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ABSTRACT

The notion of a complex hyperpolar action on a symmetric space of non-compact type

has recently been introduced as a counterpart to the hyperpolar action on a symmetric

space of compact type. As examples of a complex hyperpolar action, we have Hermann

type actions, which admit a totally geodesic singular orbit (or a fixed point) except for one

example. All principal orbits of Hermann type actions are curvature-adapted and proper

complex equifocal. In this paper, we give some examples of a complex hyperpolar action

without singular orbit as solvable group free actions and find complex hyperpolar actions

all of whose orbits are non-curvature-adapted or non-proper complex equifocal among the

examples. Also, we show that some of the examples possess the only minimal orbit.

RESUMEN

La noción de una acción hiperpolar compleja sobre un espacio simétrico de tipo no com-

pacto fue recientemente introducida como el análogo de la acción hiperpolar sobre un

espacio simétrico de tipo compacto. Como ejemplos de una acción hiperpolar complejas,

nosotros tenemos acciones de tipo Hermann, las cuales admiten una orbita (o un punto

fijo) singular totalmente geodesica excepto para un ejemplo. Todas las orbitas principales

de acciones de tipo Hermann son curvatura-adaptadas y unifocales complejas propias. En
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este art́ıculo, nosotros damos algunos ejemplos de una acción hiperpolar compleja sin or-

bitas singulares como grupo soluble de acciones libres y encontramos acciones complejas

hiperpolares cuyas orbitas son no curvatura-adaptadas o no propias unifocales complejas.

También, mostramos que algunos de los ejemplos poseen solamente orbitas minimales.

Key words and phrases: symmetric space, complex hyperpolar action, complex equifocal submani-

fold.

AMS (MOS) Subj. Class.: 53C35; 53C40

1 Introduction

In symmetric spaces, the notion of an equifocal submanifold was introduced in [30]. This notion is

defined as a compact submanifold with globally flat and abelian normal bundle such that the focal

radius functions for each parallel normal vector field are constant. However, this conditions of the

equifocality is rather weak in the case where the symmetric spaces are of non-compact type and the

submanifold is non-compact. So we [13, 14] have recently introduced the notion of a complex equifocal

submanifold in a symmetric space G/K of non-compact type. This notion is defined by imposing the

constancy of the complex focal radius functions instead of focal radius functions. Here we note that

the complex focal radii are the quantities indicating the positions of the focal points of the extrinsic

complexification of the submanifold, where the submanifold needs to be assumed to be complete and

of class Cω (i.e., real analytic). On the other hand, Heintze-Liu-Olmos [10] has recently defined

the notion of an isoparametric submanifold with flat section in a general Riemannian manifold as a

submanifold such that the normal holonomy group is trivial, its sufficiently close parallel submanifolds

are of constant mean curvature with respect to the radial direction and that the image of the normal

space at each point by the normal exponential map is flat and totally geodesic. We [14] showed the

following fact:

All isoparametric submanifolds with flat section in a symmetric space G/K of non-compact type

are complex equifocal and that conversely, all curvature-adapted and complex equifocal submanifolds

are isoparametric ones with flat section.

Here the curvature-adaptedness means that, for each normal vector v of the submanifold, the

Jacobi operator R(·, v)v preserves the tangent space of the submanifold invariantly and the restriction

of R(·, v)v to the tangent space commutes with the shape operator Av, where R is the curvature

tensor of G/K. Furthermore, as a subclass of the class of complex equifocal submanifolds, we [15]

defined that of the proper complex equifocal submanifolds in G/K as a complex equifocal submanifold

whose lifted submanifold to H0([0, 1], g) (g := Lie G) through some pseudo-Riemannian submersion

of H0([0, 1], g) onto G/K is proper complex isoparametric in the sense of [13], where we note that

H0([0, 1], g) is a pseudo-Hilbert space consisting of certain kind of paths in the Lie algebra g of G.

Let G/K be a symmetric space of non-compact type and H be a closed subgroup of G which admits

an embedded complete flat submanifold meeting all H-orbits orthogonally. Then the H-action on

G/K is called a complex hyperpolar action. This action was named thus because this action has not

necessarily a singular orbit (which should be called a pole of this action) but the complexified action
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has a singular orbit. Note that all cohomogeneity one actions are complex hyperpolar. We [14] showed

that principal orbits of a complex hyperpolar actions are isoparametric submanifolds with flat section

and hence they are complex equifocal. Conversely we [17] have recently showed that all homogeneous

complex equifocal submanifolds occurs as principal orbits of complex hyperpolar actions. Let H ′ be

a symmetric subgroup of G (i.e., there exists an involution σ of G with (Fix σ)0 ⊂ H ′ ⊂ Fix σ),

where Fix σ is the fixed point group of σ and (Fix σ)0 is the identity component of Fix σ. Then

the H ′-action on G/K is called a Hermann type action. A Hermann type action admits a totally

geodesic orbit or a fixed point. Except for one example, the totally geodsic orbit is singular (see

Theorem E of [17]). We [15] showed that principal orbits of a Hermann type action are proper

complex equifocal and curvature-adapted. We [17] have recently showed that all complex hyperpolar

actions of cohomogeneity greater than one on G/K admitting a totally geodesic orbit and all complex

hyperpolar actions of cohomogeneity one on G/K admitting reflective orbit are orbit equivalent to

Hermann type actions (see Theorems B, C and Remark 1.1 in [17]). Let G/K be a symmetric space

of non-compact type, g = f + p (f := Lie K) be the Cartan decomposition associated with (G, K), a

be the maximal abelian subspace of p, ã be the Cartan subalgebra of g containing a and g = f + a + n

be the Iwasawa’s decomposition. Let A, Ã and N be the connected Lie subgroups of G having a, ã

and n as their Lie algebras, respectively. Let π : G → G/K be the natural projection. The symmetric

space G/K is identified with the solvable group AN with a left-invariant metric through π|AN . In

this paper, we first prove the following fact for a complex hyperpolar action without singular orbit.

Theorem A. Any complex hyperpolar action on G/K(= AN) without singular orbit is orbit equiv-

alent to the free action of some solvable group contained in ÃN .

Next we give some examples of a complex hyperpolar action without singular orbit as the free

actions of solvable groups contained in AN (see Examples 1 and 2 of Section 3), which contain examples

of cohomogeneity one actions without singular orbit constructed by J. Berndt and H. Tamaru [3] as

special cases (see also [1]). Among these examples, we find complex hyperpolar actions all of whose

orbits are non-proper complex equifocal or non-curvature-adapted. As its result, we have the following

facts.

Theorem B. (i) For any symmetric space G/K of non-compact type and any positive integer r

with r ≤ rank(G/K), there exists a complex hyperpolar action without singular orbit such that the

cohomogeneity is equal to r and that any of the orbits is not proper complex equifocal.

(ii) Let G/K be one of SU(p, q)/S(U(p) × U(q)) (p < q), Sp(p, q)/Sp(p) × Sp(q) (p < q),

SO∗(2n)/U(n) (n : odd), E−14
6 /Spin(10) · U(1) or F−20

4 /Spin(9). Then, for any positive integer r

with r ≤ rank(G/K), there exists a complex hyperpolar action without singular orbit such that the

cohomogeneity is equal to r and that any of the orbits is not curvature-adapted.

