapted under arbitrary choices of ly,--- , . Also, it follows from the second relation of

(3.7) that S s,,... 1, - € (hence all orbits of the Sp ;... i, -action) is not proper complex equifocal in case

of b # {0}. q.e.d.
From this proposition, we obtain the statements of Theorem B. Also, we have the following fact.
Proposition 3.6. If b = {0}, then the Sy ... . -action possesses the only minimal orbit.

Proof. According to Lemma 3.3, the Sy ;, ... ;,-action is conjugate to Sy 7, ... 7, -action, where I; is the
orthogonal projection of /; onto gy,. Hence they are orbit equivalent to each other. Hence we suffice
to show that the statement of this proposition holds for the Sy 7, ... 7, - action. Let ¢ be a unit vector
of l;. Take p € AN. We can express as p = Yer (t1) - - ng(tk) for some t1,--- ,tx € R, where v,
is the geodesic with 4.:(0) = & Set I = R{mﬁ M | tanh(|\;|t;) Ha, } (¢ =1,---,k). For

simplicity, set &, := W{l |>\ | tanh(|A\;|t;) H»,. According to the proof of Lemma 3.3, we have

(er(t1) -+ ver () ™ S 7y, 1 (v (B1) - ver (8)) = Sy,

Hence the orbit Sy 7, ... 7, - p is congruent to the orbit Sy ; i, - ¢ Denote by A the shape tensor of
Sb.il.--- i, € According to Lemma 3.2, we have

Hence the orbit S, o dp €18 minimal if and only if ¢ = --- = t; = 0, where we note that
Té(Sb_zl_ g e = R{&,, -+, &} because of b = {0}. That is, the orbit Sy7, .7 - P is mini-
mal if and only if p = e. Thus the orbit Sy ; .. j -action posseses the only minimal orbit Sy ; .. 7 -e.

This completes the proof.

q.e.d.
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From this proposition, we obtain the statement of Theorem C. At the end of this paper, we

propose the following question.

Question. Is any complex hyperpolar action without singular orbit on a symmetric space of non-
compact type orbit equivalent to either the Sy-action (b C a) as in Example 1 or the Sg y, ... j, -action
(l; : a one dimensional subspace of g5, (i =1,--- ,k), b CaoSpan{H), |i=1,---,k}) as in Example
27
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