Also, among those examples, we find complex hyperpolar actions possessing the only minimal

orbit. As its result, we have the following fact.
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Theorem C. For any irreducible symmetric space G/K of non-compact type and any positive integer

r ≤ [ 12 (rank(G/K) + 1)], there exists a complex hyperpolar action without singular orbit such that

the cohomogeneity is equal to r and that the only orbit is minimal.

2 Complex equifocal submanifolds

In this section, we recall the notions of a complex equifocal submanifold and a proper complex equifocal

submanifold. We first recall the notion of a complex equifocal submanifold. Let M be an immersed

submanifold with abelian normal bundle in a symmetric space N = G/K of non-compact type. Denote

by A the shape tensor of M . Let v ∈ T⊥
x M and X ∈ TxM (x = gK). Denote by γv the geodesic in

N with γ̇v(0) = v. The strongly M -Jacobi field Y along γv with Y (0) = X (hence Y ′(0) = −AvX) is

given by

Y (s) = (Pγv |[0,s]
◦ (Dco

sv − sDsi
sv ◦ Av))(X),

where Y ′(0) = ∇̃vY, Pγv |[0,s]
is the parallel translation along γv|[0,s] and Dco

sv (resp. Dsi
sv) is given by

Dco
sv = g∗ ◦ cos(

√
−1ad(sg−1

∗ v)) ◦ g−1
∗(

resp. Dsi
sv = g∗ ◦

sin(
√
−1ad(sg−1

∗ v))√
−1ad(sg−1

∗ v)
◦ g−1

∗

)
.

Here ad is the adjoint representation of the Lie algebra g of G. All focal radii of M along γv are

obtained as real numbers s0 with Ker(Dco
s0v−s0D

si
s0v◦Av) 6= {0}. So, we call a complex number z0 with

Ker(Dco
z0v−z0D

si
z0v◦Ac

v) 6= {0} a complex focal radius of M along γv and call dimKer(Dco
z0v−z0D

si
z0v◦Ac

v)

the multiplicity of the complex focal radius z0, where Ac

v is the complexification of Av and Dco
z0v (resp.

Dsi
z0v) is a C-linear transformation of (TxN)c defined by

Dco
z0v = gc

∗ ◦ cos(
√
−1adc(z0g

−1
∗ v)) ◦ (gc

∗)
−1

(
resp. Dsi

sv = gc

∗ ◦
sin(

√
−1adc(z0g

−1
∗ v))√

−1adc(z0g
−1
∗ v)

◦ (gc

∗)
−1

)
,

where gc

∗ (resp. adc) is the complexification of g∗ (resp. ad). Here we note that, in the case where

M is of class Cω, complex focal radii along γv indicate the positions of focal points of the extrinsic

complexification Mc(→֒ Gc/Kc) of M along the complexified geodesic γc

ι∗v, where Gc/Kc is the

anti-Kaehlerian symmetric space associated with G/K and ι is the natural immersion of G/K into

Gc/Kc. See Section 4 of [14] about the definitions of Gc/Kc, Mc(→֒ Gc/Kc) and γc
ι∗v. Also, for

a complex focal radius z0 of M along γv, we call z0v (∈ (T⊥
x M)c) a complex focal normal vector of

M at x. Furthermore, assume that M has globally flat normal bundle, that is, the normal holonomy

group of M is trivial. Let ṽ be a parallel unit normal vector field of M . Assume that the number

(which may be 0 and ∞) of distinct complex focal radii along γṽx
is independent of the choice of

x ∈ M . Furthermore assume that the number is not equal to 0. Let {ri,x | i = 1, 2, · · · } be the set

of all complex focal radii along γṽx
, where |ri,x| < |ri+1,x| or ”|ri,x| = |ri+1,x| & Re ri,x > Re ri+1,x”

or ”|ri,x| = |ri+1,x| & Re ri,x = Re ri+1,x & Im ri,x = −Im ri+1,x < 0”. Let ri (i = 1, 2, · · · ) be

complex valued functions on M defined by assigning ri,x to each x ∈ M . We call these functions ri

(i = 1, 2, · · · ) complex focal radius functions for ṽ. We call riṽ a complex focal normal vector field for

ṽ. If, for each parallel unit normal vector field ṽ of M , the number of distinct complex focal radii
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along γṽx
is independent of the choice of x ∈ M , each complex focal radius function for ṽ is constant

on M and it has constant multiplicity, then we call M a complex equifocal submanifold.

Let N = G/K be a symmetric space of non-compact type and π be the natural projection of

G onto G/K. Let (g, θ) be the orthogonal symmetric Lie algebra of G/K, f = {X ∈ g | θ(X) = X}
and p = {X ∈ g | θ(X) = −X}, which is identified with the tangent space TeKN . Let 〈 , 〉 be

the Ad(G)-invariant non-degenerate symmetric bilinear form of g inducing the Riemannian metric

of N . Note that 〈 , 〉|f×f (resp. 〈 , 〉|p×p) is negative (resp. positive) definite. Denote by the same

symbol 〈 , 〉 the bi-invariant pseudo-Riemannian metric of G induced from 〈 , 〉 and the Riemannian

metric of N . Set g+ := p, g− := f and 〈 , 〉g±
:= −π∗

g−
〈 , 〉 + π∗

g+
〈 , 〉, where πg−

(resp. πg+)

is the projection of g onto g− (resp. g+). Let H0([0, 1], g) be the space of all L2-integrable paths

u : [0, 1] → g (with respect to 〈 , 〉g±
). Let H0([0, 1], g−) (resp. H0([0, 1], g+)) be the space of

all L2-integrable paths u : [0, 1] → g− (resp. u : [0, 1] → g+) with respect to −〈 , 〉|g−×g−
(resp.

〈 , 〉|g+×g+). It is clear that H0([0, 1], g) = H0([0, 1], g−) ⊕ H0([0, 1], g+). Define a non-degenerate

symmetric bilinear form 〈 , 〉0 of H0([0, 1], g) by 〈u, v〉0 :=
∫ 1

0 〈u(t), v(t)〉dt. It is easy to show that the

decomposition H0([0, 1], g) = H0([0, 1], g−)⊕H0([0, 1], g+) is an orthogonal time-space decomposition

with respect to 〈 , 〉0. For simplicity, set H0
± := H0([0, 1], g±) and 〈 , 〉0,H0

±
:= −π∗

H0
−

〈 , 〉0+π∗
H0

+
〈 , 〉0,

where πH0
−

(resp. πH0
+
) is the projection of H0([0, 1], g) onto H0

− (resp. H0
+). It is clear that

〈u, v〉0,H0
±

=
∫ 1

0
〈u(t), v(t)〉g±

dt (u, v ∈ H0([0, 1], g)). Hence (H0([0, 1], g), 〈 , 〉0,H0
±
) is a Hilbert

space, that is, (H0([0, 1], g), 〈 , 〉0) is a pseudo-Hilbert space. Let H1([0, 1], G) be the Hilbert Lie

group of all absolutely continuous paths g : [0, 1] → G such that the weak derivative g′ of g is squared

integrable (with respect to 〈 , 〉g±
), that is, g−1

∗ g′ ∈ H0([0, 1], g). Define a map φ : H0([0, 1], g) → G

by φ(u) = gu(1) (u ∈ H0([0, 1], g)), where gu is the element of H1([0, 1], G) satisfying gu(0) = e

and g−1
u∗ g′u = u. We call this map the parallel transport map (from 0 to 1). This submersion φ is

a pseudo-Riemannian submersion of (H0([0, 1], g), 〈 , 〉0) onto (G, 〈 , 〉). Let π : G → G/K be the

natural projection. It follows from Theorem A of [13] (resp. Theorem 1 of [14]) that, in the case where

M is curvature adapted (resp. of class Cω), M is complex equifocal if and only if each component

of (π ◦ φ)−1(M) is complex isoparametric. See [13] about the definition of a complex isoparametric

submanifold in a pseudo-Hilbert space. In particular, if each component of (π ◦ φ)−1(M) are proper

complex isoparametric, that is, for each normal vector v, there exists a pseudo-orthonormal base of

the complexified tangent sapce consisting of the eigenvectors of the complexified shape operator for

v, then we call M a proper complex equifocal submanifold.

Next we recall the notion of an infinite dimensional anti-Kaehlerian isoparametric submanifold.

Let M be an anti-Kaehlerian Fredholm submanifold in an infinite dimensional anti-Kaehlerian space

V and A be the shape tensor of M . See [14] about the definitions of an infinite dimensional anti-

Kaehlerian space and anti-Kaehlerian Fredholm submanifold in the space. Denote by the same symbol

J the complex structures of M and V . Fix a unit normal vector v of M . If there exists X(6= 0) ∈ TM

with AvX = aX+bJX , then we call the complex number a+b
√
−1 a J-eigenvalue of Av (or a complex

principal curvature of direction v) and call X a J-eigenvector for a + b
√
−1. Also, we call the space

of all J-eigenvectors for a + b
√
−1 a J-eigenspace for a + b

√
−1. The J-eigenspaces are orthogonal

to one another and each J-eigenspace is J-invariant. We call the set of all J-eigenvalues of Av the

J-spectrum of Av and denote it by SpecJAv. The set SpecJAv \ {0} is described as follows:

SpecJAv \ {0} = {λi | i = 1, 2, · · · }
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(
|λi| > |λi+1| or ”|λi| = |λi+1| & Re λi > Re λi+1”

or ”|λi| = |λi+1| & Re λi = Re λi+1 & Im λi = −Im λi+1 > 0”

)
.

Also, the J-eigenspace for each J-eigenvalue of Av other than 0 is of finite dimension. We call the

J-eigenvalue λi the i-th complex principal curvature of direction v. Assume that M has globally flat

normal bundle. Fix a parallel normal vector field ṽ of M . Assume that the number (which may be

∞) of distinct complex principal curvatures of direction ṽx is independent of the choice of x ∈ M .

Then we can define functions λ̃i (i = 1, 2, · · · ) on M by assigning the i-th complex principal curvature

of direction ṽx to each x ∈ M . We call this function λ̃i the i-th complex principal curvature function

of direction ṽ. If M satisfies the following condition (AKI), then we call M an anti-Kaehlerian

isoparametric submanifold:

(AKI) For each parallel normal vector field ṽ, the number of distinct complex principal curvatures

of direction ṽx is independent of the choice of x ∈ M , each complex principal curvature function of

direction ṽ is constant on M and it has constant multiplicity.

Let {ei}∞i=1 be an orthonormal system of TxM . If {ei}∞i=1 ∪ {Jei}∞i=1 is an orthonormal base of

TxM , then we call {ei}∞i=1 a J-orthonormal base. If there exists a J-orthonormal base consisting of

J-eigenvectors of Av, then Av is said to be diagonalized with respect to the J-orthonormal base. If M

is anti-Kaehlerian isoparametric and, for each v ∈ T⊥M , the shape operator Av is diagonalized with

respect to a J-orthonormal base, then we call M a proper anti-Kaehlerian isoparametric submanifold.

For arbitrary two unit normal vector v1 and v2 of a proper anti-Kaehlerian isoparametric submanifold,

the shape operators Av1 and Av2 are simultaneously diagonalized with respect to a J-orthonormal

base. Let M be a proper anti-Kaehlerian isoparametric submanifold in an infinite dimensional anti-

Kaehlerian space V . Let {Ei | i ∈ I} be the family of distributions on M such that, for each x ∈ M ,

{Ei(x) | i ∈ I} is the set of all common J-eigenspaces of Av’s (v ∈ T⊥
x M). The relation TxM = ⊕

i∈I
Ei

holds. Let λi (i ∈ I) be the section of (T⊥M)∗⊗C such that Av = Reλi(v)id+ Imλi(v)J on Ei(π(v))

for each v ∈ T⊥M , where π is the bundle projection of T⊥M . We call λi (i ∈ I) complex principal

curvatures of M and call distributions Ei (i ∈ I) complex curvature distributions of M .

In the case where M is a real analytic submanifold in a symmetric space G/K of non-compact

type, it is shown that M is complex equifocal if and only if (πc ◦ φc)−1(Mc) is anti-Kaehlerian

isoparametric, where πc is the natural projection of Gc onto Gc/Kc and φc is the parallel transport

map for Gc (which is defined in similar to the above φ). Also, it is shown that M is proper complex

equifocal if and only if (πc ◦ φc)−1(Mc) is proper anti-Kaehlerian isoparametric.

3 Proof of Theorems A and B

In this section, we first prove Theorem A.

Proof of Theorem A. Let H be a complex hyperpolar action on G/K(= AN) without singular orbit,

H = LR (L : semi-simple, R : solvable) be the Levi decomposition of H and L = KLALNL (KL :

compact, AL : abelian, NL : nilpotent) be the Iwasawa decomposition of L. Since KL is compact, it

has a fixed point p0 by the Cartan’s fixed point theorem. Suppose that KL · p 6⊂ ALNLR · p for some
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p ∈ G/K. Then we have dimH · p0 < dimH · p, which implies that H · p0 is a singular orbit. This

contradicts the fact that the H-action has no singular orbit. Hence it follows that KL ·p ⊂ ALNLR ·p
for any p ∈ G/K. Therefore we can show that the ALNLR-action has the same orbits as the H-action.

The group ALNLR is decomposed into the product of some compact subgroup T ′ and some solvable

normal subgroup S′ admitting a maximal compact normal subgroup S′
K contained in the center of

S′ such that S′/S′
K is simply connected (see Theorem 6 of [19]). Since T ′ is compact, it is shown

by the same argument as above that the S′-action has the same orbit as the ALNLR-action (hence

the H-action). Take any p ∈ G/K and any g ∈ S′ with g 6= e. Since S′ acts on G/K effectively,

there exists p1 ∈ G/K with g(p1) 6= p1. The section Σp1 through p1 is mapped into the section Σg(p1)

through g(p1) by g. Since the S′-action has no singular orbit, we have Σp1 ∩ Σg(p1) = ∅. Let q be the

intersection of H ·p with Σp1 . Then g(q) is the intersection of H ·p with Σg(p1). Hence we have g(q) 6= q.

Therefore S′ acts on each H-orbit effectively. Since the isotropy group S′
p of S′ at any p ∈ G/K is

compact, it is contained in a conjugate of S′
K (see Theorem 4 of [19]). Hence S′

p is contained in the

center of S′. Therefore, since the S′
p-action has a fixed point p and it is effective, it is trivial. Thus

the S′-action is free. Let s′ := Lie S′ (the Lie algebra of S′), s̃′ be a maximal solvable subalgebra of

g containing s′ and S̃′ be the connected subgroup of G with Lie S̃′ = s̃′. Since g is a real semi-simple

Lie algebra and s̃′ is a maximal solvable subalgebra of g, s̃′ contains a Cartan subalgebra ã′ of g. Let

t′ (resp. a′) be the toroidal part (resp. the vector part) of ã′. There exists a Cartan decomposition

g = f′ + p′ of g with t′ ⊂ f′ and a′ ⊂ p′. Let g = g′0 +
∑

λ∈△′

g′λ be the root space decomposition with

respect to a′ (i.e., g′0 is the centralizer of a′ in g and g′λ = {X ∈ g | ad(a)(X) = λ(a)X for all a ∈ a′}
and △′ = {λ ∈ (a′)∗ \ {0} | g′λ 6= {0}}). Let n′ :=

∑
λ∈△′

+

g′λ, where △′
+ is the positive root system with

respect to some lexicographic ordering of a′. The algebra ã′+n′ is a maximal solvable subalgebra of g.

According to a result of [21], we may assume that s̃′ = ã′ +n′ by retaking ã′ if necessary. By imitating

the proof of Lemma 5.1 of [3], it is shown that a′ is a maximal abelian subspace of p′ because the

S′-action has flat section. There exists g ∈ G satisfying Ad(g)(f′) = f, Ad(g)(p′) = p, Ad(g)(a′) = a

and Ad(g)(ã′) = ã, where Ad is the adjoint representation of G, a and ã are as in Introduction. Let

s := Ad(g)(s′) and S be the connected subgroup of G with Lie S = s. Since the S-action is conjugate

to the S′-action and S ⊂ ÃN , we obtain the statement of Theorem A. q.e.d.

Let a be a maximal abelian subspace of p. Fix a lexicographic ordering of a. Let g = g0 +
∑

λ∈△

gλ,

p = a +
∑

λ∈△+

pλ and f = f0 +
∑

λ∈△+

fλ be the root space decompositions of g, p and f with respect to

a, where we note that

gλ = {X ∈ g | ad(a)X = λ(a)X for all a ∈ a} (λ ∈ △),

pλ = {X ∈ p | ad(a)2X = λ(a)2X for all a ∈ a} (λ ∈ △+),

fλ = {X ∈ f | ad(a)2X = λ(a)2X for all a ∈ a} (λ ∈ △+ ∪ {0}).

Also, let g = f+a+n be the Iwasawa decomposition of g and G = KAN be the corresponding Iwasawa

decomposition of G, where we note that n =
∑

λ∈△+

gλ. Now we shall give examples of a solvable group

contained in AN whose action on G/K(= AN) is complex hyperpolar. Denote by π the natural

projection of G onto G/K. Since G/K is of non-compact type, π gives a diffeomorphism of AN onto

G/K. Denote by 〈 , 〉 the left-invariant metric of AN induced from that of G/K by π|AN . Also,
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denote by 〈 , 〉G the bi-invariant metric of G inducing that of G/K. Note that 〈 , 〉 6= ι∗〈 , 〉G, where

ι is the inclusion map of AN into G. Let l be a r-dimensional subspace of a+n and set s := (a+n)⊖ l ,

where (a+n)⊖ l denotes the orthogonal complement of l in a+n with respect to 〈 , 〉e, where e is the

identity element of G. If s is a subalgebra of a+n and lp := prp(l) (prp : the orthogonal projection of

g onto p) is abelian, then the S-action (S := expG(s)) is a complex hyperpolar action without singular

orbit. We shall give examples of such a subalgebra s of a + n and investigate the structure of the

S-orbit.

Example 1. Let b be a r(≥ 1)-dimensional subspace of a and sb := (a+ n)⊖ b. It is clear that bp(= b)

is abelian and that sb is a subalgebra of a + n. Hence the Sb-action (Sb := expG(sb)) on G/K is a

complex hyperpolar action without singular orbit.

Example 2. Let {λ1, · · · , λk} be a subset of a simple root system Π of △ such that Hλ1 , · · · , Hλk

are mutually orthogonal, b be a subspace of a ⊖ Span{Hλ1 , · · · , Hλk
} (where b may be {0}) and li

(i = 1, · · · , k) be a one-dimensional subspace of RHλi
+gλi

with li 6= RHλi
, where Hλi

is the element

of a defined by 〈Hλi
, ·〉λi(·) and RHλi

is the subspace of a spanned by Hλi
. Set l := b +

k∑
i=1

li. Then,

it follows from Lemma 3.1 (see the below) that lp is abelian and that sb,l1,··· ,lk := (a + n) ⊖ l is a

subalgebra of a + n. Hence the Sb,l1,··· ,lk -action (Sb,l1,··· ,lk := expG(sb,l1,··· ,lk)) on G/K is a complex

hyperpolar action without singular orbit.

Lemma 3.1. Let l and sb,l1,··· ,lk be as in Example 2. Then lp is abelian and sb,l1,··· ,lk is a subalgebra

of a + n.

Proof. Let H ∈ b and Xi ∈ li (i = 1, · · · , k). Since λi(H) = 0 and (Xi)p ∈ RHλi
⊕ pλi

, we have

[H, (Xi)p] = 0. Fix i, j ∈ {1, · · · , k} (i 6= j). Since λi and λj are simple roots and 〈Hλi
, Hλj

〉 = 0,

we have [(Xi)p, (Xj)p] = 0. Thus lp is abelian. Let V, W ∈ sb,l1,··· ,lk . Since sb,l1,··· ,lk = (a ⊖
(b +

k∑
i=1

RHλi
)) ⊕ (

∑
λ∈△+\{λ1,··· ,λk}

gλ) ⊕ (
k∑

i=1

((RHλi
+ gλi

) ⊖ li)), V and W are described as V =

V0 +
∑

λ∈△+\{λ1,··· ,λk}

Vλ +
k∑

i=1

Vi and W = W0 +
∑

λ∈△+\{λ1,··· ,λk}

Wλ +
k∑

i=1

Wi, respectively, where

V0, W0 ∈ a ⊖ (b +
k∑

i=1

RHλi
), Vλ, Wλ ∈ gλ and Vi, Wi ∈ (RHλi

+ gλi
) ⊖ li. Easily we have

[V, W ] ≡
∑

λ,µ∈△+\{λ1,··· ,λk}

[Vλ, Wµ]

+
∑

λ∈△+\{λ1,··· ,λk}

k∑

i=1

([Vλ, Wi] + [Vi, Wλ]) +

k∑

i=1

k∑

j=1

[Vi, Wj ] (mod sb,l1,···lk).

Since λ1, · · · , λk are simple roots, [Vλ, Wµ], [Vλ, Wi], [Vi, Wλ] and [Vi, Wj ] (λ, µ ∈ △+\{λ1, · · · , λk}, 1 ≤
i, j ≤ k) belong to sb,l1,··· ,lk . Therefore we have [V, W ] ∈ sb,l1,··· ,lk . Thus sb,l1,···lk is a subalgebra of

a+n. q.e.d.
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For the orbit Sb,l1,··· ,lk · e, we have the following facts.

Lemma 3.2. Let sb,l1,··· ,lk be as in Example 2, ξ0 ∈ b, ξi
ti

:= 1
cosh(|λi|ti)

ξi − 1
|λi|

tanh(|λi|ti)Hλi
be a

unit vector of li (i = 1, · · · , k), where ξi is a unit vector of gλi
. Denote by A the shape tensor of the

orbit Sb,l1,··· ,lk · e (⊂ AN). Then, for Aξ0 and Aξi
ti

, the following statements (i) ∼ (vii) hold:

(i) For X ∈ a ⊖ (b +
k∑

i=1

RHλi
), we have Aξ0X = Aξi

ti

X = 0 (i = 1, · · · , k).

(ii) For X ∈ Ker(ad(ξi)|gλi
) ⊖ Rξi, we have Aξ0X = 0 and Aξi

ti

X = −|λi| tanh(|λi|ti)X .

(iii) Assume that 2λi ∈ △+. For X ∈ g2λi
, we have Aξ0([θξ

i, X ]) = 0 and

Aξi
ti

X = −2|λi| tanh(|λi|ti)X − 1

2 cosh(|λi|ti)
[θξi, X ],

Aξi
ti

([θξi, X ]) = − |λi|2
cosh(|λi|ti)

X − |λi| tanh(|λi|ti)[θξi, X ],

where θ is the Cartan involution of g with Fix θ = f.

(iv) For X ∈ (Rξi + RHλi
) ⊖ li, we have Aξ0X = 0 and Aξi

ti

X = −|λi| tanh(|λi|ti)X .

(v) For X ∈ (gλj
⊖ Rξj) + ((Rξj + RHλj

) ⊖ lj) + g2λj
(j 6= i), we have Aξ0X = Aξi

ti

X = 0.

(vi) For X ∈ gµ (µ ∈ △+ \ {λ1, · · · , λk}), we have Aξ0X = µ(ξ0)X .

(vii) Let ki := exp

(
π√
2|λi|

(ξi + θξi)

)
, where exp is the exponential map of G. Then Ad(ki) ◦

Aξi
ti

= −Aξi
ti

◦ Ad(ki) holds over n ⊖
k∑

i=1

(gλi
+ g2λi

), where Ad is the adjoint representation of G.

Proof. Let pr1a+n (resp. pr2a+n) be the projection of g onto a + n with respect to the decomposition

g = f + (a + n) (resp. g = (f0 +
∑

λ∈△+

pλ) + (a + n)), prf (resp. prp) be the projection of g onto f (resp.

p) with respect to the decomposition g = f + p and prf0
be the projection of g onto f0 with respect to

the decomposition g = f0 + (a +
∑

λ∈△

gλ). Then we have

(3.1) prp ◦ pr1a+n = prp and prf ◦ pr2a+n = prf − prf0
.

Let H ∈ a, N1, N2 ∈ n and E ∈ gλ (λ ∈ △+). Denote by ad(H)∗ (resp. ad(E)∗) the adjoint operator

of ad(H) (resp. ad(E)) : a + n → a + n with respect to 〈 , 〉e. Easily we can show

(3.2) ad(H)∗ = ad(H).

For simplicity, we denote prf(·) (resp. prp(·)) by (·)f (resp. (·)p). From (3.1) and the skew-

symmetricness of ad(·) with respect to 〈 , 〉Ge , we have

〈ad(E)N1, N2〉e = 〈ad(Ef)((N1)p) + ad(Ep)(((N1)f), (N2)p〉Ge
= −〈(N1)p, ad(Ef)((N2)p)〉Ge − 〈(N1)f, ad(Ep)((N2)p)〉Ge
= −〈(N1)p, (pr1a+n(ad(Ef)N2))p〉Ge

−〈(N1)f, (pr2a+n(ad(Ep)N2))f + prf0
(ad(Ep)N2)〉Ge

= −〈N1, pr1a+n(ad(Ef)N2)〉e + 〈N1, pr2a+n(ad(Ep)N2)〉e
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and hence

prn(ad(E)∗N2) = prn(−pr1a+n(ad(Ef)N2) + pr2a+n(ad(Ep)N2)),

where prn is the projection of a + n onto n. Also, we have

〈ad(E)H, N2〉e = −λ(H)〈E, N2〉e = −〈H, 〈E, N2〉eHλ〉e

and hence pra(ad(E)∗N2) = −〈E, N2〉eHλ, where pra is the projection of a + n onto a. Also, we can

show ad(E)∗H = 0. Therefore, we have

(3.3) ad(E)∗ =





0 on a

−〈E, ·〉e ⊗ Hλ − prn ◦ pr1a+n ◦ ad(Ef)

+prn ◦ pr2a+n ◦ ad(Ep)
on n

On the other hand, according to the Koszul’s formula, we have

〈AξX, Y 〉e =
1

2
(〈[X, Y ], ξ〉e − 〈[Y, ξ], X〉e + 〈[ξ, X ], Y 〉e)

=
1

2
〈(ad(ξ) + ad(ξ)∗)X, Y 〉e

for any X, Y ∈ Te(Sb,l1,··· ,lk · e)sb,l1,··· ,lk and any ξ ∈ T⊥
e (Sb,l1,··· ,lk · e) = b +

k∑
i=1

li. That is, we have

(3.4) Aξ =
1

2
prT ◦ (ad(ξ) + ad(ξ)∗),

where prT is the orthogonal projection of a + n onto sb,l1,··· ,lk . From (3.2) and (3.4), we have

Aξ0X =





0 (X ∈ sb,l1,··· ,lk ⊖
∑

µ∈△+\{λ1,··· ,λk}

gλ)

µ(ξ0)X (X ∈ gµ),

where µ ∈ △+ \ {λ1, · · · , λk}. From (3.3) and (3.4), we have

Aξi
ti

X = 0 (X ∈ a ⊖ (b +

k∑

i=1

RHλi
)).

Set gK
λj

:= Ker(ad(ξj)|gλj
) and gI

λj
:= Im(ad(θξj)|g2λj

) (j = 1, · · · , k). Then we have gλj
= gK

λj
⊕ gI

λj
.

By simple calculations, it is shown that this decomposition is orthogonal with respect to 〈 , 〉e. If

X ∈ gK
λj

⊖ Rξj , then it follows from (3.2), (3.3), (3.4), λi, λj ∈ Π and 〈Hλi
, Hλj

〉 = 0 (when i 6= j)

that

Aξi
ti

X =

{
−|λi| tanh(|λi|ti)X (i = j)

0 (i 6= j).

If X ∈ g2λj
, then it follows from (3.2), (3.3), (3.4), λi, λj ∈ Π and 〈Hλi

, Hλj
〉 = 0 (when i 6= j) that

Aξi
ti

X =





−2|λi| tanh(|λi|ti)X − 1

2 cosh(|λi|ti)
[θξi, X ] (i = j)

0 (i 6= j).

Also, we have

Aξi
ti

([θξi, X ]) = − |λi|2
cosh(|λi|ti)

X − |λi| tanh(|λi|ti)[θξi, X ].
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Let X := tanh(|λj |tj)ξj + 1
|λj | cosh(|λj |tj)

Hλj
, which is a unit vector of (Rξj + RHλj

) ⊖ lj . From

(3.2), (3.3), (3.4), λi, λj ∈ Π and 〈Hλi
, Hλj

〉 = 0 (when i 6= j), we have

Aξi
ti

X = −1

2
|λi| tanh(|λi|ti)X +

1

2 cosh(|λi|ti)
prT (ad(ξi)∗X)

− 1

2|λi|
tanh(|λi|ti)prT (ad(Hλ)∗X)

=

{
−|λi| tanh(|λi|ti)X (i = j)

0 (i 6= j).

This completes the proof of (i) ∼ (vi). Finally we shall show the statement (vii). Let X ∈ n ⊖
k∑

i=1

(gλi
+ g2λi

) and ki be as in the statement (vii). From (3.2), (3.3), (3.4), λj ∈ Π (j = 1, · · · , k) and

〈Hλi
, Hλj

〉 = 0 (when i 6= j), we have

Aξi
ti

X =
1

cosh(|λi|ti)
[ξi

p, X ]− 1

|λi|
tanh(|λi|ti)[Hλi

, X ].

By operating Ad(ki) to both sides of this relation, we have

Ad(ki)(Aξi
ti

X) = −Aξi
ti

(Ad(ki)X),

where we use Ad(ki)(ξ
i
p) = −ξi

p and Ad(ki)(Hλi
) = −Hλi

. Thus the statement (vii) is shown.

q.e.d.

Also, we have the following fact.

Lemma 3.3. Let sb,l1,··· ,lk be as in Example 2 and l̄i be the orthogonal projection of li onto gλi
.

Set sb,̄l1,··· ,̄lk
:= (a + n) ⊖ (b +

k∑
i=1

l̄i) and Sb,̄l1,··· ,̄lk
:= expG(sb,̄l1,··· ,̄lk

). Then the Sb,̄l1,··· ,̄lk
-action is

conjugate to the Sb,l1,··· ,lk -action.

Proof. Denote by ∇ the Levi-Civita connection of the left-invariant metric of AN . Let H be a vector

of b, ξi be a unit vector of l̄i (i = 1, · · · , k) and γξi be the geodesic in AN with γ̇ξi(0) = ξi. Let ti

be a real number with 1
cosh(|λi|ti)

ξi − tanh(|λi|ti)Hλi
∈ li (i = 1, · · · , k). Denote by the same symbols

H, ξi and Hλi
the left-invariant vector fields arising from H, ξi and Hλi

, respectively. By using the

relation (5.4) of Section 5 of [20] (arising the Koszul formula for the left-invariant vector fields), we

can show
∇ξ1ξ1 = |λ1|Hλ1 , ∇ξ1Hλ1 = −|λ1|ξ1

∇ξ1ξi = ∇ξ1H = ∇Hλ1
ξ1 = ∇Hλ1

ξi = ∇Hλ1
Hλ1 = ∇Hλ1

H = 0,

where i = 2, · · · , k. From ∇ξ1ξ1 = |λ1|Hλ1 , ∇ξ1Hλ1 = −|λ1|ξ1, ∇Hλ1
ξ1 = ∇Hλ1

Hλ1 = 0, it follows

that expR{ξ1, Hλ1} is a totally geodesic subgroup of AN . Hence γ̇ξ1(t) is expressed as γ̇ξ1(t) =

a(t)(Hλ1 )γξ1(t) + b(t)(ξ1)γξ1(t). Furthermore, we have ∇γ̇
ξ1 γ̇ξ1 = (a′ + |λ1|b2)Hλ1 +(b′−|λ1|ab)ξ1 = 0,

that is, a′ = −|λ1|b2 and b′ = |λ1|ab. By solving this differential equation under the initial conditions

a(0) = 0 and b(0) = 1, we have a(t) = − tanh(|λ1|t) and b(t) = 1
cosh(|λ1|t)

. Hence we obtain
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γ̇ξ1(t) = 1
cosh(|λ1|t)

(ξ1)γξ1(t) − tanh(|λ1|t)(Hλ1)γξ1(t). From ∇ξ1ξi = ∇ξ1H = ∇Hλ1
ξi = ∇Hλ1

H = 0

(i = 2, · · · , k), it follows that ξi (i = 2, · · · , k) and H are parallel along γξ1 (with respect to ∇).

Denote by Pγξ1 |[0,t]
the parallel translation along γξ1 |[0,t] (with respect to ∇) and Lγξ1(t) the left

translation by γξ1(t). From the above facts, we have

T⊥
γξ1(t1)

(Sb,̄l1,··· ,̄lk) = Pγξ1 |[0,t1]
(b +

k∑

i=1

l̄i) = (Lγξ1(t1))∗(b +
k∑

i=2

l̄i + l1)

= (Lγξ1(t1))∗(T
⊥
e Sb,l1,̄l2,··· ,̄lk),

which implies γξ1(t1)
−1Sb,̄l1,··· ,̄lkγξ1(t1) = Sb,l1 ,̄l2,··· ,̄lk . By repeating the same discussion, we obtain

(γξ1(t1) · · · γξk(tk))−1Sb,̄l1,··· ,̄lk(γξ1(t1) · · · γξk(tk)) = Sb,l1,··· ,lk .

Thus the Sb,̄l1,··· ,̄lk
-action is conjugate to the Sb,l1,··· ,lk -action. q.e.d.

For parallel submanifolds of a proper complex equifocal submanifold and a curvature-adapted

complex equifocal submanifold, we have the following facts.

Lemma 3.4. (i) All parallel submanifolds of a proper complex equifocal submanifold are proper

complex equifocal.

(ii) All parallel submanifolds of a curvature-adapted complex equifocal submanifold are curvature-

adapted and complex equifocal.

Proof. First we shall show the statement (i). Let M be a proper complex equifocal submanifold in

a symmetric space G/K of non-compact type and ṽ be the parallel normal vector field of M which

is not a focal normal vector field. Denote by η
ev the end-point map for ṽ and M

ev := η
ev(M), which

is a parallel submanifold of M . The vector field ṽ is regarded as a parallel normal vector field of

the complexification Mc along M . Let ṽL be the horizontal lift of ṽ to H0([0, 1], gc) by the anti-

Kaehlerian submersion πc ◦ φc : H0([0, 1], gc) → Gc/Kc, which is a parallel normal vector field of

M̃c(:= (πc ◦ φc)−1(Mc)). Set M̃c
evL := η

evL(M̃c), where η
evL is the end-point map for ṽL. Note that

M̃c
evL = (πc ◦ φc)−1((M

ev)c). Denote by Ã and ÃevL

the shape tensors of M̃c and M̃c
evL , respectively.

Let {λi | i ∈ I} be the set of all complex principal curvatures of M̃c and Ei be the complex curvature

distribution for λi. Then, according to Lemma 3.2 of [16], we have

(3.5) ÃevL

w |(Ei)u
=

(λi)u(w)

1 − (λi)u(ṽL
u )

id (i ∈ I, u ∈ M̃c
evL),

where we note that Tη
evL (u)M̃c

evL = TuM̃c(= ⊕
i∈I

(Ei)u). This implies that M̃c
evL is proper anti-

Kaehlerian isoparametric, that is, M
ev is proper complex equifocal. Thus the statement (i) is shown.

Next we shall show the statement (ii). Let M be a curvature-adapted complex equifocal submanifold in

G/K and ṽ be the parallel normal vector field of M . Set M
ev := η

ev(M). Denote by A and Aev the shape

tensors of M and M
ev, repsectively. Let w ∈ T⊥

x M . Without loss of generality, we may assume that x =

eK. Let a be a maximal abelian subspace of p := TeK(G/K) containing T⊥
eKM and p = a +

∑
α∈△+

pα

be the root space decomposition with respect to a. Let X ∈ Ker(Av − λ id) ∩ Ker(Aw − µ id) ∩ pα
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(λ ∈ Spec Av, µ ∈ Spec Aw, α ∈ △+). Let w̃ be the parallel tangent vector field on the (flat) section

Σ of M through eK with w̃eK = w. Since M
ev is regarded as a partial tube over M , it follows from

(ii) of Corollary 3.2 in [15] that

(3.6)

(Aev)
ewη

ev(eK)
((η

ev)∗X) =
1

α(v) − λ tanh α(v)
{−α(v)α(w) tanh α(v)

+λ

(
1 − tanh α(v)

α(v)

)
α(w) + µ tanh α(v)}(η

ev)∗X.

Let Z be the element of p with expG(Z)K = η
ev(eK). For simplicity, set g := expG(Z). Since

g∗ : p → Tη
ev(eK)(G/K) is the parallel translation along the normal geodesic γZ(⇔

def

γZ(t) := expG(tZ)K), it follows from (3.1) of [15] that

(η
ev)∗X = g∗(D

co
v (X) − Dsi

v (AvX))

=

(
cosh α(v) − λ

sinh α(v)

α(v)

)
g∗X ∈ g∗pα.

Also, we have g−1
∗ (T⊥

η
ev(eK)Mev) = T⊥

eKM ⊂ a. Hence we have R((η
ev)∗X, w̃η

ev(eK))w̃η
ev(eK) =

−α(w)2(η
ev)∗X , which together with (3.6) implies

[(Aev)
ewη

ev(eK)
, R(·, w̃η

ev(eK))w̃η
ev(eK)]((ηev)∗X) = 0.

Therefore, it follows from the arbitrariness of X that [(Aev)
ewη

ev(eK)
, R(·, w̃η

ev(eK))w̃η
ev(eK)] vanishes over

(η
ev)∗(Ker(Av − λ id) ∩ Ker(Aw − µ id) ∩ pα). Since M is curvature-adapted, we have

⊕
λ∈Spec Av

⊕
µ∈Spec Aw

⊕
α∈△+

(η
ev)∗(Ker(Av − λ id) ∩ Ker(Aw − µ id) ∩ pα) = Tη

ev(eK)Mev.

Hence we have [(Aev)
ewη

ev(eK)
, R(·, w̃η

ev(eK))w̃η
ev(eK)] = 0. Therefore, it follows from the arbitrariness of

w that M
ev is curvature-adapted. It is clear that M

ev is complex equifocal. Thus the statement (ii) is

shown. q.e.d.

For the Sb-action and the Sb,l1,··· ,lk -action, we have the following facts.

Proposition 3.5. (i) All orbits of the Sb-action are curvature-adapted but they are not proper

complex equifocal.

(ii) Let λ1, · · · , λk (∈ △+) be as in Example 2. If the root system △ of G/K is non-reduced and

2λi0 ∈ △+ for some i0 ∈ {1, · · · , k}, then all orbits of the Sb,l1,··· ,lk -action are not curvature-adapted.

Also, if b 6= {0}, then they are not proper complex equifocal.

Proof. First we shall show the statement (i). The group Sb acts isometrically on (AN, 〈 , 〉). Denote

by A the shape tensor of the orbit Sb · e in AN . Since 〈 , 〉 is left-invariant, it follows from the Koszul

formula that 〈AvX, Y 〉 = 〈ad(v)X, Y 〉 for any v ∈ l = T⊥
e (Sb · e) and X, Y ∈ s = Te(Sb · e). Hence we

have Av|a⊖l = 0 and Av|gλ
= λ(v)id (λ ∈ △+), where v ∈ T⊥

e (Sb · e) = l(⊂ p). Therefore, the orbit

Sb · e is curvature-adapted but it is not proper complex equifocal by (ii) of Theorem 1 of [14]. Hence

so are all orbits of the Sb-action by Lemma 3.3.
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Next we shall show the statement (ii). Assume that the root system △ of G/K is non-reduced.

Denote by A the shape tensor of the orbit Sb,l1,··· ,lk ·e (⊂ AN). Also, let ξ0 ∈ b and ξi
ti

: 1
cosh(|λi|ti)

ξi−
1

|λi|
tanh(|λi|ti)Hλi

(ξi ∈ gλi
) be a unit (tangent) vector of li. Then, according to Lemma 3.2, we see

that

(3.7)

Aξ0 |sb,l1,···lk
∩(a+

P

k
i=1 gλi

) = 0,

Aξ0 |gµ
= µ(ξ0)id (µ ∈ △+ \ k∪

i=1
{λi}),

Aξi
ti

|a⊖(b+
P

k
j=1 RHλj

) = 0,

Aξi
ti

|Ker(ad(ξi)|gλi
)⊖Rξi = −|λi| tanh(|λi|ti)id

Aξi
ti

|(Rξi+RHλi
)⊖li

= −|λi| tanh(|λi|ti)id

and that, in case of 2λi ∈ △+, Aξi
ti

|Im(ad(θξi)|g2λi
)+g2λi

has two eigenvalues

µ+
i := −3

2
|λi| tanh(|λi|ti) +

1

2
|λi|
√

2 − tanh2(|λi|ti)

and

µ−
i := −3

2
|λi| tanh(|λi|ti) −

1

2
|λi|
√

2 − tanh2(|λi|ti)

with the same multiplicity. Note that gλi
= Ker(ad(ξi)|gλi

) ⊕ Im(ad(θξi)|g2λi
). The eigenspace for

µ+
i (resp. µ−

i ) is spanned by

Z+
ξi,Y

:= [θξi, Y ] + |λi|
(

sinh(|λi|ti) −
√

sinh2(|λi|ti) + 2

)
Y ′s (Y ∈ g2λi

)

(resp. Z−
ξi,Y

:= [θξi, Y ] + |λi|
(

sinh(|λi|ti) +

√
sinh2(|λi|ti) + 2

)
Y ′s (Y ∈ g2λi

))).

Denote by R the curvature tensor of 〈 , 〉. Also, denote by Xf (resp. Xp) the f-component (resp. the

p-component) of X ∈ g. Then we have

(3.8)

(
R(Z±

ξi,Y
, ξi

ti
)ξi

ti

)
p

= −a[[(Z±
ξi,Y

)p, (ξ
i
ti

)p], (ξ
i
ti

)p]

= a(−[[Z±
ξi,Y

, ξi
ti

], ξi
ti

]p + [[(Z±
ξi,Y

)f, (ξ
i
ti

)f], (ξ
i
ti

)p]

+[[(Z±
ξi,Y

)f, (ξ
i
ti

)p], (ξ
i
ti

)f] + [[(Z±
ξi,Y

)p, (ξ
i
ti

)f], (ξ
i
ti

)f])

for some non-zero constant a, where we note that a = 1 if the metric of G/K is induced from the

restriction of the Killing form of g to p. Also we have

(3.9) [[(Z±
ξi,Y

)p, (ξ
i
ti

)f], (ξ
i
ti

)f] = 0,

(3.10) [[(Z±
ξi,Y

)f, (ξ
i
ti

)f], (ξ
i
ti

)p] = − tanh(|λi|ti)
|λi| cosh(|λi|ti)

[[[θξi, Y ]f, ξ
i
f ], Hλi

]

and

(3.11) [[(Z±
ξi,Y

)f, (ξ
i
ti

)p], (ξi
ti

)f] =
|λi| tanh(|λi|ti)

cosh(|λi|ti)
[[θξi, Y ]p, ξ

i
f ].

Let η (resp. η̄) be the element of a + n with ηf = [[θξi, Y ]f, ξ
i
f ] (resp. η̄p = [[θξi, Y ]p, ξ

i
f ]). Then it

follows from (3.8) ∼ (3.11) that

(R(Z±
ξi,Y

, ξi
ti
)ξi

ti
)p = −a[[Z±

ξi,Y
, ξi

ti
], ξi

ti
]p +

a|λi| tanh(|λi|ti)
cosh(|λi|ti)

(2ηp + η̄p),
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that is,

(3.12) R(Z±
ξi,Y

, ξi
ti
)ξi

ti
= −a[[Z±

ξi,Y
, ξi

ti
], ξi

ti
] +

a|λi| tanh(|λi|ti)
cosh(|λi|ti)

(2η + η̄).

We have [ξi, θξi] = bHλi
for some non-zero constant b. By simple calculation, we have

(3.13)

[[Z±
ξi,Y

, ξi
ti

], ξi
ti

]

= 2|λi| tanh2(|λi|ti)
(
− 3b|λi|2

sinh(|λi|ti)
+ sinh(|λi|ti) ∓

√
sinh2(|λi|ti) + 2

)
Y

+ tanh2(|λi|ti)[θξi, Y ].

From (3.12) and (3.13), it follows that R(Z±
ξi,Y

, ξi
ti

)ξi
ti

belongs to Imad(θξi)⊕ g2λi
. Hence R(·, ξi

ti
)ξi

ti

preserves Imad(θξi) ⊕ g2λi
invariantly. It is clear that so is also Aξi

ti

. From (3.12) and (3.13), we

have [R(·, ξi
ti
)ξi

ti
, Aξi

ti

]|Im ad(θξi)⊕g2λi
6= 0, under a suitable choice of ti. Therefore, Sb,l1,··· ,lk · e is not

curvature-adapted under suitable choices of l1, · · · , lk. Then, so are all orbits of the Sb,l1,··· ,lk -action

by Lemma 3.4. Furthermore, it follows from Lemma 3.3 that all orbits of the Sb,l1,··· ,lk -action are not

curvature-adapted under arbitrary choices of l1, · · · , lk. Also, it follows from the second relation of

(3.7) that Sb,l1,··· ,lk ·e (hence all orbits of the Sb,l1,··· ,lk -action) is not proper complex equifocal in case

of b 6= {0}. q.e.d.

From this proposition, we obtain the statements of Theorem B. Also, we have the following fact.

Proposition 3.6. If b = {0}, then the Sb,l1,··· ,lk -action possesses the only minimal orbit.

Proof. According to Lemma 3.3, the Sb,l1,··· ,lk -action is conjugate to Sb,̄l1,··· ,̄lk -action, where l̄i is the

orthogonal projection of li onto gλi
. Hence they are orbit equivalent to each other. Hence we suffice

to show that the statement of this proposition holds for the Sb,̄l1,··· ,̄lk - action. Let ξi be a unit vector

of l̄i. Take p ∈ AN . We can express as p = γξ1(t1) · · · γξk(tk) for some t1, · · · , tk ∈ R, where γξi

is the geodesic with γ̇ξi(0) = ξi. Set l̂i := R{ 1
cosh(|λi|ti)

ξi − 1
|λi|

tanh(|λi|ti)Hλi
} (i = 1, · · · , k). For

simplicity, set ξi
ti

:= 1
cosh(|λi|ti)

ξi − 1
|λi|

tanh(|λi|ti)Hλi
. According to the proof of Lemma 3.3, we have

(γξ1(t1) · · · γξk(tk))−1Sb,̄l1,··· ,̄lk(γξ1(t1) · · · γξk(tk)) = S
b,̂l1,··· ,̂lk

.

Hence the orbit Sb,̄l1,··· ,̄lk · p is congruent to the orbit S
b,̂l1,··· ,̂lk

· e. Denote by A the shape tensor of

S
b,̂l1,··· ,̂lk

· e. According to Lemma 3.2, we have

Tr Aξi
ti

= −|λi| tanh(|λi|ti) × (dim gλı + 2dim g2λi
) (i = 1, · · · , k).

Hence the orbit S
b,̂l1,··· ,̂lk

· e is minimal if and only if t1 = · · · = tk = 0, where we note that

T⊥
e (S

b,̂l1,··· ,̂lk
· e) = R{ξ1

t1
, · · · , ξk

tk
} because of b = {0}. That is, the orbit Sb,̄l1,··· ,̄lk · p is mini-

mal if and only if p = e. Thus the orbit Sb,̄l1,··· ,̄lk -action posseses the only minimal orbit Sb,̄l1,··· ,̄lk · e.
This completes the proof.

q.e.d.
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From this proposition, we obtain the statement of Theorem C. At the end of this paper, we

propose the following question.

Question. Is any complex hyperpolar action without singular orbit on a symmetric space of non-

compact type orbit equivalent to either the Sb-action (b ⊂ a) as in Example 1 or the Sb,l1,··· ,lk -action

(li : a one dimensional subspace of gλi
(i = 1, · · · , k), b ⊂ a⊖Span{Hλi

| i = 1, · · · , k}) as in Example

2 ?

Received: September 2008. Revised: April 2009.
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